1
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2024; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
2
|
Liu F, Cao Y, Wang X, Zhang K, Li N, Su Y, Zhang Y, Meng Q. Islr regulates satellite cells asymmetric division through the SPARC/p-ERK1/2 signaling pathway. FASEB J 2024; 38:e23534. [PMID: 38597911 DOI: 10.1096/fj.202302614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yuxin Cao
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kuo Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Zheng B, Chen Y, Niu L, Zhang X, Yang Y, Wang S, Chen W, Cai Z, Huang W, Huang W. Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J Control Release 2024; 366:596-610. [PMID: 38184232 DOI: 10.1016/j.jconrel.2023.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Insufficient delivery of therapeutic agents into solid tumors by systemic administration remains a major challenge in cancer treatment. Secreted protein acidic and rich in cysteine (SPARC) has high binding affinity to albumin and has been shown to enhance the penetration and uptake of albumin-based drug carriers in tumors. Here, we developed a strategy to alter the tumor microenvironment (TME) by upregulating SPARC to enhance the delivery efficiency of albumin-based drug carriers into tumors. We prepared albumin nanoparticles encapsulating an NF-κB controllable CRISPR activation system (SP-NPs). SP-NPs achieved tumor-selective SPARC upregulation by responding to the highly activated NF-κB in tumor cells. Whereas a single dose of SP-NPs only modestly upregulated SPARC expression, serial administration of SP-NPs created a positive feedback loop that induced progressive increases in SPARC expression as well as tumor cell uptake and tumor penetration of the nanoparticles in vitro, in organoids, and in subcutaneous tumors in vivo. Additionally, pre-treatment with SP-NPs significantly enhanced the anti-tumor efficacy of Abraxane, a commercialized albumin-bound paclitaxel nanoformulation. Our data provide evidence that modulating SPARC in the TME can enhance the efficiency of albumin-based drug delivery to solid tumors, which may result in new strategies to increase the efficacy of nanoparticle-based cancer drugs.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xinyuan Zhang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Shanzhao Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Zhiming Cai
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China.
| |
Collapse
|
4
|
Zhu W, Yang S, Meng D, Wang Q, Ji J. Targeting NADPH Oxidase and Integrin α5β1 to Inhibit Neutrophil Extracellular Traps-Mediated Metastasis in Colorectal Cancer. Int J Mol Sci 2023; 24:16001. [PMID: 37958984 PMCID: PMC10650826 DOI: 10.3390/ijms242116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Metastasis leads to a high mortality rate in colorectal cancer (CRC). Increased neutrophil extracellular traps (NETs) formation is one of the main causes of metastasis. However, the mechanism of NETs-mediated metastasis remains unclear and effective treatments are lacking. In this study, we found neutrophils from CRC patients have enhanced NETs formation capacity and increased NETs positively correlate with CRC progression. By quantitative proteomic analysis of clinical samples and cell lines, we found that decreased secreted protein acidic and rich in cysteine (SPARC) results in massive NETs formation and integrin α5β1 is the hub protein of NETs-tumor cell interaction. Mechanistically, SPARC regulates the activation of the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) pathway by interacting with the receptor for activated C kinase 1 (RACK1). Over-activated NADPH oxidase generates more reactive oxygen species (ROS), leading to the release of NETs. Then, NETs upregulate the expression of integrin α5β1 in tumor cells, which enhances adhesion and activates the downstream signaling pathways to promote proliferation and migration. The combination of NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) and integrin α5β1 inhibitor ATN-161 (Ac-PHSCN-NH2) effectively suppresses tumor progression in vivo. Our work reveals the mechanistic link between NETs and tumor progression and suggests a combination therapy against NETs-mediated metastasis for CRC.
Collapse
Affiliation(s)
- Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.); (S.Y.); (D.M.)
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Siqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.); (S.Y.); (D.M.)
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Delan Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.); (S.Y.); (D.M.)
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.); (S.Y.); (D.M.)
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; (W.Z.); (S.Y.); (D.M.)
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Goktas Aydin S, Bilici A, Calis E, Kutlu Y, Hamdard J, Muglu H, Fatih Olmez O, Karci E, Acikgoz O. Impact of SPARC expression on treatment response of pembrolizumab and brain metastasis in patients with metastatic non-small cell lung cancer. Int Immunopharmacol 2023; 124:110947. [PMID: 37742369 DOI: 10.1016/j.intimp.2023.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) often exhibits elevated Secreted Protein Acidic and Cysteine-Rich (SPARC) expression. In this study, we investigated the impact of SPARC expression on clinicopathologic features, pembrolizumab response, and prognosis in metastatic NSCLC patients. METHODS Thirty-six patients diagnosed with metastatic NSCLC without actionable driver mutation and who received pembrolizumab with or without chemotherapy were included in this study. PD-L1 and SPARC expression were evaluated, with PD-L1 expression categorized based on tumor proportion score and SPARC staining intensity graded as 1+, 2+, and 3 +. Patients' characteristics were compared across groups, and possible predictive markers were determined by binary logistic regression analysis. RESULTS No significant associations were found between SPARC expression and smoking status, histopathological tumor type, T and N status, and liver and bone metastasis. Higher SPARC expression was significantly linked to lower brain metastasis rates but higher CNS progression rates (p = 0.022 and p = 0.011, respectively. The objective response rate (ORR) showed a trend of being higher in the SPARC 1 + group (85.7% vs. 43.8% and 50.0% in 2 + and 3 + groups, respectively, p = 0.052. Univariate analysis did not find SPARC expression to be a significant prognostic factor for progression-free survival (PFS) (p = 0.7) and overall survival (OS) (p = 0.07).SPARC 1 + expression negatively affected the pembrolizumab response(p = 0.04,OR:0.11, 95%CI 0.01-0.92). CONCLUSIONS Our study sheds light on a novel aspect of SPARC expression as a potential predictor of pembrolizumab response and a marker for CNS progression in metastatic NSCLC patients treated in the first-line setting.
Collapse
Affiliation(s)
- Sabin Goktas Aydin
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey.
| | - Ahmet Bilici
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey
| | - Elif Calis
- Medipol University Faculty of Medicine, Department of Pathology, Istanbul, Turkey
| | - Yasin Kutlu
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey
| | - Jamshid Hamdard
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey.
| | - Harun Muglu
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey
| | - Omer Fatih Olmez
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey
| | - Ebru Karci
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey.
| | - Ozgur Acikgoz
- Medipol University Faculty of Medicine, Department of Medical Oncology, Istanbul, Turkey.
| |
Collapse
|
6
|
Li A, Li Y, Li Y, Zhang M, Zhang H, Chen F. Identification and validation of key genes associated with pathogenesis and prognosis of gastric cancer. PeerJ 2023; 11:e16243. [PMID: 37868053 PMCID: PMC10586292 DOI: 10.7717/peerj.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Background Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. However, the precise mechanisms and specific biomarkers of GC have not been fully elucidated. We therefore sought to identify and validate the genes associated with GC. Methods RNA sequencing was performed on gastric tissue specimens from 10 cases each of non-atrophic gastritis (NAG), intestinal metaplasia (IM), and GC. Validation of gene expression was conducted through immunohistochemistry (IHC) staining. The Kaplan-Meier Plotter database was utilized to screen genes associated with prognosis, while protein-protein interaction analysis was conducted to identify hub genes. Results In GC-IM, the differentially expressed genes (DEGs) were predominantly enriched in pathways related to ECM-receptor interaction, focal adhesion, PI3K-Akt pathway, and pathways in cancer. Conversely, in IM-NAG, the DEGs were primarily enriched in pathways associated with fat digestion and absorption, pancreatic secretion, and retinol metabolism. IHC staining revealed elevated expression levels of KLK7 and KLK10 in GC. Specifically, KLK7 expression was found to be correlated with differentiation (P = 0.025) and depth of invasion (P = 0.007) in GC, while both KLK7 and KLK10 were associated with the overall survival (P < 0.05). Furthermore, a total of ten hub genes from DEGs in GC-NAG (COL6A2, COL1A1, COL4A1, COL1A2, SPARC, COL4A2, FN1, PCOLCE, SERPINH1, LAMB1) and five hub genes in IM-NAG (SI, DPP4, CLCA1, MEP1A, OLFM4) were demonstrated to have a significant correlation with the prognosis of GC. Conclusions The present study successfully identified and validated crucial genes associated with GC, providing valuable insights into the underlying mechanisms of this disease. The findings of this study have the potential to inform clinical practice.
Collapse
Affiliation(s)
- Ai Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yueyue Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingming Zhang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hong Zhang
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feixue Chen
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
9
|
Identification of Hub Genes and Key Pathways Associated with Follicular Lymphoma. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5369104. [PMID: 35965624 PMCID: PMC9357743 DOI: 10.1155/2022/5369104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Follicular lymphoma (FL) is the second most prevalent form of non-Hodgkin lymphoma (NHL) and accounts for almost 20% of all NHL cases. Although FL patients' overall survival rates have steadily increased, there is still no accepted standard of care for individuals who experience recurrence or resistance to treatment. Hence, it is needed to evaluate the precise molecular cascades underlying FL to develop efficient diagnostic and treatment approaches. Herein, we aimed to evaluate variations in gene expression profiles, explore the underlying mechanisms, and find new FL targets. In the present study, Gene Expression Omnibus (GEO) database was employed to evaluate microarray datasets including GSE32018 and GSE55267. R software was employed to evaluate differentially expressed genes (DEGs) between FL and noncancer samples. The DEGs were evaluated using GO, KEGG pathway enrichment analysis, and PPI network to evaluate hub genes, which were then, examined using gene function enrichment analysis. According to the obtained results, a total of 190 upregulated and 162 downregulated DEGs were evaluated. Following the generation of PPI networks, 15 hub genes in highly connected upregulated DEGs were selected including FN1, MMP9, CCL2, CD8A, POSTN, CCR5, COL3A1, CXCL12, VCAM1, COL1A2, CCL5, SPARC, TIMP1, CXCL9, and IL18. The GO enrichment evaluation of the underlined hub genes indicated that the immunological response was the most considerably enriched term. Twelve significant cascades were found using the KEGG pathway analysis, most of which were linked to cellular structure and immunity. Our findings suggested that FN1, SPARC, POSTN, MMP9, and VCAM1 genes are potential biomarkers of FL, and cellular immunity contributes to the pathogenesis of FL. Moreover, the unique DEGs and cascades found in the present study may present new perspectives on the molecular basis of FL's underlying mechanisms as well as a new understanding of FL's future precise management.
Collapse
|
10
|
Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Physical exercise has gradually become a focus in cancer treatment due to its pronounced role in reducing cancer risk, enhancing therapeutic efficacy, and improving prognosis. In recent decades, skeletal muscles have been considered endocrine organs, exerting their biological functions via the endocrine, autocrine, and paracrine systems by secreting various types of myokines. The amount of myokines secreted varies depending on the intensity, type, and duration of exercise. Recent studies have shown that muscle-derived myokines are highly involved the effects of exercise on cancer. Multiple myokines, such as interleukin-6 (IL-6), oncostatin M (OSM), secreted protein acidic and rich in cysteine (SPARC), and irisin, directly mediate cancer progression by influencing the proliferation, apoptosis, stemness, drug resistance, metabolic reprogramming, and epithelial-mesenchymal transformation (EMT) of cancer cells. In addition, IL-6, interleukin-8 (IL-8), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), and irisin can improve obesity-induced inflammation by stimulating lipolysis of adipose tissues, promoting glucose uptake, and accelerating the browning of white fat. Furthermore, some myokines could regulate the tumor microenvironment, such as angiogenesis and the immune microenvironment. Cancer cachexia occurs in up to 80% of cancer patients and is responsible for 22%-30% of patient deaths. It is characterized by systemic inflammation and decreased muscle mass. Exercise-induced myokine production is important in regulating cancer cachexia. This review summarizes the roles and underlying mechanisms of myokines, such as IL-6, myostatin, IL-15, irisin, fibroblast growth factor 21 (FGF21) and musclin, in cancer cachexia. Through comprehensive analysis, we conclude that myokines are potential targets for inhibiting cancer progression and the associated cachexia.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
11
|
Liu P, Li Y, Zhang Y, Choi J, Zhang J, Shang G, Li B, Lin YJ, Saleh L, Zhang L, Yi L, Yu S, Lim M, Yang X. Calcium-Related Gene Signatures May Predict Prognosis and Level of Immunosuppression in Gliomas. Front Oncol 2022; 12:708272. [PMID: 35646664 PMCID: PMC9136236 DOI: 10.3389/fonc.2022.708272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Gliomas are the most common primary brain cancer. While it has been known that calcium-related genes correlate with gliomagenesis, the relationship between calcium-related genes and glioma prognosis remains unclear. We assessed TCGA datasets of mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to specifically screen for genes that regulate or are affected by calcium levels. We then correlated the identified calcium-related genes with unsupervised/supervised learning to classify glioma patients into 2 risk groups. We also correlated our identified genes with immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with different OS. At the same time, 10 calcium hub genes (CHGs) signature model were constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of samples were calculated. The risk score was confirmed as an independent predictor of prognosis. Immune enrichment analysis revealed an immunosuppressive tumor microenvironment with upregulation of checkpoint markers in the high-risk group. Finally, a nomogram was generated with risk scores and other clinical prognostic independent indicators to quantify prognosis. Our findings suggest that calcium-related gene expression patterns could be applicable to predict prognosis and predict levels of immunosuppression.
Collapse
Affiliation(s)
- Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - John Choi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bailiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Laura Saleh
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Xuejun Yang, ; Michael Lim,
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- *Correspondence: Xuejun Yang, ; Michael Lim,
| |
Collapse
|
12
|
A new signature based on alternative polyadenylation for prognostic prediction and therapeutic responses in low-grade glioma. Aging (Albany NY) 2022; 14:826-844. [PMID: 35042833 PMCID: PMC8833112 DOI: 10.18632/aging.203844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence from research supports the significant role of alternative polyadenylation (APA) in the development of cancer. The aim of this study is to explore the prognostic and therapeutic value of APA events for patients with low-grade gliomas (LGG). METHODS The gene expression and APA profiles of patients with low-grade gliomas were obtained from The Cancer Genome Atlas database. All patients were sorted randomly into training and test sets. The prognostic-associated events of alternative splicing were screened by univariate Cox regression. Subsequently, Least Absolute Shrinkage and Selection Operator and multivariate Cox analysis were performed to construct a prognostic signature. The patients were sorted into the high and low-risk groups based on their median risk score. Bioinformatics methods were used to identify genetic variation, pathway activation, immune heterogeneity, and drug response differences between the two groups. RESULTS A prognostic signature was constructed shown to be capable of accurately predicting prognosis of patients with LGG. Notable variations were observed in the tumor mutation burden and copy number variations between the high-risk and low-risk patients. Besides, the high-risk group had enhanced immune cell abundance and immune checkpoint gene expression. In terms of drug response, we further found that the patients of high-risk group were more sensitive to immunotherapy, but chemotherapy was suggestively more appropriate for the low-risk group patients. CONCLUSION Our findings give new insights and methods related to prognosis prediction and treatment methods for LGG patients, and expand the understanding regarding the role of alternative splicing in LGG.
Collapse
|
13
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine as a Molecular Physiological and Pathological Biomarker. Biomolecules 2021; 11:1689. [PMID: 34827687 PMCID: PMC8615851 DOI: 10.3390/biom11111689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is expressed in diverse tissues and plays roles in various biological functions and processes. Increased serum levels of SPARC or its gene overexpression have been reported following numerous physiological and pathological changes including injuries, exercise, regeneration, obesity, cancer, and inflammation. Such expression pattern interrelation between these biological changes and the SPARC expression/secretion points to it as a biomarker. This property could lead to a variety of potential applications ranging from mechanistic studies and animal model validation to the clinical and therapeutic evaluation of both disease prognosis and pharmacological agents.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Tong CCL, Koptyra M, Raman P, Rathi KS, Choudhari N, Lin X, Seckar T, Wei Z, Kohanski MA, O'Malley BW, Cohen NA, Kennedy DW, Adappa ND, Robertson ES, Baranov E, Kuan EC, Papagiannopoulos P, Jalaly JB, Feldman MD, Storm PB, Resnick AC, Palmer JN. Targeted gene expression profiling of inverted papilloma and squamous cell carcinoma. Int Forum Allergy Rhinol 2021; 12:200-209. [PMID: 34510780 DOI: 10.1002/alr.22882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Inverted papilloma (IP) is a sinonasal tumor with a well-known potential for malignant transformation. The purpose of this study was to identify the genes and pathways associated with IP, with progression to carcinoma-in-situ and invasive carcinoma. METHODS To determine genes and molecular pathways that may indicate progression and correlate with histologic changes, we analyzed six IP without dysplasia, five IP with carcinoma-in-situ, and 13 squamous cell carcinoma ex-IP by targeted sequencing. The HTG EdgeSeq Oncology Biomarker Panel coupled with next-generation sequencing was used to evaluate 2560 transcripts associated with solid tumors. RESULTS Progressive upregulation of 11 genes were observed (CALD1, COL1A1, COL3A1, COL4A2, COL5A2, FN1, ITGA5, LGALS1, MMP11, SERPINH1, SPARC) in the order of invasive carcinoma > carcinoma-in-situ > IP without dysplasia. When compared with IP without dysplasia, more genes are differentially expressed in invasive carcinoma than carcinoma-in-situ samples (341 downregulated/333 upregulated vs. 195 downregulated/156 upregulated). Gene set enrichment analysis determined three gene sets in common between the cohorts (epithelial mesenchymal transition, extracellular matrix organization, and coagulation). CONCLUSIONS Progressive upregulation of genes specific to IP malignant degeneration has significant clinical implications. This panel of 11 genes will improve concordance of histologic classification, which can directly impact treatment and patient outcomes. Additionally, future studies on larger tumor sets may observe upregulation in the gene panel that preceded histologic changes, which may be useful for further risk stratification.
Collapse
Affiliation(s)
- Charles C L Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Mateusz Koptyra
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pichai Raman
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Komal S Rathi
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Namrata Choudhari
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xiang Lin
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Tyler Seckar
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Esther Baranov
- Department of Pathology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Edward C Kuan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Peter Papagiannopoulos
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Jalal B Jalaly
- Department of Pathology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Michael D Feldman
- Department of Pathology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adam C Resnick
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Zeng B, Sun Z, Zhao Q, Liu D, Chen H, Li X, Xing HR, Wang J. SEC23A Inhibit Melanoma Metastatic through Secretory PF4 Cooperation with SPARC to Inhibit MAPK Signaling Pathway. Int J Biol Sci 2021; 17:3000-3012. [PMID: 34421345 PMCID: PMC8375231 DOI: 10.7150/ijbs.60866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
Metastasis of melanoma to the distant organs is a multistep process in which the tumor microenvironment (TME) may play an important role. However, the relationship between metastatic progression and TME is intricate. In the present study, using melanoma derivative cell lines OL (oligometastatic) and POL (polymetastatic) that differ in their metastatic colonization capability, we have elucidated a new mechanism involving “SEC23A-PF4-MAPK/ERK axis” in which PF4 transported by COPII hinders metastasis through inhibition of MAPK/ERK signaling pathway. Furthermore, SPARC can act cooperatively to enhance the inhibition of Pf4 on ERK phosphorylation and melanoma cell metastasis. Our findings show the possibility of targeting cancer cell secretome for therapeutic development.
Collapse
Affiliation(s)
- Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhiwei Sun
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Doudou Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Hao Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, School of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Pan PJ, Liu JX. Diagnostic and prognostic value of secreted protein acidic and rich in cysteine in the diffuse large B-cell lymphoma. World J Clin Cases 2021; 9:6287-6299. [PMID: 34434995 PMCID: PMC8362571 DOI: 10.12998/wjcc.v9.i22.6287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix-associated protein. Studies have revealed that SPARC is involved in the cell interaction and function including proliferation, differentiation, and apoptosis. However, the role of SPARC in cancer is controversial, as it was reported as the promoter or suppressor in different cancers. Further, the role of SPARC in lymphoma is unclear.
AIM To identify the expression and significance of SPARC in lymphoma, especially in diffuse large B-cell lymphoma (DLBCL).
METHODS The expression analysis of SPARC in different cancers was evaluated with Oncomine. The Brune, Eckerle, Piccaluga, Basso, Compagno, Alizadeh, and Rosenwald datasets were included to evaluate the mRNA expression of SPARC in lymphoma. The Cancer Genome Atlas (TCGA)-DLBCL was used to analyze the diagnostic value of SPARC in DLBCL. The Compagno and Brune DLBCL datasets were used for validation. Then, the diagnostic value was evaluated with the receiver operating characteristic (ROC) curve. The Kaplan-Meier plot was conducted with TCGA-DLBCL, and the ROC analysis was performed based on the survival time. Further, the overall survival analysis based on the level of SPARC expression was performed with the GSE4475 and E-TABM-346. The Gene Set Enrichment Analyses (GSEA) was performed to make the underlying mechanism-regulatory networks.
RESULTS The pan-cancer analysis of SPARC showed that SPARC was highly expressed in the brain and central nervous system, breast, colon, esophagus, stomach, head and neck, pancreas, and sarcoma, especially in lymphoma. The overexpression of SPARC in lymphoma, especially DLBCL, was confirmed in several datasets. The ROC analysis revealed that SPARC was a valuable diagnostic biomarker. More importantly, compared with DLBCL patients with low SPARC expression, those with higher SPARC expression represented a higher overall survival rate. The ROC analysis showed that SPARC was a favorable prognostic biomarker for DLBCL. Results of the GSEA confirmed that the high expression of SPARC was closely associated with focal adhesion, extracellular matrix receptor interaction, and leukocyte transendothelial migration, which suggested that SPARC may be involved in the regulation of epithelial-mesenchymal transition, KRAS, and myogenesis in DLBCL.
CONCLUSION SPARC was highly expressed in DLBCL, and the overexpression of SPARC showed sound diagnostic value. More interestingly, the overexpression of SPARC might be a favorable prognostic biomarker for DLBCL, suggesting that SPARC might be an inducible factor in the development of DLBCL, and inducible SPARC was negative in some oncogenic pathways. All the evidence suggested that inducible SPARC might be a good diagnostic and prognostic biomarker for DLBCL.
Collapse
Affiliation(s)
- Peng-Ji Pan
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jun-Xia Liu
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
17
|
Morani F, Bisceglia L, Rosini G, Mutti L, Melaiu O, Landi S, Gemignani F. Identification of Overexpressed Genes in Malignant Pleural Mesothelioma. Int J Mol Sci 2021; 22:ijms22052738. [PMID: 33800494 PMCID: PMC7962966 DOI: 10.3390/ijms22052738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a fatal tumor lacking effective therapies. The characterization of overexpressed genes could constitute a strategy for identifying drivers of tumor progression as targets for novel therapies. Thus, we performed an integrated gene-expression analysis on RNAseq data of 85 MPM patients from TCGA dataset and reference samples from the GEO. The gene list was further refined by using published studies, a functional enrichment analysis, and the correlation between expression and patients' overall survival. Three molecular signatures defined by 15 genes were detected. Seven genes were involved in cell adhesion and extracellular matrix organization, with the others in control of the mitotic cell division or apoptosis inhibition. Using Western blot analyses, we found that ADAMTS1, PODXL, CIT, KIF23, MAD2L1, TNNT1, and TRAF2 were overexpressed in a limited number of cell lines. On the other hand, interestingly, CTHRC1, E-selectin, SPARC, UHRF1, PRSS23, BAG2, and MDK were abundantly expressed in over 50% of the six MPM cell lines analyzed. Thus, these proteins are candidates as drivers for sustaining the tumorigenic process. More studies with small-molecule inhibitors or silencing RNAs are fully justified and need to be undertaken to better evaluate the cancer-driving role of the targets herewith identified.
Collapse
Affiliation(s)
- Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| | - Luisa Bisceglia
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Ombretta Melaiu
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
- Correspondence: ; Tel.: +39-050-221-1528
| | - Federica Gemignani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| |
Collapse
|