1
|
Guo YB, Wu YM, Lin ZZ. Enhancing the radiosensitivity of colorectal cancer cells by reducing spermine synthase through promoting autophagy and DNA damage. World J Gastrointest Oncol 2024; 16:4716-4727. [PMID: 39678812 PMCID: PMC11577379 DOI: 10.4251/wjgo.v16.i12.4716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), the third most common cancer worldwide, has increasingly detrimental effects on human health. Radiotherapy resistance diminishes treatment efficacy. Studies suggest that spermine synthase (SMS) may serve as a potential target to enhance the radiosensitivity. AIM To investigate the association between SMS and radiosensitivity in CRC cells, along with a detailed elucidation of the underlying mechanisms. METHODS Western blot was adopted to assess SMS expression in normal colonic epithelial cells and CRC cell lines. HCT116 cells were transfected with control/SMS-specific shRNA or control/pcDNA3.1-SMS plasmids. Assessments included cell viability, colony formation, and apoptosis via MTT assays, colony formation assays, and flow cytometry. Radiosensitivity was studied in SMS-specific shRNA-transfected HCT116 cells post-4 Gy radiation, evaluating cell viability, colony formation, apoptosis, DNA damage (comet assays), autophagy (immunofluorescence), and mammalian target of rapamycin (mTOR) pathway protein expression (western blot). RESULTS Significant up-regulation of SMS expression levels was observed in the CRC cell lines. Upon down-regulation of SMS expression, cellular viability and colony-forming ability were markedly suppressed, concomitant with a notable increase in apoptotic indices. Furthermore, attenuation of SMS expression significantly augmented the sensitivity of HCT116 cells to radiation therapy, evidenced by a pronounced elevation in levels of cellular DNA damage and autophagy. Importantly, down-regulation of SMS corresponded with a marked reduction in the expression levels of proteins associated with the mTOR signaling pathway. CONCLUSION Knocking down SMS attenuates the mTOR signaling pathway, thereby promoting cellular autophagy and DNA damage to enhance the radiosensitivity of CRC cells.
Collapse
Affiliation(s)
- Yu-Bin Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yue-Ming Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhi-Zhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
2
|
Lei C, Yu Y, Zhu Y, Li Y, Ma C, Ding L, Han L, Zhang H. The most recent progress of baicalein in its anti-neoplastic effects and mechanisms. Biomed Pharmacother 2024; 176:116862. [PMID: 38850656 DOI: 10.1016/j.biopha.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Problems, such as toxic side effects and drug resistance of chemoradiotherapy, target therapy and immunotherapy accompanying the current anti-cancer treatments, have become bottlenecks limiting the clinical benefit for patients. Therefore, it is urgent to find promising anti-cancer strategies with higher efficacy and lesser side effects. Baicalein, a flavonoid component derived from the Chinese medicine scutellaria baicalensis, has been widely studied for its remarkable anti-cancer activity in multiple types of malignancies both at the molecular and cellular levels. Baicalein exerts its anti-tumor effects by inhibiting angiogenesis, invasion and migration, inducing cell apoptosis and cell cycle arrest, as well as regulating cell autophagy, metabolism, the tumor microenvironment and cancer stem cells with no obvious toxic side effects. The role of classic signaling pathways, such as PI3K/AKT/mTOR, MAPK, AMPK, Wnt/β-catenin, JAK/STAT3, MMP-2/-9, have been highlighted as the major targets for baicalein exerting its anti-malignant potential. Besides, baicalein can regulate the relevant non-coding RNAs, such as lncRNAs, miRNAs and circ-RNAs, to inhibit tumorigenesis and progression. In addition to the mentioned commonalities, baicalein shows some specific anti-tumor characteristics in some specific cancer types. Moreover, the preclinical studies of the combination of baicalein and chemoradiotherapy pave the way ahead for developing baicalein as an adjunct treatment with chemoradiotherapy. Our aim is to summary the role of baicalein in different types of cancer with its mechanisms based on in vitro and in vivo experiments, hoping providing proof for baicalein serving as an effective and safe compound for cancer treatment in clinic in the future.
Collapse
Affiliation(s)
- Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China
| | - Yanan Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ling Han
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
3
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
4
|
Ma W, Wei L, Jin L, Ma Q, Zhang T, Zhao Y, Hua J, Zhang Y, Wei W, Ding N, Wang J, He J. YAP/Aurora A-mediated ciliogenesis regulates ionizing radiation-induced senescence via Hedgehog pathway in tumor cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167062. [PMID: 38342416 DOI: 10.1016/j.bbadis.2024.167062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Primary cilia are antenna-like organelles that play critical roles in sensing and responding to various signals. Nevertheless, the function of primary cilia in cellular response to ionizing radiation (IR) in tumor cells remains unclear. Here, we show that primary cilia are frequently expressed in tumor cells and tissues. Notably, IR promotes cilia formation and elongation in time- and dose-dependent manners. Mechanistic study shows that the suppression of YAP/Aurora A pathway contributes to IR-induced ciliogenesis, which is diminished by Aurora A overexpression. The ciliated tumor cells undergo senescence but not apoptosis in response to IR and the abrogation of cilia formation is sufficient to elevate the lethal effect of IR. Furthermore, we show that IR-induced ciliogenesis leads to the activation of Hedgehog signaling pathway to drive senescence and resist apoptosis, and its blockage enhances cellular radiosensitivity by switching senescence to apoptosis. In summary, this work shows evidence of primary cilia in coordinating cellular response to IR in tumor cells, which may help to supply a novel sensitizing target to improve the outcome of radiotherapy.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor & Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liangliang Jin
- Department of Pathology, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730000, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tongshan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhang L, Zhang Y, Li K, Xue S. Hedgehog signaling and the glioma-associated oncogene in cancer radioresistance. Front Cell Dev Biol 2023; 11:1257173. [PMID: 38020914 PMCID: PMC10679362 DOI: 10.3389/fcell.2023.1257173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor radioresistance remains a key clinical challenge. The Hedgehog (HH) signaling pathway and glioma-associated oncogene (GLI) are aberrantly activated in several cancers and are thought to contribute to cancer radioresistance by influencing DNA repair, reactive oxygen species production, apoptosis, autophagy, cancer stem cells, the cell cycle, and the tumor microenvironment. GLI is reported to activate the main DNA repair pathways, to interact with cell cycle regulators like Cyclin D and Cyclin E, to inhibit apoptosis via the activation of B-cell lymphoma-2, Forkhead Box M1, and the MYC proto-oncogene, to upregulate cell stemness related genes (Nanog, POU class 5 homeobox 1, SRY-box transcription factor 2, and the BMI1 proto-oncogene), and to promote cancer stem cell transformation. The inactivation of Patched, the receptor of HH, prevents caspase-mediated apoptosis. This causes some cancer cells to survive while others become cancer stem cells, resulting in cancer recurrence. Combination treatment using HH inhibitors (including GLI inhibitors) and conventional therapies may enhance treatment efficacy. However, the clinical use of HH signaling inhibitors is associated with toxic side effects and drug resistance. Nevertheless, selective HH agonists, which may relieve the adverse effects of inhibitors, have been developed in mouse models. Combination therapy with other pathway inhibitors or immunotherapy may effectively overcome resistance to HH inhibitors. A comprehensive cancer radiotherapy with HH or GLI inhibitor is more likely to enhance cancer treatment efficacy while further studies are still needed to overcome its adverse effects and drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Nephrology Department, The 1st Hospital of Jilin University, Changchun, China
| | - Yuhan Zhang
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| | - Kaixuan Li
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Saleh T, Bloukh S, Hasan M, Al Shboul S. Therapy-induced senescence as a component of tumor biology: Evidence from clinical cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188994. [PMID: 37806641 DOI: 10.1016/j.bbcan.2023.188994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Therapy-Induced Senescence (TIS) is an established response to anticancer therapy in a variety of cancer models. Ample evidence has characterized the triggers, hallmarks, and functional outcomes of TIS in preclinical studies; however, limited evidence delineates TIS in clinical cancer (human tumor samples). We examined the literature that investigated the induction of TIS in samples derived from human cancers and highlighted the major findings that suggested that TIS represents a main constituent of tumor biology. The most frequently utilized approach to identify TIS in human cancers was to investigate the protein expression of senescence-associated markers (such as cyclins, cyclin-dependent kinase inhibitors, Ki67, DNA damage repair response markers, DEC1, and DcR1) via immunohistochemical techniques using formalin-fixed paraffin-embedded (FFPE) tissue samples and/or testing the upregulation of Senescence-Associated β-galactosidase (SA-β-gal) in frozen sections of unfixed tumor samples. Collectively, and in studies where the extent of TIS was determined, TIS was detected in 31-66% of tumors exposed to various forms of chemotherapy. Moreover, TIS was not only limited to both malignant and non-malignant components of tumoral tissue but was also identified in samples of normal (non-transformed) tissue upon chemo- or radiotherapy exposure. Nevertheless, the available evidence continues to be limited and requires a more rigorous assessment of in vivo senescence based on novel approaches and more reliable molecular signatures. The accurate assessment of TIS will be beneficial for determining its relevant contribution to the overall outcome of cancer therapy and the potential translatability of senotherapeutics.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan.
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mira Hasan
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan
| |
Collapse
|
7
|
Elshazly AM, Gewirtz DA. Cytoprotective, Cytotoxic and Cytostatic Roles of Autophagy in Response to BET Inhibitors. Int J Mol Sci 2023; 24:12669. [PMID: 37628849 PMCID: PMC10454099 DOI: 10.3390/ijms241612669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The bromodomain and extra-terminal domain (BET) family inhibitors are small molecules that target the dysregulated epigenetic readers, BRD2, BRD3, BRD4 and BRDT, at various transcription-related sites, including super-enhancers. BET inhibitors are currently under investigation both in pre-clinical cell culture and tumor-bearing animal models, as well as in clinical trials. However, as is the case with other chemotherapeutic modalities, the development of resistance is likely to constrain the therapeutic benefits of this strategy. One tumor cell survival mechanism that has been studied for decades is autophagy. Although four different functions of autophagy have been identified in the literature (cytoprotective, cytotoxic, cytostatic and non-protective), primarily the cytoprotective and cytotoxic forms appear to function in different experimental models exposed to BET inhibitors (with some evidence for the cytostatic form). This review provides an overview of the cytoprotective, cytotoxic and cytostatic functions of autophagy in response to BET inhibitors in various tumor models. Our aim is to determine whether autophagy targeting or modulation could represent an effective therapeutic strategy to enhance the response to these modalities and also potentially overcome resistance to BET inhibition.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
8
|
Russo M, Moccia S, Luongo D, Russo GL. Senolytic Flavonoids Enhance Type-I and Type-II Cell Death in Human Radioresistant Colon Cancer Cells through AMPK/MAPK Pathway. Cancers (Basel) 2023; 15:cancers15092660. [PMID: 37174126 PMCID: PMC10177236 DOI: 10.3390/cancers15092660] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Resistance to cancer therapies remains a clinical challenge and an unsolved problem. In a previous study, we characterized a new colon cancer cell line, namely HT500, derived from human HT29 cells and resistant to clinically relevant levels of ionizing radiation (IR). Here, we explored the effects of two natural flavonoids, quercetin (Q) and fisetin (F), well-known senolytic agents that inhibit genotoxic stress by selectively removing senescent cells. We hypothesized that the biochemical mechanisms responsible for the radiosensitising effects of these natural senolytics could intercept multiple biochemical pathways of signal transduction correlated to cell death resistance. Radioresistant HT500 cells modulate autophagic flux differently than HT29 cells and secrete pro-inflammatory cytokines (IL-8), commonly associated with senescence-related secretory phenotypes (SASP). Q and F inhibit PI3K/AKT and ERK pathways, which promote p16INK4 stability and resistance to apoptosis, but they also activate AMPK and ULK kinases in response to autophagic stress at an early stage. In summary, the combination of natural senolytics and IR activates two forms of cell death: apoptosis correlated to the inhibition of ERKs and lethal autophagy dependent on AMPK kinase. Our study confirms that senescence and autophagy partially overlap, share common modulatory pathways, and reveal how senolytic flavonoids can play an important role in these processes.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Stefania Moccia
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Diomira Luongo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
9
|
Shi M, An G, Chen N, Jia J, Cui X, Zhan T, Ji D. UVRAG Promotes Tumor Progression through Regulating SP1 in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15092502. [PMID: 37173968 PMCID: PMC10177159 DOI: 10.3390/cancers15092502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer. The ultraviolet radiation resistance-associated gene (UVRAG) plays a role in autophagy and has been implicated in tumor progression and prognosis. However, the role of UVRAG expression in CRC has remained elusive. In this study, the prognosis was analyzed via immunohistochemistry, and the genetic changes were compared between the high UVRAG expression group and the low UVRAG expression group using RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) data, and genetic changes were then identified by in vitro experiments. It was found that UVRAG could enhance tumor migration, drug resistance, and CC motif chemokine ligand 2 (CCL2) expression to recruit macrophages by upregulating SP1 expression, resulting in poor prognosis of CRC patients. In addition, UVRAG could upregulate the expression of programmed death-ligand 1 (PD-L1). In summary, the relationship between UVRAG expression and the prognosis of CRC patients as well as the potential mechanisms in CRC were explored, providing evidence for the treatment of CRC.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinxin Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tiancheng Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
10
|
El-Sadoni M, Shboul SA, Alhesa A, Shahin NA, Alsharaiah E, Ismail MA, Ababneh NA, Alotaibi MR, Azab B, Saleh T. A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol 2023; 91:345-360. [PMID: 36964435 DOI: 10.1007/s00280-023-04523-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE Despite the beneficial effects of chemotherapy, therapy-induced senescence (TIS) manifests itself as an undesirable byproduct. Preclinical evidence suggests that tumor cells undergoing TIS can re-emerge as more aggressive divergents and contribute to recurrence, and thus, senolytics were proposed as adjuvant treatment to eliminate senescent tumor cells. However, the identification of TIS in clinical samples is essential for the optimal use of senolytics in cancer therapy. In this study, we aimed to detect and quantify TIS using matched breast cancer samples collected pre- and post-exposure to neoadjuvant chemotherapy (NAC). METHODS Detection of TIS was based on the change in gene and protein expression levels of three senescence-associated markers (downregulation of Lamin B1 and Ki-67 and upregulation of p16INK4a). RESULTS Our analysis revealed that 23 of 72 (31%) of tumors had a shift in the protein expression of the three markers after exposure to NAC suggestive of TIS. Gene expression sets of two independent NAC-treated breast cancer samples showed consistent changes in the expression levels of LMNB1, MKI67 and CDKN2A. CONCLUSIONS Collectively, our study shows a more individualized approach to measure TIS hallmarks in matched breast cancer samples and provides an estimation of the extent of TIS in breast cancer clinically. Results from this work should be complemented with more comprehensive identification approaches of TIS in clinical samples in order to adopt a more careful implementation of senolytics in cancer treatment.
Collapse
Affiliation(s)
- Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Elham Alsharaiah
- Department of Pathology, Royal Medical Services, King Hussein Medical Center, Amman, 11942, Jordan
| | | | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
11
|
DeLuca VJ, Saleh T. Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 2023; 42:19-35. [PMID: 36681750 DOI: 10.1007/s10555-023-10082-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023]
Abstract
One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.
Collapse
Affiliation(s)
- Valerie J DeLuca
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
12
|
Elshazly AM, Gewirtz DA. Is Autophagy Inhibition in Combination with Temozolomide a Therapeutically Viable Strategy? Cells 2023; 12:535. [PMID: 36831202 PMCID: PMC9954434 DOI: 10.3390/cells12040535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Temozolomide is an oral alkylating agent that is used as the first line treatment for glioblastoma multiform, and in recurrent anaplastic astrocytoma, as well as having demonstrable activity in patients with metastatic melanoma. However, as the case with other chemotherapeutic agents, the development of resistance often limits the therapeutic benefit of temozolomide, particularly in the case of glioblastoma. A number of resistance mechanisms have been proposed including the development of cytoprotective autophagy. Cytoprotective autophagy is a survival mechanism that confers upon tumor cells the ability to survive in a nutrient deficient environment as well as under external stresses, such as cancer chemotherapeutic drugs and radiation, in part through the suppression of apoptotic cell death. In this review/commentary, we explore the available literature and provide an overview of the evidence for the promotion of protective autophagy in response to temozolomide, highlighting the possibility of targeting autophagy as an adjuvant therapy to potentially increase the effectiveness of temozolomide and to overcome the development of resistance.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
13
|
Fan X, He Y, Wu G, Chen H, Cheng X, Zhan Y, An C, Chen T, Wang X. Sirt3 activates autophagy to prevent DOX-induced senescence by inactivating PI3K/AKT/mTOR pathway in A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119411. [PMID: 36521686 DOI: 10.1016/j.bbamcr.2022.119411] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates mitochondrial redox homeostasis and autophagy and is involved in physiological and pathological processes such as aging, cellular metabolism, and tumorigenesis. We here investigate how Sirt3 regulates doxorubicin (DOX)-induced senescence in lung cancer A549 cells. Sirt3 greatly reduced DOX-induced upregulation of senescence marker proteins p53, p16, p21 and SA-β-Gal activity as well as ROS levels. Notably, Sirt3 reversed DOX-induced autophagic flux blockage, as shown by increased p62 degradation and LC3II/LC3I ratio. Importantly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) partially abolished the antioxidant stress and antiaging effects of Sirt3, while the autophagy activator rapamycin (Rap) potentiated these effects of Sirt3, demonstrating that autophagy mediates the anti-aging effects of Sirt3. Additionally, Sirt3 inhibited the DOX-induced activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which in turn activated autophagy. The PI3K inhibitor LY294002 promoted the antioxidant stress and antiaging effects of Sirt3, while the AKT activator SC-79 reversed these effects of Sirt3. Taken together, Sirt3 counteracts DOX-induced senescence by improving autophagic flux.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuting He
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chunchun An
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
14
|
Elshazly AM, Wright PA, Xu J, Gewirtz DA. Topoisomerase I poisons-induced autophagy: Cytoprotective, Cytotoxic or Non-protective. AUTOPHAGY REPORTS 2022; 2:1-16. [PMID: 36936397 PMCID: PMC10019749 DOI: 10.1080/27694127.2022.2155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
Topoisomerase I inhibitors represent a widely used class of antineoplastic agents that promote both single-stranded and double-stranded breaks in the DNA of tumor cells, leading to tumor cell death. Topotecan and irinotecan are the clinically relevant derivatives of the parent drug, camptothecin. As is the case with many if not most anticancer agents, irinotecan and topotecan promote autophagy. However, whether the autophagy is cytotoxic, cytoprotective, or non-protective is not clearly defined, and may depend largely upon the genetic background of the tumor cell being investigated. This review explores the available literature regarding the nature of the autophagy induced by these clinically utilized topoisomerase I inhibitors in preclinical tumor models with the goal of determining whether the targeting of autophagy might have potential as a therapeutic strategy to enhance the antitumor response and/or overcome drug resistance.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Polina A. Wright
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, 401 College St., Richmond, VA 23298, USA
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Massey Cancer Center, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
15
|
Can 3D bioprinting solve the mystery of senescence in cancer therapy? Ageing Res Rev 2022; 81:101732. [PMID: 36100069 DOI: 10.1016/j.arr.2022.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 01/31/2023]
Abstract
Tumor dormancy leading to cancer relapse is still a poorly understood mechanism. Several cell states such as quiescence and diapause can explain the persistence of tumor cells in a dormant state, but the potential role of tumor cell senescence has been met with hesitance given the historical understanding of the senescent growth arrest as irreversible. However, recent evidence has suggested that senescence might contribute to dormancy and relapse, although its exact role is not fully developed. This limited understanding is largely due to the paucity of reliable study models. The current 2D cell modeling is overly simplistic and lacks the appropriate representation of the interactions between tumor cells (senescent or non-senescent) and the other cell types within the tumor microenvironment (TME), as well as with the extracellular matrix (ECM). 3D cell culture models, including 3D bioprinting techniques, offer a promising approach to better recapitulate the native cancer microenvironment and would significantly improve our understanding of cancer biology and cellular response to treatment, particularly Therapy-Induced Senescence (TIS), and its contribution to tumor dormancy and cancer recurrence. Fabricating a novel 3D bioprinted model offers excellent opportunities to investigate both the role of TIS in tumor dormancy and the utility of senolytics (drugs that selectively eliminate senescent cells) in targeting dormant cancer cells and mitigating the risk for resurgence. In this review, we discuss literature on the possible contribution of TIS in tumor dormancy, provide examples on the current 3D models of senescence, and propose a novel 3D model to investigate the ultimate role of TIS in mediating overall response to therapy.
Collapse
|
16
|
Beltzig L, Christmann M, Kaina B. Abrogation of Cellular Senescence Induced by Temozolomide in Glioblastoma Cells: Search for Senolytics. Cells 2022; 11:cells11162588. [PMID: 36010664 PMCID: PMC9406955 DOI: 10.3390/cells11162588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
A first-line therapeutic for high-grade glioma, notably glioblastoma (GBM), is the DNA methylating drug temozolomide (TMZ). Previously, we showed that TMZ induces not only apoptosis and autophagy, but also cellular senescence (CSEN). We presented the hypothesis that GBM cells may escape from CSEN, giving rise to recurrent tumors. Furthermore, the inflammatory phenotype associated with CSEN may attenuate chemotherapy and drive tumor progression. Therefore, treatments that specifically target senescent cells, i.e., senolytic drugs, may lead to a better outcome of GBM therapy by preventing recurrences and tumor inflammation. Here, we tested Bcl-2 targeting drugs including ABT-737, ABT-263 (navitoclax), several natural substances such as artesunate, fisetin and curcumin as well as lomustine (CCNU) and ionizing radiation (IR) for their senolytic capacity in GBM cells. Additionally, several proteins involved in the DNA damage response (DDR), ATM, ATR, Chk1/2, p53, p21, NF-kB, Rad51, PARP, IAPs and autophagy, a pathway involved in CSEN induction, were tested for their impact in maintaining CSEN. Treatment of GBM cells with a low dose of TMZ for 8-10 days resulted in >80% CSEN, confirming CSEN to be the major trait induced by TMZ. To identify senolytics, we treated the senescent population with the compounds of interest and found that ABT-737, navitoclax, chloroquine, ATMi, ATRi, BV-6, PX-866 and the natural compounds fisetin and artesunate exhibit senolytic activity, inducing death in senescent cells more efficiently than in proliferating cells. Curcumin showed the opposite effect. No specific effect on CSEN cells was observed by inhibition of Chk1/Chk2, p21, NF-kB, Rad51 and PARP. We conclude that these factors neither play a critical role in maintaining TMZ-induced CSEN nor can their inhibitors be considered as senolytics. Since IR and CCNU did not exhibit senolytic activity, radio- and chemotherapy with alkylating drugs is not designed to eliminate TMZ-induced senescent cancer cells.
Collapse
|
17
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
18
|
Arif A, Khawar MB, Mehmood R, Abbasi MH, Sheikh N. Dichotomous role of autophagy in cancer. ASIAN BIOMED 2022; 16:111-120. [PMID: 37551378 PMCID: PMC10321184 DOI: 10.2478/abm-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that plays physiological and pathological roles in a cell. Its effect on cellular metabolism, the proteome, and the number and quality of organelles, diversely holds the potential to alter cellular functions. It acts paradoxically in cancer as a tumor inhibitor as well as a tumor promoter. In the early stage of tumorigenesis, it prevents tumor initiation by the so-called "quality control mechanism" and suppresses cancer progression. For late-staged tumors that are exposed to stress, it acts as a vibrant process of degradation and recycling that promotes cancer by facilitating metastasis. Despite this dichotomy, the crucial role of autophagy is evident in cancer, and associated with mammalian targets of rapamycin (mTOR), p53, and Ras-derived major cancer networks. Irrespective of the controversy regarding autophagic manipulation, promotion and suppression of autophagy act as potential therapeutic targets in cancer treatment and may provide various anticancer therapies.
Collapse
Affiliation(s)
- Amin Arif
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muhammad Babar Khawar
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Narowal, Narowal51750, Pakistan
| | - Rabia Mehmood
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muddasir Hassan Abbasi
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Okara, Okara56130, Pakistan
| | - Nadeem Sheikh
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| |
Collapse
|
19
|
Olszewska A, Borkowska A, Granica M, Karolczak J, Zglinicki B, Kieda C, Was H. Escape From Cisplatin-Induced Senescence of Hypoxic Lung Cancer Cells Can Be Overcome by Hydroxychloroquine. Front Oncol 2022; 11:738385. [PMID: 35127467 PMCID: PMC8813758 DOI: 10.3389/fonc.2021.738385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy is the commonly used treatment for advanced lung cancer. However, it produces side effects such as the development of chemoresistance. A possible responsible mechanism may be therapy-induced senescence (TIS). TIS cells display increased senescence-associated β-galactosidase (SA-β-gal) activity and irreversible growth arrest. However, recent data suggest that TIS cells can reactivate their proliferative potential and lead to cancer recurrence. Our previous study indicated that reactivation of proliferation by TIS cells might be related with autophagy modulation. However, exact relationship between both processes required further studies. Therefore, the aim of our study was to investigate the role of autophagy in the senescence-related chemoresistance of lung cancer cells. For this purpose, human and murine lung cancer cells were treated with two commonly used chemotherapeutics: cisplatin (CIS), which forms DNA adducts or docetaxel (DOC), a microtubule poison. Hypoxia, often overlooked in experimental settings, has been implicated as a mechanism responsible for a significant change in the response to treatment. Thus, cells were cultured under normoxic (~19% O2) or hypoxic (1% O2) conditions. Herein, we show that hypoxia increases resistance to CIS. Lung cancer cells cultured under hypoxic conditions escaped from CIS-induced senescence, displayed reduced SA-β-gal activity and a decreased percentage of cells in the G2/M phase of the cell cycle. In turn, hypoxia increased the proliferation of lung cancer cells and the proportion of cells proceeding to the G0/G1 phase. Further molecular analyses demonstrated that hypoxia inhibited the prosenescent p53/p21 signaling pathway and induced epithelial to mesenchymal transition in CIS-treated cancer cells. In cells treated with DOC, such effects were not observed. Of importance, pharmacological autophagy inhibitor, hydroxychloroquine (HCQ) was capable of overcoming short-term CIS-induced resistance of lung cancer cells in hypoxic conditions. Altogether, our data demonstrated that hypoxia favors cancer cell escape from CIS-induced senescence, what could be overcome by inhibition of autophagy with HCQ. Therefore, we propose that HCQ might be used to interfere with the ability of senescent cancer cells to repopulate following exposure to DNA-damaging agents. This effect, however, needs to be tested in a long-term perspective for preclinical and clinical applications.
Collapse
Affiliation(s)
- Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Monika Granica
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Justyna Karolczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bartosz Zglinicki
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
- *Correspondence: Halina Was,
| |
Collapse
|