1
|
Chen H, Jin Z, Dai X, Zhu J, Chen G. The diagnostic value of histogram analysis of DWI and DKI for the mismatch repair status of rectal adenocarcinoma. Heliyon 2024; 10:e37526. [PMID: 39309916 PMCID: PMC11416531 DOI: 10.1016/j.heliyon.2024.e37526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives To compare the diagnostic value of histogram analysis derived from diffusion weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in differentiating the mismatch repair (MMR) status of rectal adenocarcinoma. Methods DWI and DKI were performed in 124 patients with rectal adenocarcinoma, which were divided into deficient mismatch repair (dMMR) group and proficient mismatch repair (pMMR) group. The patients' general clinical information, pathology and image characteristics were compared. The histogram analysis of apparent diffusion coefficient (ADC), diffusion kurtosis (K) and diffusion coefficient (D)derived from DWI and DKI at b values of 1000 and 2000 s/mm2 were calculated. The diagnostic efficacy of quantitative parameters for MMR in rectal adenocarcinoma was compared. Results The mean, 50th, 75th and 90th in ADC quantitative parameters of dMMR group were lower when the b value was 2000 s/mm2 (all P < 0.05). With b value of 1000 s/mm2, the 10th, 25th, and 50th in the dMMR group were lower, and the skewness was higher (all P < 0.05). D values (10th, 25th and 50th) derived from DKI quantitative parameters were lower in the dMMR group. The K values (75th, 90th and Kskewness) were higher in the dMMR group, while Kkurtosis was lower (all P < 0.05). The results of multivariate logistic regression analysis showed that ADC75th(b = 2000 s/mm2), ADCskewness (b = 1000 s/mm2) and Kskewness were the statistical significant parameters (P = 0.014, 0.036 and 0.002, respectively), and the AUC values were 0.713, 0.818 and 0.835, respectively. Conclusion Histogram analysis derived from DWI and DKI can be good predictor of MMR. Kskewness is the strongest independent factor for predicting MMR.
Collapse
Affiliation(s)
- Hao Chen
- Department of Medical Imaging, Anqing Municipal Hospital, Anqing, China
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhicheng Jin
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoxiao Dai
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Zhu
- Department of Medical Imaging, Anqing Municipal Hospital, Anqing, China
| | - Guangqiang Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Stock S, Klüver AK, Fertig L, Menkhoff VD, Subklewe M, Endres S, Kobold S. Mechanisms and strategies for safe chimeric antigen receptor T-cell activity control. Int J Cancer 2023; 153:1706-1725. [PMID: 37350095 DOI: 10.1002/ijc.34635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
The clinical application of chimeric antigen receptor (CAR) T-cell therapy has rapidly changed the treatment options for terminally ill patients with defined blood-borne cancer types. However, CAR T-cell therapy can lead to severe therapy-associated toxicities including CAR-related hematotoxicity, ON-target OFF-tumor toxicity, cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Just as CAR T-cell therapy has evolved regarding receptor design, gene transfer systems and production protocols, the management of side effects has also improved. However, because of measures taken to abrogate adverse events, CAR T-cell viability and persistence might be impaired before complete remission can be achieved. This has fueled efforts for the development of extrinsic and intrinsic strategies for better control of CAR T-cell activity. These approaches can mediate a reversible resting state or irreversible T-cell elimination, depending on the route chosen. Control can be passive or active. By combination of CAR T-cells with T-cell inhibiting compounds, pharmacologic control, mostly independent of the CAR construct design used, can be achieved. Other strategies involve the genetic modification of T-cells or further development of the CAR construct by integration of molecular ON/OFF switches such as suicide genes. Alternatively, CAR T-cell activity can be regulated intracellularly through a self-regulation function or extracellularly through titration of a CAR adaptor or of a priming small molecule. In this work, we review the current strategies and mechanisms to control activity of CAR T-cells reversibly or irreversibly for preventing and for managing therapy-associated toxicities.
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anna-Kristina Klüver
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Luisa Fertig
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Vivien D Menkhoff
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Marion Subklewe
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
3
|
Kwiatek M, Kojak A, Kwaśniewska A. OX40 (CD134) Expression on T Regulatory Cells Is Related to Serious Hypertensive Disorders in Pregnancy. J Cardiovasc Dev Dis 2023; 10:431. [PMID: 37887878 PMCID: PMC10607140 DOI: 10.3390/jcdd10100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 10/28/2023] Open
Abstract
Hypertension is one of the leading causes of morbidity and mortality among women related to pregnancy, childbirth and the postpartum period. The pathogenesis of gestational hypertension is complex and still not fully understood. The aim of this study was to assess the population of circulating CD4+CD25+FoxP3+ cells and its differentiation in terms of OX40 expression in two forms of hypertension: isolated hypertension developing after the 20th week of pregnancy and pre-eclampsia. The study included a group of 60 patients with hypertension and 48 healthy controls. The analysis of the percentage of Tregs was performed by flow cytometry. There was no difference in the percentage of peripheral lymphocytes between the groups. In the group of women with preeclampsia compared to the group with gestational hypertension, significantly higher percentages of CD4+CD25+FoxP3+ cells (p = 0.03) and percentages of CD4+CD25+FoxP3+ cells expressing the OX40 antigen (p = 0.001) were observed. OX40 expression on Tregs seems to be related to more serious type of hypertensive disorders in pregnant women.
Collapse
Affiliation(s)
- Maciej Kwiatek
- Department of Obstetrics and Pregnancy Pathology, Medical University of Lublin, 20-059 Lublin, Poland; (A.K.); (A.K.)
| | | | | |
Collapse
|
4
|
Hu L, Morganti S, Nguyen U, Benavides OR, Walsh AJ. Label-free optical imaging of cell function and collagen structure for cell-based therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100433. [PMID: 36642995 PMCID: PMC9836225 DOI: 10.1016/j.cobme.2022.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-based therapies harness functional cells or tissues to mediate healing and treat disease. Assessment of cellular therapeutics requires methods that are non-destructive to ensure therapies remain viable and uncontaminated for use in patients. Optical imaging of endogenous collagen, by second-harmonic generation, and the metabolic coenzymes NADH and FAD, by autofluorescence microscopy, provides tissue structure and cellular information. Here, we review applications of label-free nonlinear optical imaging of cellular metabolism and collagen second-harmonic generation for assessing cell-based therapies. Additionally, we discuss the potential of label-free imaging for quality control of cell-based therapies, as well as the current limitations and potential future directions of label-free imaging technologies.
Collapse
|
5
|
Vyas K, Rathod M, Patel MM. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102662. [PMID: 36746272 DOI: 10.1016/j.nano.2023.102662] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Oral cancer is a type of cancer that develops in the mouth and is one of the deadliest malignancies in the world. Currently surgical, radiation therapy, and chemotherapy are most common treatments. Better treatment and early detection strategies are required. Chemotherapeutic drugs fail frequently due to toxicity and poor tumor targeting. There are high chances of failure of chemotherapeutic drugs due to toxicity. Active, passive, and immunity-targeting techniques are devised for tumor-specific activity. Nanotechnology-based drug delivery systems are the best available solution and important for precise targeting. Nanoparticles, liposomes, exosomes, and cyclodextrins are nano-based carriers for drug delivery. Nanotechnology is being used to develop new techniques such as intratumoral injections, microbubble mediated ultrasonic therapy, phototherapies, and site-specific delivery. This systematic review delves into the details of such targeted and nano-based drug delivery systems in order to improve patient health and survival rates in oral cancer.
Collapse
Affiliation(s)
- Kunj Vyas
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Maharshsinh Rathod
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
6
|
Simon Davis DA, Atmosukarto II, Garrett J, Gosling K, Syed FM, Quah BJ. Irradiation immunity interactions. J Med Imaging Radiat Oncol 2022; 66:519-535. [PMID: 35261190 PMCID: PMC9314628 DOI: 10.1111/1754-9485.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The immune system can influence cancer development by both impeding and/or facilitating tumour growth and spread. A better understanding of this complex relationship is fundamental to optimise current and future cancer therapeutic strategies. Although typically regarded as a localised and immunosuppressive anti‐cancer treatment modality, radiation therapy has been associated with generating profound systemic effects beyond the intended target volume. These systemic effects are immune‐driven suggesting radiation therapy can enhance anti‐tumour immunosurveillance in some instances. In this review, we summarise how radiation therapy can positively and negatively affect local and systemic anti‐tumour immune responses, how co‐administration of immunotherapy with radiation therapy may help promote anti‐tumour immunity, and how the use of immune biomarkers may help steer radiation therapy‐immunotherapy personalisation to optimise clinical outcomes.
Collapse
Affiliation(s)
- David A Simon Davis
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ines I Atmosukarto
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jessica Garrett
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Gosling
- Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Farhan M Syed
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| | - Ben Jc Quah
- Irradiation Immunity Interaction Laboratory, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.,Radiation Oncology Department, Canberra Hospital, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Leveraging biomaterials for enhancing T cell immunotherapy. J Control Release 2022; 344:272-288. [PMID: 35217099 DOI: 10.1016/j.jconrel.2022.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
The dynamic roles of T cells in the immune system to recognize and destroy the infected or mutated cells render T cell therapy a prospective treatment for a variety of diseases including cancer, autoimmune diseases, and allograft rejection. However, the clinical applications of T cell therapy remain unsatisfactory due to the tedious manufacturing process, off-target cytotoxicity, poor cell persistence, and associated adverse effects. To this end, various biomaterials have been introduced to enhance T cell therapy by facilitating proliferation, enhancing local enrichment, prolonging retention, and alleviating side effects. This review highlights the design strategies of biomaterials developed for T cell expansion, enrichment, and delivery as well as their corresponding therapeutic effects. The prospects of biomaterials for enhancing T cell immunotherapy are also discussed in this review.
Collapse
|
8
|
Gu J, Bi F. Significance of N6-Methyladenosine RNA Methylation Regulators in Immune Infiltrates of Ovarian Cancer. Front Genet 2021; 12:671179. [PMID: 34306015 PMCID: PMC8295008 DOI: 10.3389/fgene.2021.671179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation regulators play an important role in the occurrence and development of tumors. Here, we aimed to identify the potential roles of m6A RNA methylation regulators in immune infiltrates of ovarian cancer. We obtained two distinct m6A patterns (m6Acluster.A and m6Acluster.B) based on the expression levels of all 21 m6A RNA methylation regulators from The Cancer Genome Atlas (TCGA) database using a consensus clustering algorithm. Differential analysis of m6Acluster.A and m6Acluster.B identified 196 m6A-related genes. We further validated the m6A regulation mechanism based on the 196 m6A-related genes using another consensus clustering algorithm. Considering individual differences, principal component analysis algorithms were used to calculate an m6A score for each sample in order to quantify the m6A patterns. A low m6A score was associated with immune activation and enhanced response to immune checkpoint inhibitors, whereas a high m6A score was associated with tumor progression. Finally, we successfully verified the correlation between m6A regulators and immune microenvironment in OC using our microarray analysis data. In summary, m6A regulators play non-negligible roles in immune infiltrates of ovarian cancer. Our investigation of m6A patterns may help to guide future immunotherapy strategies for advanced ovarian cancer.
Collapse
Affiliation(s)
- Jing Gu
- Department of Obstetrics and Gynecology, ShengJing Hospital of China Medical University, Shenyang, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Chakraborty S, Zappasodi R. To Go or Not to Go?-Targeting Tregs Traveling in Tumors. Cancer Res 2021; 81:2817-2819. [PMID: 34087782 DOI: 10.1158/0008-5472.can-21-1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are one of the major impediments to effective antitumor immunity and successful immunotherapy. Elevated intratumoral Treg frequencies, observed in a variety of malignancies, have been associated with poor prognosis. In this issue of Cancer Research, two studies underscore the potential of harnessing the unique migratory profile of tumor-infiltrating Tregs to selectively eliminate these cells without compromising peripheral tolerance. Both studies identify surface migratory receptors, CCR8 by Campbell and colleagues and GPR15 by Adamczyk and colleagues, as selective markers of intratumoral Tregs in tumor-bearing mice and patients with cancer. Genetic deletion of GPR15 or antibody-mediated depletion of CCR8 was found to preferentially decrease tumor-infiltrating Tregs and substantially delayed tumor progression. Together, these two studies highlight the significance of migratory molecules in intratumoral Tregs and propose two potential selective targets for preferential elimination of tumor-associated "pathogenic" Tregs, which can be hijacked to enhance the response to immunotherapy.See related articles by Adamczyk et al., p. 2970 and Campbell et al., p. 2983.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Roberta Zappasodi
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York. .,Parker Institute for Cancer Immunotherapy, San Francisco, California.,Sloan-Kettering Institute, Memorial Sloan Kettering, New York, New York
| |
Collapse
|
10
|
van der List ACJ, Litjens NHR, Klepper M, Betjes MGH. Expression of Senescence Marker TIGIT Identifies Polyfunctional Donor-Reactive CD4+ T Cells Preferentially Lost After Kidney Transplantation. Front Immunol 2021; 12:656846. [PMID: 33995373 PMCID: PMC8119878 DOI: 10.3389/fimmu.2021.656846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Development of T-cell hyporesponsiveness to donor antigen may explain the substantial decreased risk for acute rejection in the years following kidney transplantation. The underlying mechanisms of donor-specific hyporesponsiveness (DSH) are largely unknown but may allow for lowering of immunosuppressive medication. Due to the onset of DSH being more rapid and pronounced in older recipients (+55 years), we hypothesized that immunosenescence/exhaustion of T lymphocytes would be a contributing factor. This study tested whether donor-reactive recipient T cells become hyporesponsive due to exhaustion from continuous stimulation by donor antigen. Circulating donor-reactive T cells of both young and elderly stable kidney transplant recipients (N=17) before and 3-5 years after transplantation were analyzed at the single cell level for expression of exhaustion markers by multi-parameter flow cytometry followed by unsupervised and unbiased clustering. Clusters containing cells of a particular expression profile with significant differential abundance after transplantation were identified and further analyzed. Unexpectedly, our results do not demonstrate an increase in exhausted donor antigen-reactive T cells post transplantation. Instead, we demonstrate a significant decrease in donor antigen-reactive CD4+ T cells expressing T cell immunoglobulin and ITIM domain (TIGIT) long after transplantation. Further analysis at earlier timepoints indicated that this decrease is already present at six months post transplantation. Characterization of these CD4+ T donor-reactive cells expressing TIGIT revealed them to have a predominantly central and effector memory T cell phenotype and a highly poly-functional cytokine expression profile. This study has therefore identified TIGIT as a marker for a previously undescribed polyfunctional donor-reactive CD4+ T cell population whose decline following kidney transplantation may explain development of DSH.
Collapse
Affiliation(s)
- Amy C J van der List
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Mariska Klepper
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Moghanloo E, Mollanoori H, Talebi M, Pashangzadeh S, Faraji F, Hadjilooei F, Mahmoodzadeh H. Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Transl Oncol 2021; 14:101070. [PMID: 33789222 PMCID: PMC8027274 DOI: 10.1016/j.tranon.2021.101070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based immunotherapies have been selected for the front-line cancer treatment approaches. Among them, CAR-T cells have shown extraordinary effects in hematologic diseases including chemotherapy-resistant acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin lymphoma (NHL). In this approach, autologous T cells isolated from the patient's body genetically engineered to express a tumor specific synthetic receptor against a tumor antigen, then these cells expanded ex vivo and re-infusion back to the patient body. Recently, significant clinical response and high rates of complete remission of CAR T cell therapy in B-cell malignancies led to the approval of Kymriah and Yescarta (CD19-directed CAR-T cells) were by FDA for treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Despite promising therapeutic outcomes, CAR T cells also can elicit the immune-pathologic effects, such as Cytokine Release Syndrome (CRS), Tumor Lysis Syndrome (TLS), and on-target off-tumor toxicity, that hampered its application. Ineffective control of these highly potent synthetic cells causes discussed potentially life-threatening toxicities, so researchers have developed several mechanisms to remote control CAR T cells. In this paper, we briefly review the introduced toxicities of CAR-T cells, then describe currently existing control approaches and review their procedure, pros, and cons.
Collapse
Affiliation(s)
- Ehsan Moghanloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Hasan Mollanoori
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Farimah Hadjilooei
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran; Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
What Is on the Horizon for Novel Immunotherapies in Lung Cancer? ACTA ACUST UNITED AC 2020; 26:555-560. [PMID: 33298728 DOI: 10.1097/ppo.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Programmed death (ligand) 1 checkpoint inhibitors have become standard treatment in patients with non-small cell lung cancer. Recently, combinations of nivolumab and ipilimumab have entered the clinic based on regulatory approval. Oftentimes, these checkpoint inhibitors are given in conjunction with chemotherapy. Through increased understanding of checkpoint evasion by cancer cells, many promising studies using combination therapies have continued to develop that aim to attack cancer cells by eliciting immunogenic responses through different modalities. Novel approaches include (1) using vaccines to trigger immune response, (2) combining multiple checkpoint inhibitors, (3) targeting inflammatory responses, (4) utilizing multitargeted tyrosine kinase inhibitors, (5) employing agonists of T-cell stimulators, and (6) applying specific biomarker antagonists to treat lung cancer patients. Herein, we discuss several studies that aim to answer what lies ahead in lung cancer treatment.
Collapse
|
13
|
Cohen JT, Miner TJ, Vezeridis MP. Is the neutrophil-to-lymphocyte ratio a useful prognostic indicator in melanoma patients? Melanoma Manag 2020; 7:MMT47. [PMID: 32922729 PMCID: PMC7475797 DOI: 10.2217/mmt-2020-0006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 12/25/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is gaining traction as a biomarker with utility in a variety of malignancies including melanoma. Intact lymphocyte function is necessary for tumor surveillance and destruction, and neutrophils play a role in suppressing lymphocyte proliferation and in the induction of lymphocyte apoptosis. Early research in melanoma indicates that in high-risk localized melanoma, a high NLR is correlated with worse overall and disease-free survival. Similarly, in metastatic melanoma treated with both metastasectomy and immunotherapies, an elevated NLR is predictive of shortened overall survival and progression-free survival. Future studies incorporating NLR into more traditional melanoma prognostic markers while employing more granular outcomes, are needed to realize the full potential of NLR.
Collapse
Affiliation(s)
- Joshua T Cohen
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Thomas J Miner
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Michael P Vezeridis
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Metaheuristics and Pontryagin's minimum principle for optimal therapeutic protocols in cancer immunotherapy: a case study and methods comparison. J Math Biol 2020; 81:691-723. [PMID: 32712711 DOI: 10.1007/s00285-020-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/04/2020] [Indexed: 12/24/2022]
Abstract
In this paper, the performance appropriateness of population-based metaheuristics for immunotherapy protocols is investigated on a comparative basis while the goal is to stimulate the immune system to defend against cancer. For this purpose, genetic algorithm and particle swarm optimization are employed and compared with modern method of Pontryagin's minimum principle (PMP). To this end, a well-known mathematical model of cell-based cancer immunotherapy is described and examined to formulate the optimal control problem in which the objective is the annihilation of tumour cells by using the minimum amount of cultured immune cells. In this regard, the main aims are: (i) to introduce a single-objective optimization problem and to design the considered metaheuristics in order to appropriately deal with it; (ii) to use the PMP in order to obtain the necessary conditions for optimality, i.e. the governing boundary value problem; (iii) to measure the results obtained by using the proposed metaheuristics against those results obtained by using an indirect approach called forward-backward sweep method; and finally (iv) to produce a set of optimal treatment strategies by formulating the problem in a bi-objective form and demonstrating its advantages over single-objective optimization problem. A set of obtained results conforms the performance capabilities of the considered metaheuristics.
Collapse
|
15
|
Immunotherapy, Inflammation and Colorectal Cancer. Cells 2020; 9:cells9030618. [PMID: 32143413 PMCID: PMC7140520 DOI: 10.3390/cells9030618] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type, and third highest in mortality rates among cancer-related deaths in the United States. Originating from intestinal epithelial cells in the colon and rectum, that are impacted by numerous factors including genetics, environment and chronic, lingering inflammation, CRC can be a problematic malignancy to treat when detected at advanced stages. Chemotherapeutic agents serve as the historical first line of defense in the treatment of metastatic CRC. In recent years, however, combinational treatment with targeted therapies, such as vascular endothelial growth factor, or epidermal growth factor receptor inhibitors, has proven to be quite effective in patients with specific CRC subtypes. While scientific and clinical advances have uncovered promising new treatment options, the five-year survival rate for metastatic CRC is still low at about 14%. Current research into the efficacy of immunotherapy, particularly immune checkpoint inhibitor therapy (ICI) in mismatch repair deficient and microsatellite instability high (dMMR-MSI-H) CRC tumors have shown promising results, but its use in other CRC subtypes has been either unsuccessful, or not extensively explored. This Review will focus on the current status of immunotherapies, including ICI, vaccination and adoptive T cell therapy (ATC) in the treatment of CRC and its potential use, not only in dMMR-MSI-H CRC, but also in mismatch repair proficient and microsatellite instability low (pMMR-MSI-L).
Collapse
|
16
|
Long B, Qin L, Zhang B, Li Q, Wang L, Jiang X, Ye H, Zhang G, Yu Z, Jiao Z. CAR T‑cell therapy for gastric cancer: Potential and perspective (Review). Int J Oncol 2020; 56:889-899. [PMID: 32319561 DOI: 10.3892/ijo.2020.4982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed digestive malignancies and is the third leading cause of cancer‑associated death worldwide. Delayed diagnosis and poor prognosis indicate the urgent need for new therapeutic strategies. The success of chimeric antigen receptor (CAR) T‑cell therapy for chemotherapy‑refractory hematological malignancies has inspired the development of a similar strategy for GC treatment. Although using CAR T‑cells against GC is not without difficulty, results from preclinical studies remain encouraging. The current review summarizes relevant preclinical studies and ongoing clinical trials for the use of CAR T‑cells for GC treatment and investigates possible toxicities, as well as current clinical experiences and emerging approaches. With a deeper understanding of the tumor microenvironment, novel target epitopes and scientific‑technical progress, the potential of CAR T‑cell therapy for GC is anticipated in the near future.
Collapse
Affiliation(s)
- Bo Long
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Boya Zhang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiong Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Long Wang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiangyan Jiang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Genyuan Zhang
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zeyuan Yu
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zuoyi Jiao
- Department of First General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
17
|
Abstract
The recent clinical success of cancer immunotherapy with checkpoint blockade has led to renewed interest into the development of immune modulatory agents with the capacity to activate anti-tumor T cell responses. Standardization of optimized in vitro assays for efficient assessment of immune function of such new drugs is thus needed to facilitate clinical development of the optimal drug candidates. Here, we describe an optimized version of T cell suppression assay designed to test the effect of immunomodulatory agents on T cell function and activation. We apply this assay to investigate the agonist activity of the T cell co-stimulatory molecule glucocorticoid-induced TNFR-related protein (GITR). We detail a protocol for concurrent assessment of multiple levels of T cell functional modulation upon GITR engagement, including T cell priming, activation and effector function, in a single assay. As human GITR agonist antibodies are currently under development, availability of standardized cell-based functional assays of GITR agonism is instrumental to translate anti-GITR therapy into the clinical setting.
Collapse
|
18
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Lai KC, Lu HF, Chen KB, Hsueh SC, Chung JG, Huang WW, Chen CC, Shang HS. Casticin Promotes Immune Responses, Enhances Macrophage and NK Cell Activities, and Increases Survival Rates of Leukemia BALB/c Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:223-236. [DOI: 10.1142/s0192415x19500113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Casticin, derived from Fructus Viticis, has anticancer properties in many human cancer cells, however, there is no report to show that casticin promotes immune responses and affects the survival rate of leukemia mice in vivo. The aim of this study is to evaluate the effects of casticin on immune responses and the survival rate of WEHI-3 cells generated in leukemia mice in vivo. Animals were divided into six groups: normal control mice, leukemia control mice, mice treated with ATRA (all-trans retinoic acid), and casticin (0.1, 0.2, and 0.4[Formula: see text]mg/kg) treated mice. All animals were treated for 14 days and then measured for body weights, total survival rate, cell markers, the weights of liver and spleen, phagocytosis of spleen cells, NK cell activities and cell proliferation. Results show that casticin did not affect animal appearances, however, it increased body weights and decreased the weights of liver at 0.2[Formula: see text]mg/kg and 0.4[Formula: see text]mg/kg treatment. Casticin also decreased spleen weight at 0.2[Formula: see text]mg/kg and 0.4[Formula: see text]mg/kg treatment, increased CD3 at 0.1, 0.2 and 0.4[Formula: see text]mg/kg doses and increased CD19 at 0.2[Formula: see text]mg/kg treatment but decreased CD11b and Mac-3 at 0.1, 0.2 and 0.4[Formula: see text]mg/kg treatment. Casticin (0.1, 0.2 and 0.4[Formula: see text]mg/kg) increased macrophage phagocytosis from PBMC (peripheral blood mononuclear cell) and peritoneal cavity. Furthermore, casticin increased NK cells’ cytotoxic activity and promoted T cell proliferation at 0.1–0.4[Formula: see text]mg/kg treatment with or without concanavalin A (Con A) stimulation, but only increased B cell proliferation at 0.1 mg/kg treatment. Based on these observations, casticin could be used as promoted immune responses in leukemia mice in vivo.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shu-Ching Hsueh
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Family Medicine and Community Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Ching Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Cancer Diagnostics and Therapeutics. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med 2018; 50:1-13. [PMID: 30135516 PMCID: PMC6105674 DOI: 10.1038/s12276-018-0130-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Recent advances in the understating of tumor immunology suggest that cancer immunotherapy is an effective treatment against various types of cancer. In particular, the remarkable successes of immune checkpoint-blocking antibodies in clinical settings have encouraged researchers to focus on developing other various immunologic strategies to combat cancer. However, such immunotherapies still face difficulties in controlling malignancy in many patients due to the heterogeneity of both tumors and individual patients. Here, we discuss how tumor-intrinsic cues, tumor environmental metabolites, and host-derived immune cells might impact the efficacy and resistance often seen during immune checkpoint blockade treatment. Furthermore, we introduce biomarkers identified from human and mouse models that predict clinical benefits for immune checkpoint blockers in cancer.
Collapse
Affiliation(s)
- Young-Jun Park
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Da-Sol Kuen
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Severe hemophagocytic lymphohistiocytosis in a melanoma patient treated with ipilimumab + nivolumab. J Immunother Cancer 2018; 6:73. [PMID: 30012206 PMCID: PMC6048909 DOI: 10.1186/s40425-018-0384-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment of metastatic melanoma patients with immune checkpoint inhibitors is an important standard of care. Side effects are due to immune activation, can affect virtually all organ systems, and are occasionally severe. Although hematologic toxicity has been reported, we present a case of hemophagocytic lymphohistiocytosis (HLH) due to immune checkpoint inhibitor therapy. CASE PRESENTATION A patient with metastatic melanoma was treated with one course of ipilimumab + nivolumab and presented 3 weeks later with severe anemia and hyperferritinemia. A bone marrow biopsy revealed necrotic tumor cells, infiltrating T cells, and hemophagocytosis. The patient was treated with high-dose steroids; 12 months later, the patient remains off all therapy and in complete remission of both HLH and metastatic melanoma. CONCLUSIONS The hemophagocytic syndromes are attributable to dysregulated immune activation and share pathophysiologic mechanisms with immune activation from checkpoint inhibitors. Increasing use of regimens that include immune checkpoint inhibition require vigilant monitoring for immune-activating side effects as they can occasionally be life threatening, as in this case of HLH.
Collapse
|
23
|
Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, Rosenblat T, Jurcic JG, Brentjens RJ, Arcila ME, Rampal R, Park JH, Douer D, Katz L, Sarlis N, Tallman MS, Scheinberg DA. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2018; 2:224-234. [PMID: 29386195 PMCID: PMC5812332 DOI: 10.1182/bloodadvances.2017014175] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
A National Cancer Institute consensus study on prioritization of cancer antigens ranked the Wilms tumor 1 (WT1) protein as the top immunotherapy target in cancer. We previously reported a pilot study of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia (AML) patients. We have now conducted a phase 2 study investigating this vaccine in adults with AML in first complete remission (CR1). Patients received 6 vaccinations administered over 10 weeks with the potential to receive 6 additional monthly doses if they remained in CR1. Immune responses (IRs) were evaluated after the 6th and 12th vaccinations by CD4+ T-cell proliferation, CD8+ T-cell interferon-γ secretion (enzyme-linked immunospot), or the CD8-relevant WT1 peptide major histocompatibility complex tetramer assay (HLA-A*02 patients only). Twenty-two patients (7 males; median age, 64 years) were treated. Fourteen patients (64%) completed ≥6 vaccinations, and 9 (41%) received all 12 vaccine doses. Fifteen patients (68%) relapsed, and 10 (46%) died. The vaccine was well tolerated, with the most common toxicities being grade 1/2 injection site reactions (46%), fatigue (32%), and skin induration (32%). Median disease-free survival from CR1 was 16.9 months, whereas the overall survival from diagnosis has not yet been reached but is estimated to be ≥67.6 months. Nine of 14 tested patients (64%) had an IR in ≥1 assay (CD4 or CD8). These results indicated that the WT1 vaccine was well tolerated, stimulated a specific IR, and was associated with survival in excess of 5 years in this cohort of patients. This trial was registered at www.clinicaltrials.gov as #NCT01266083.
Collapse
Affiliation(s)
- Peter G Maslak
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| | - Yvette Bernal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Suzanne M Chanel
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rong Zhang
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Frattini
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Todd Rosenblat
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph G Jurcic
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J Brentjens
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Maria E Arcila
- Weill Cornell Medical College, New York, NY
- Molecular Diagnostic Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Raajit Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Jae H Park
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Dan Douer
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | | | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - David A Scheinberg
- Immunology Laboratory Service, Department of Laboratory Medicine, and
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
24
|
Borrie AE, Maleki Vareki S. T Lymphocyte–Based Cancer Immunotherapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:201-276. [DOI: 10.1016/bs.ircmb.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Abstract
A key point for maintenance of the immune system homeostasis is the balance between the capacity to recognize and fight exogenous molecules and the capacity to avoid auto reactivity. The disruption of this balance induces the progression of several immune diseases such as autoimmune diseases, allergies, infections or cancer. A promising therapeutic approach to treat these diseases is immunotherapy. In cancer, both active and passive immunotherapies have been tested with promising results, such as the blocking of immunological checkpoints like CTLA-4 and PD-1. These treatments, in the market since a few years ago, aim to redirect the patient's immunological response by inhibiting the induction of regulatory T cells, both in the priming and effector phases. This strategy sheds light on the immunological mechanisms that control the regulatory response mediated by T cells and opens new lines of research into other immunological diseases such as allergy, in which the induction of a regulatory response is necessary to avoid allergic progression and which is the main objective of allergen-specific immunotherapies available today.
Collapse
|
26
|
Xu JY, Ye ZL, Jiang DQ, He JC, Ding YM, Li LF, Lv SQ, Wang Y, Jin HJ, Qian QJ. Mesothelin-targeting chimeric antigen receptor-modified T cells by piggyBac transposon system suppress the growth of bile duct carcinoma. Tumour Biol 2017; 39:1010428317695949. [PMID: 28381173 DOI: 10.1177/1010428317695949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor modified T cell-based immunotherapy is revolutionizing the field of cancer treatment. However, its potential in treating bile duct carcinoma has not been fully explored. Herein, we developed the second-generation mesothelin-targeting chimeric antigen receptor-modified T cells with the 4-1BB co-stimulatory module by the piggyBac transposon system. Mesothelin-targeting chimeric antigen receptor was expressed by 66.0% of mesothelin-targeting chimeric antigen receptor-modified T cells post electrophoretic transfection and stimulation with K562-meso cells; the expressions of activation markers were tested by flow cytometry assay and showed greater activation of mesothelin-targeting chimeric antigen receptor-modified T cells than control T cells (CD107α: 71.9% vs 48.6%; CD27: 92.1% vs 61.8%; CD137: 55.5% vs 8.4%; CD28: 98.0% vs 82.1%; CD134: 37.5% vs 10.4%). Furthermore, mesothelin-targeting chimeric antigen receptor-modified T cells exerted cytotoxicity toward mesothelin-expressing EH-CA1b and EH-CA1a cells in an effector-to-target ratio-dependent manner, while leaving mesothelin-negative GSC-SD and EH-GB1 cells and normal liver L02 cells almost unharmed. Mesothelin-targeting chimeric antigen receptor-modified T cells secreted cytokines at higher levels when co-cultured with mesothelin-positive EH-CA1a and EH-CA1b cells than with mesothelin-negative GSC-SD and EH-GB1 cells. Enhanced cytotoxicity and cytokine secretion of mesothelin-targeting chimeric antigen receptor-modified T cells compared to control T cells were also observed when co-cultured with 293-meso cells (interferon γ: 85.1% ± 1.47% vs 8.3% ± 2.50%, p = 0.000; tumor necrosis factor α: 90.9% ± 4.67% vs 18.5% ± 3.62%, p = 0.0004; interleukin 2: 60.8% ± 2.00% vs 15.6% ± 2.06%, p = 0.002; interleukin 6: 6.4% ± 2.95% vs 1.7% ± 0.63%, p = 0.055). In addition, mesothelin-targeting chimeric antigen receptor-modified T cells showed greater inhibitory and proliferative capability than control T cells within EH-CA1a cell xenografts. This study shows the potential of mesothelin-targeting chimeric antigen receptor-modified T cells in treating bile duct carcinoma.
Collapse
Affiliation(s)
- Jie-Ying Xu
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhen-Long Ye
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Du-Qing Jiang
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiang-Chuan He
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yong-Mei Ding
- 3 Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Lin-Fang Li
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Sai-Qun Lv
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Ying Wang
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Hua-Jun Jin
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Qi-Jun Qian
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China.,3 Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| |
Collapse
|
27
|
Yu S, Li A, Liu Q, Li T, Yuan X, Han X, Wu K. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol 2017; 10:78. [PMID: 28356156 PMCID: PMC5372296 DOI: 10.1186/s13045-017-0444-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Jiao Q, Liu C, Li W, Li W, Fang F, Qian Q, Zhang X. Programmed death-1 ligands 1 and 2 expression in cutaneous squamous cell carcinoma and their relationship with tumour- infiltrating dendritic cells. Clin Exp Immunol 2017; 188:420-429. [PMID: 28052400 DOI: 10.1111/cei.12921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
The programmed death-1 (PD-1) receptor ligands, PD-L1 and PD-L2, are co-stimulatory molecules that contribute to the negative regulation of T lymphocyte activation. It is still unclear whether there is correlation between PD-L1 or PD-L2 and tumour-infiltrating dendritic cells (TIDCs) in cutaneous squamous cell carcinoma (CSCC). The aim of this study was to analyse PD-L1 and PD-L2 expression and dendritic cells infiltration in tumour tissue of CSCC patients and investigate their clinical significance. Immunohistochemical analysis was used to evaluate the expression of PD-L1, PD-L2, CD1a and CD83 in 61 CSCC tissues. The immunofluoresence double-labelling technique was performed to detect the co-expression of PD-L1 or PD-L2 and CD1a or CD83 in tumour tissues. We found that 25 of 61 cases CSCC (40·98%) exhibited positivity for PD-L1, whereas 37 of 61 cases CSCC (60·66%) exhibited positivity for PD-L2. A higher percentage of CD1a-positive cases were observed on both PD-L1-positive and PD-L2-positive specimens compared with that of CD83-positive cases (92·29% versus 37·60%, 83·20% versus 33·16%). The expression of PD-L1 and PD-L2 on CD1a+ cells was significantly higher than that on CD83+ cells in tumour tissues of CSCC patients. Furthermore, the expression rate of PD-L1 was associated with UICC stage, and the expression rate of PD-L2 was associated with predominant differentiation and tumour size in CSCC. Our results indicated that higher expression of PD-L1 and PD-L2 on CD1a+ cells than that on CD83+ cells in CSCC tumour tissues may contribute to negative regulation in anti-tumour immune responses.
Collapse
Affiliation(s)
- Q Jiao
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - C Liu
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Clinical Immunology Laboratory, First Affiliated Hospital, Soochow University, Suzhou, China
| | - W Li
- Biomedical Research Center, University of Rostock, Rostock, Germany
| | - W Li
- Department of Dermatology, Soochow University Affiliated Children's Hospital, Suzhou, China
| | - F Fang
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Q Qian
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - X Zhang
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Clinical Immunology Laboratory, First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J. The expanding role of immunotherapy. Cancer Treat Rev 2017; 54:74-86. [PMID: 28231560 DOI: 10.1016/j.ctrv.2017.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
The use of agents able to modulate the immune system to induce or potentiate its anti-tumour activity is not a new strategy in oncology. However, the development of new agents such as immune checkpoint inhibitors has achieved unprecedented efficacy results in a wide variety of tumours, dramatically changing the landscape of cancer treatment in recent years. Ipilimumab, nivolumab, pembrolizumab or atezolizumab are now standard of care options in several malignancies and new indications are being approved on a regular basis in different tumours. Moreover, there are many other novel immunotherapy strategies that are currently being assessed in clinical trials. Agonists of co-stimulatory signals, adoptive cell therapies, vaccines, virotherapy and others have raised interest as therapeutic options against cancer. In addition, many of these novel approaches are being developed both in monotherapy and as part of combinatory regimes in order to synergize their activity. The results from those studies will help to define the expanding role of immunotherapy in cancer treatment in a forthcoming future.
Collapse
Affiliation(s)
- Juan Martin-Liberal
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - María Ochoa de Olza
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Cinta Hierro
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Alena Gros
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Rodon
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
30
|
Coy J, Caldwell A, Chow L, Guth A, Dow S. PD-1 expression by canine T cells and functional effects of PD-1 blockade. Vet Comp Oncol 2017; 15:1487-1502. [PMID: 28120417 DOI: 10.1111/vco.12294] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
The co-inhibitory checkpoint molecule programmed death receptor 1 (PD-1) can trigger T cell functional exhaustion upon binding to its ligand PD-L1 expressed on tumour cells or macrophages. PD-1 blocking antibodies have generated remarkable results in human cancer patients, including inducing durable responses in a number of advanced cancers. Therefore, monoclonal antibodies specific for canine PD-1 were assessed for T cell binding and induction of functional activation. A total of 5-10% of CD4 T cells and 20-25% of CD8 T cells from healthy dogs expressed PD-1, and PD-1 expression was upregulated on T cells from dogs with cancer. Functionally, PD-1 antibodies significantly enhanced T-cell activation, as assessed by proliferation and interferon-gamma (IFN-γ) production. PD-1 antibodies also reversed T-cell suppression induced by canine soluble PD-L1 and by tumour cells and tumour explant fragments. These findings indicate that PD-1 antibodies have potential for use in cancer immunotherapy in dogs.
Collapse
Affiliation(s)
- J Coy
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - A Caldwell
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - L Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - A Guth
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - S Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| |
Collapse
|
31
|
Clinical Neuropathology mini-review 6-2015: PD-L1: emerging biomarker in glioblastoma? Clin Neuropathol 2016; 34:313-21. [PMID: 26501438 PMCID: PMC4766797 DOI: 10.5414/np300922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Programmed death 1 (PD-1, CD279) and programmed death ligand 1 (PD-L1, CD274) are involved in generating tumor-associated immunosuppression by suppression of T-cell proliferation and interleukin 2 (IL-2) production and immune checkpoint inhibitors targeting these molecules are showing compelling activity against a variety of human cancers. PD-L1 expression has shown a positive association with response to PD-1 inhibition in non-central nervous system (CNS) tumors, e.g., melanoma or non-small cell lung cancer, and is discussed as a potential predictive biomarker for patient selection in these tumor types. This review summarizes current knowledge and potential clinical implications of PD-L1 expression in glioblastoma. At present, the following conclusions are drawn: (a) functional data support a role for PD-1/PD-L1 in tumor-associated immunosuppression in glioblastoma; (b) the incidence of PD-L1-expressing glioblastomas seems to be relatively high in comparison to other tumor types, however, the reported rates of glioblastomas with PD-L1 protein expression vary and range from 61 to 88%; (c) there is considerable variability in the methodology of PD-L1 assessment in glioblastoma across studies with heterogeneity in utilized antibodies, tissue sampling strategies, immunohistochemical staining protocols, cut-off definitions, and evaluated staining patterns; (d) there are conflicting data on the prognostic role and so far no data on the predictive role of PD-L1 gene and protein expression in glioblastoma. In summary, the ongoing clinical studies evaluating the activity of PD-1/PD-L1 inhibitors in glioblastoma need to be complemented with well designed and stringently executed studies to understand the influence of PD-1/PD-L1 expression on therapy response or failure and to develop robust means of PD-L1 assessment for meaningful biomarker development.
Collapse
|
32
|
Khanna P, Blais N, Gaudreau PO, Corrales-Rodriguez L. Immunotherapy Comes of Age in Lung Cancer. Clin Lung Cancer 2016; 18:13-22. [PMID: 27461776 DOI: 10.1016/j.cllc.2016.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
Abstract
Lung carcinoma is the leading cause of death by cancer worldwide. When possible, surgery is the best treatment strategy for patients with non-small-cell lung cancer. However, even with curative-intent therapy, most patients will develop local or systemic recurrence and, ultimately, succumb to their disease. In recent years, evidence on the role of the antitumor activity of the immune system and the understanding of tumor immunosurveillance have resulted in the emergence of immunotherapy as a promising therapeutic approach in lung cancer. The main approaches are immune checkpoint inhibition, such as blockade of the cytotoxic T-lymphocyte antigen-4 and programmed cell death-1 receptors and the programmed cell death-1 ligand, and vaccine therapy, which elicits specific antitumor immunity against relevant tumor-associated antigens. We have reviewed recently reported results from clinical trials and the possible future role of vaccine therapy and immune checkpoint inhibition in the treatment of small cell lung cancer and non-small-cell lung cancer.
Collapse
Affiliation(s)
- Priyanka Khanna
- Centro de Investigación y Manejo del Cáncer (CIMCA), San Jose, Costa Rica
| | - Normand Blais
- Medical Oncology and Hematology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Pierre-Olivier Gaudreau
- Medical Oncology and Hematology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Luis Corrales-Rodriguez
- Medical Oncology, Centro de Investigación y Manejo del Cáncer (CIMCA), San Jose, Costa Rica.
| |
Collapse
|
33
|
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13:273-90. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Citation(s) in RCA: 757] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular therapy to treat cancer by modulating the immune response have led to unprecedented responses in patients with advanced-stage tumours that would otherwise have been fatal. To date, three immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy in the months and years ahead. Concurrently, the adoptive transfer of genetically modified lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and we anticipate that this approach will rapidly become the standard of care for an increasing number of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role that it will have in the future of cancer treatment, including settings for which testing combination strategies and 'armoured' CAR T cells are recommended.
Collapse
|
34
|
Baxevanis CN, Perez SA. Cancer vaccines: limited success but the research should remain viable. Expert Rev Vaccines 2016; 15:677-80. [DOI: 10.1586/14760584.2016.1145057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Kemp V, Hoeben RC, van den Wollenberg DJM. Exploring Reovirus Plasticity for Improving Its Use as Oncolytic Virus. Viruses 2015; 8:E4. [PMID: 26712782 PMCID: PMC4728564 DOI: 10.3390/v8010004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Reoviruses are non-enveloped viruses with a segmented double stranded RNA genome. In humans, they are not associated with serious disease. Human reoviruses exhibit an inherent preference to replicate in tumor cells, which makes them ideally suited for use in oncolytic virotherapies. Their use as anti-cancer agent has been evaluated in several clinical trials, which revealed that intra-tumoral and systemic delivery of reoviruses are well tolerated. Despite evidence of anti-tumor effects, the efficacy of reovirus in anti-cancer monotherapy needs to be further enhanced. The opportunity to treat both the primary tumor as well as metastases makes systemic delivery a preferred administration route. Several pre-clinical studies have been conducted to address the various hurdles connected to systemic delivery of reoviruses. The majority of those studies have been done in tumor-bearing immune-deficient murine models. This thwarts studies on the impact of the contribution of the immune system to the tumor cell eradication. This review focuses on key aspects of the reovirus/host-cell interactions and the methods that are available to modify the virus to alter these interactions. These aspects are discussed with a focus on improving the reovirus' antitumor efficacy.
Collapse
Affiliation(s)
- Vera Kemp
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Rob C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Diana J M van den Wollenberg
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
36
|
Falkenburg JHF, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol 2015; 9:1894-903. [PMID: 26578450 DOI: 10.1016/j.molonc.2015.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several mechanisms can be responsible for control of hematological tumors by allo-reactive T cells. Following allogeneic stem cell transplantation (alloSCT) donor T cells recognizing genetic disparities presented on recipient cells and not on donor cells are main effectors of tumor control, but also of the detrimental graft versus host disease (GVHD). Since after transplantation normal hematopoiesis is of donor origin, any T cell response directed against polymorphic antigens expressed on hematopoietic recipient cells but not on donor cells will result in an anti-tumor response not affecting normal hematopoiesis. After fully HLA-matched alloSCT, T cells recognizing polymorphic peptides derived from proteins encoded by genes selectively expressed in hematopoietic lineages may result in anti-tumor responses without GVHD. Due to the high susceptibility of hematopoietic cells for T cell recognition, a low amplitude of the overall T cell response may also be in favor of the anti-tumor reactivity in hematological malignancies. A mismatch between donor and patient for specific HLA-alleles can also be exploited to induce a selective T cell response against patient (malignant) hematopoietic cells. If restricting HLA class II molecules are selectively expressed on hematopoietic cells under non-inflammatory circumstances, allo HLA class-II responses may control the tumor with limited risk of GVHD. Alternatively, T cells recognizing hematopoiesis-restricted antigens presented in the context of mismatched HLA alleles may be used to treat patients with hematological cancers. This review discusses various ways to manipulate the allo-immune response aiming to exploit the powerful ability of allo-reactive T-cells to control the malignancies without causing severe damage to non-hematopoietic tissues.
Collapse
Affiliation(s)
- J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Netherlands
| | - I Jedema
- Department of Hematology, Leiden University Medical Center, Netherlands.
| |
Collapse
|