1
|
Lee SG, Hwang JW, Kang H. Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products. Mar Drugs 2024; 22:479. [PMID: 39452887 PMCID: PMC11509535 DOI: 10.3390/md22100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder associated with significant morbidity, including pruritus, recurrent skin lesions, and immune dysregulation. This study aimed to investigate the antioxidative and anti-AD effects of peptides derived from hydrolyzed Sebastes schlegelii (Korea rockfish) tail by-products. Hydrolysates were prepared using various enzymes, including Alcalase, Flavourzyme, Neutrase, and Protamex. Among them, Protamex hydrolysates demonstrated the highest ABTS radical scavenging activity with an RC50 value of 69.69 ± 0.41 µg/mL. Peptides were further isolated from the Protamex hydrolysate using dialysis, fast protein liquid chromatography (FPLC), and high-performance liquid chromatography (HPLC). The most active peptide, STPO-B-II, exhibited a single peak and was identified as a sequence of Glu-Leu-Ala-Lys-Thr-Trp-His-Asp-Met-Lys, designated as MP003. In vivo experiments were conducted using a 2,4-dinitrochlorbenzene (DNCB)-induced AD model in NC/Nga mice. The isolated peptide, MP003, showed significantly reduced AD symptoms, including erythema, lichenification, and collagen deposition. Additionally, MP003 decreased epidermal and dermal thickness, eosinophil, and mast cell infiltration and downregulated the expression of pro-inflammatory cytokines IL-1β, IL-6, and IgE in serum and skin tissues. These findings suggest that peptides derived from Sebastes schlegelii tail by-products may serve as potential therapeutic agents for AD.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Jin-Woo Hwang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Marine Bio-Food and Drug Convergence Technology Center, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
2
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
(Stroe) Dudu A, Georgescu SE. Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals (Basel) 2024; 14:2425. [PMID: 39199958 PMCID: PMC11350799 DOI: 10.3390/ani14162425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Sturgeons are facing critical endangerment due to overfishing, habitat destruction, pollution and climate change. Their roe, highly prized as caviar, has driven the overexploitation, severely depleting wild populations. In recent years sturgeon aquaculture has experienced significant growth, primarily aimed at providing high-quality caviar and secondarily meat. This sector generates significant quantities of by-products, which are mainly treated as waste, being mostly discarded, impacting the environment, even though they are a source of bioactive molecules and potential applications in various sectors. This article presents a review of the proximate composition and nutritional value of sturgeon caviar and meat, also exploring the potential of the by-products, with an emphasis on the processing of these components, the chemical composition and the functional and bioactive properties. Although sturgeon caviar, meat, and by-products are highly valuable both nutritionally and economically, adopting sustainable practices and innovative approaches is crucial to ensuring the industry's future growth and maintaining ecological balance. Despite some limitations, like the deficient standardization of the methods for extracting and processing, sturgeon by-products have a tremendous potential to increase the overall value of sturgeon aquaculture and to promote a zero-waste approach, contributing to achieving the Sustainable Development Goals adopted by all United Nations Member States in 2015.
Collapse
Affiliation(s)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| |
Collapse
|
4
|
Martí-Quijal FJ, Castagnini JM, Barba FJ, Ruiz MJ. Effect of Spirulina and Fish Processing By-Products Extracts on Citrinin-Induced Cytotoxicity in SH-SY5Y Cells. Foods 2024; 13:1932. [PMID: 38928871 PMCID: PMC11202850 DOI: 10.3390/foods13121932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Citrinin (CIT) is a mycotoxin commonly found in grains, fruits, herbs, and spices. Its toxicity primarily affects the kidney and liver. Meanwhile, food industry by-products, particularly from fishing and aquaculture, contribute significantly to environmental concerns but can also serve as valuable sources of nutrients and bioactive compounds. Additionally, microalgae like spirulina (Arthrospira platensis) offer interesting high-added-value compounds with potential biological and cytoprotective properties. This study aims to reduce CIT's toxicity on SH-SY5Y cells using natural extracts from the microalgae spirulina and fish processing by-products (sea bass head). The combination of these extracts with CIT has shown increased cell viability up to 15% for fish by-products extract and about 10% for spirulina extract compared to CIT alone. Furthermore, a notable reduction of up to 63.2% in apoptosis has been observed when fish by-products extracts were combined with CIT, counteracting the effects of CIT alone. However, the extracts' effectiveness in preventing CIT toxicity in the cell cycle remains unclear. Overall, considering these nutrient and bioactive compound sources is crucial for enhancing food safety and mitigating the harmful effects of contaminants such as mycotoxins. Nevertheless, further studies are needed to investigate their mechanisms of action and better understand their protective effects more comprehensively.
Collapse
Affiliation(s)
- Francisco J. Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Food Chemistry and Toxicology Laboratory, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (F.J.B.)
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Food Chemistry and Toxicology Laboratory, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Food Chemistry and Toxicology Laboratory, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (F.J.B.)
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Food Chemistry and Toxicology Laboratory, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (F.J.M.-Q.); (F.J.B.)
| | - María José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Food Chemistry and Toxicology Laboratory, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
5
|
Mo M, Yin L, Wang T, Lv Z, Guo Y, Shen J, Zhang H, Liu N, Wang Q, Huang S, Huang H. Associations of essential metals with the risk of aortic arch calcification: a cross-sectional study in a mid-aged and older population of Shenzhen, China. MedComm (Beijing) 2024; 5:e533. [PMID: 38745853 PMCID: PMC11091022 DOI: 10.1002/mco2.533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular calcification is a strong predictor of cardiovascular events. Essential metals play critical roles in maintaining human health. However, the association of essential metal levels with risk of aortic arch calcification (AoAC) remains unclear. We measured the plasma concentrations of nine essential metals in a cross-sectional population and evaluated their individual and combined effects on AoAC risk using multiple statistical methods. We also explored the mediating role of fasting glucose. In the logistic regression model, higher quartiles of magnesium and copper were associated with the decreased AoAC risk, while higher quartile of manganese was associated with higher AoAC risk. The least absolute shrinkage and selection operator penalized regression analysis identified magnesium, manganese, calcium, cobalt, and copper as key metals associated with AoAC risk. The weighted quantile sum regression suggested a combined effect of metal mixture. A linear and positive dose-response relationship was found between manganese and AoAC in males. Moreover, blood glucose might mediate a proportion of 9.38% of the association between manganese exposure and AoAC risk. In summary, five essential metal levels were associated with AoAC and showed combined effect. Fasting glucose might play a significant role in mediating manganese exposure-associated AoAC risk.
Collapse
Affiliation(s)
- Mingxing Mo
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Li Yin
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Tian Wang
- School of Public HealthShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdongChina
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Ziquan Lv
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Yadi Guo
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Jiangang Shen
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
| | - Huanji Zhang
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Ning Liu
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Qiuling Wang
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Suli Huang
- School of Public HealthShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdongChina
- Department of Central LaboratoryShenzhen Center for Disease control and PreventionShenzhenChina
| | - Hui Huang
- Department of CardiologyJoint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseasesthe Eighth Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
6
|
Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, Ravindran B, Iwuchukwu FU, Selvasembian R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Int J Biol Macromol 2023; 253:126492. [PMID: 37634772 DOI: 10.1016/j.ijbiomac.2023.126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste. The shellfishery wastes are rich in valuable bioactive compounds such as chitin, chitosan, minerals, carotenoids, lipids, and other amino acid derivatives. These value-added components possessed pleiotropic applications in different sectors viz., food, nutraceutical, cosmeceutical, agro-industrial, healthcare, and pharmaceutical sectors. The manuscript covers the recent status, scope of shellfishery management, and different bioactive compounds obtained from crustacean wastes. In addition, both sustainable and conventional routes of valorization approaches were discussed with their merits and demerits along with their combinations. The utilization of nano and microtechnology was also included in the discussion, as they have become prominent research areas in recent years. More importantly, the future perspectives of crustacean waste management and other potential valorization approaches that can be implemented on a large scale.
Collapse
Affiliation(s)
- Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India.
| | - Norhayati Mohamed Noor
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia; UTM Innovation & Commercialisation Centre, Industry Centre, UTM Technovation Park, 81310 Johor Bahru, Johor, Malaysia
| | - Zaitul Iffa Abd Rasid
- UTM Research Ethics Committee, Department of Vice-Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia; Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B 5025, Awka, Nigeria; Department of Industrial Engineering, Clemson University 29631, South Carolina USA
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
7
|
Azelee NIW, Noor NM, Rasid ZIA, Suhaimi SH, Salamun N, Jasman SM, Manas NHA, Hasham@Hisam R. Marine waste for nutraceutical and cosmeceutical production. VALORIZATION OF WASTES FOR SUSTAINABLE DEVELOPMENT 2023:241-272. [DOI: 10.1016/b978-0-323-95417-4.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Protein Quality and Sensory Perception of Hamburgers Based on Quinoa, Lupin and Corn. Foods 2022; 11:foods11213405. [DOI: 10.3390/foods11213405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The need for partial or total substitution of animal protein sources by vegetable sources of high protein quality with good sensory acceptance is a promising alternative. The objective was to develop a hamburger with vegetable protein using a mixture design based on quinoa (Chenopodium quinoa Willd.), Peruvian Andean corn (Zea mays) and Andean lupine (Lupinus mutabilis Sweet). The design of these mixtures allowed obtaining eleven formulations, three of which were selected for complying with the amino acid intake for adults recommended by FAO. Then, a completely randomized design was applied to the selected samples plus a commercial product. Proximal composition was measured on a dry basis (protein, fat, carbohydrates, and ash), calculation of the Protein Digestibility Corrected Amino Acid Score (PDCAAS) and a sensory analysis was carried out using the Check-All-That-Apply (CATA) method with acceptability in 132 regular consumers of vegetarian products. Protein, fat, carbohydrate, and ash contents ranged from 18.5–24.5, 4.1–7.5, 65.4–72.1 and 2.8–5.9%, respectively. The use of Andean crops favored the protein content and the contribution of sulfur amino acids (SAA) and tryptophan from quinoa and lysine and threonine from lupin. The samples with Andean crops were described as easy to cut, soft, good, healthy, legume flavor, tasty and light brown, however the commercial sample was characterized as difficult to cut, hard, dark brown, uneven color, dry and grainy. The sample with 50% quinoa and 50% lupin was the most acceptable and reached a digestibility of 0.92. It complied with the lysine, threonine, and tryptophan intake, with the exception of SAA, according to the essential amino acid pattern proposed by the Food and Agriculture Organization of the United Nations.
Collapse
|
9
|
Protein Recovery of Tra Catfish ( Pangasius hypophthalmus) Protein-Rich Side Streams by the pH-Shift Method. Foods 2022; 11:foods11111531. [PMID: 35681281 PMCID: PMC9180071 DOI: 10.3390/foods11111531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing protein demand has led to growing attention being given to the full utilization of proteins from side streams in industrial fish processing. In this study, proteins were recovered from three protein-rich side streams during Tra catfish (Pangasius hypophthalamus) processing (dark muscle; head-backbone; and abdominal cut-offs) by an optimized pH-shift process. Physicochemical characteristics of the resulting fish protein isolates (FPIs) were compared to industrial surimi from the same raw material batch. The pH had a significant influence on protein extraction, while extraction time and the ratio of the extraction solution to raw material had little effect on the protein and dry matter recoveries. Optimal protein extraction conditions were obtained at pH 12, a solvent to raw material ratio of 8, and an extraction duration of 150 min. The resulting FPI contained <10% of the fat and <15% of the ash of the raw material, while the FPI protein recovery was 83.0−88.9%, including a good amino acid profile. All FPIs had significantly higher protein content and lower lipid content than the surimi, indicating the high efficiency of using the pH-shift method to recover proteins from industrial Tra catfish side streams. The FPI made from abdominal cut-offs had high whiteness, increasing its potential for the development of a high-value product.
Collapse
|
10
|
Qiao QQ, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Preparation, Characterization, and Cytoprotective Effects on HUVECs of Fourteen Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides From Protein Hydrolysate of Tuna Processing By-Products. Front Nutr 2022; 9:868681. [PMID: 35495901 PMCID: PMC9046991 DOI: 10.3389/fnut.2022.868681] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
To effectively utilize skipjack tuna (Katsuwonus pelamis) processing by-products to prepare peptides with high angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) activity, Neutrase was selected from five kinds of protease for hydrolyzing skipjack tuna dark muscle, and its best hydrolysis conditions were optimized as enzyme dose of 1.6%, pH 6.7, and temperature of 50°C using single factor and response surface experiments. Subsequently, 14 novel ACEi peptides were prepared from the high ACEi protein hydrolysate and identified as TE, AG, MWN, MEKS, VK, MQR, MKKS, VKRT, IPK, YNY, LPRS, FEK, IRR, and WERGE. MWN, MEKS, MKKS, and LPRS displayed significantly ACEi activity with IC50 values of 0.328 ± 0.035, 0.527 ± 0.030, 0.269 ± 0.006, and 0.495 ± 0.024 mg/mL, respectively. Furthermore, LPRS showed the highest increasing ability on nitric oxide (NO) production among four ACEi peptides combining the direct increase and reversing the negative influence of norepinephrine (NE), and MKKS showed the highest ability on directly decreasing and reversing the side effects of NE on the secretion level of endothelin-1 (ET-1) among four ACEi peptides. These findings demonstrate that seafood by-product proteins are potential ACEi peptide sources and prepared ACEi peptides from skipjack tuna dark muscle, which are beneficial components for functional food against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Qian-Qian Qiao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qian-Bin Luo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Chang-Feng Chi
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Bin Wang
| |
Collapse
|
11
|
Hustad KS, Ottestad I, Olsen T, Sæther T, Ulven SM, Holven KB. Salmon fish protein supplement increases serum vitamin B12 and selenium concentrations: secondary analysis of a randomised controlled trial. Eur J Nutr 2022; 61:3085-3093. [PMID: 35362766 PMCID: PMC9363293 DOI: 10.1007/s00394-022-02857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 01/23/2023]
Abstract
Purpose The main aim of the present study was to examine the effect of a fish protein supplement made from by-products from production of Atlantic salmon, on blood concentration of micronutrients. Methods We conducted an 8-week double-blind parallel-group randomised controlled trial. In total, 88 adults were randomised to a salmon fish protein supplement or placebo, and 74 participants were included in the analysis of vitamin D, omega-3, vitamin B12, selenium, folate, zinc, homocysteine and mercury. Results During the intervention period, geometric mean (GSD) of serum vitamin B12 concentrations increased from 304 (1.40) to 359 (1.42) pmol/L in the fish protein group (P vs. controls = 0.004) and mean (SD) serum selenium increased from 1.18 (0.22) to 1.30 (0.20) μmol/L (P vs. controls = 0.002). The prevalence of low vitamin B12 status (B12 < 148–221 > pmol/L) decreased from 15.4 to 2.6% in the fish protein group, while increasing from 5.9 to 17.6% in the placebo group (P = 0.045). There was no difference between the groups in serum levels of the other micronutrients measured. Conclusion Including a salmon fish protein supplement in the daily diet for 8 weeks, increases serum vitamin B12 and selenium concentrations. From a sustainability perspective, by-products with high contents of micronutrients and low contents of contaminants, could be a valuable dietary supplement or food ingredient in populations with suboptimal intake. Trail Registration The study was registered at ClinicalTrials.gov (ID: NCT03764423) on June 29th 2018.
Collapse
Affiliation(s)
- Kristin S Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
12
|
Stepanova E, Lugovaya E. Macro- and microelements in some species of marine life from the Sea of Okhotsk. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-302-309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Residents of northern regions have a diet low in essential macro- and microelements. The Sea of Okhotsk is an enormous source of fish and non-fish products. We aimed to determine mineral contents in marine fish, shellfish, and algae in order to assess if they could satisfy the daily requirement for these elements through fish and non-fish consumption.
Study objects and methods. Our study objects were saffron cod (Eleginus gracilis L.), blue-headed halibut (Reinhardtius hippoglossoides L.), commander squid (Berryteuthis magister L.), northern shrimp (Pandalus borealis L.), salted pink salmon caviar (Oncorhynchus gorbuscham L.), and kelp (Laminaria L.). The contents of 25 macro- and microelements were determined by atomic emission spectrometry and mass spectrometry with inductively coupled argon plasma.
Results and discussion. The absolute contents of macro- and microelements in the marine species were used to assess the proportion of the recommended daily requirement that they account for. Also, we performed a thorough comparative analysis of mineral quantities in the studied species of marine fish, pink salmon caviar, shellfish, and algae from the Sea of Okhotsk. Finally, we examined the elemental status of the coastal residents belonging to the “northern type” and identified their deficiencies of vital chemical elements.
Conclusion. Some chemical elements in the studied marine species from the Sea of Okhotsk (Magadan Region) satisfy over 100% of the daily human requirement for these minerals. Therefore, their products can be recommended as part of a northern diet in order to compensate for the deficiencies of certain minerals.
Collapse
Affiliation(s)
- Evgenia Stepanova
- Scientific Research Center “Arktika” Far Eastern Branch of the Academy of Sciences
| | - Elena Lugovaya
- Scientific Research Center “Arktika” Far Eastern Branch of the Academy of Sciences
| |
Collapse
|
13
|
Latorres JM, Aquino S, Rocha M, Wasielesky W, Martins VG, Prentice C. Nanoencapsulation of white shrimp peptides in liposomes: Characterization, stability, and influence on bioactive properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Juliana Machado Latorres
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Sabrine Aquino
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Meritaine Rocha
- Laboratory of Microbiology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Wilson Wasielesky
- Laboratory of Mariculture, Aquaculture Marine Station Institute of Oceanography Federal University of Rio Grande Rio Grande Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Carlos Prentice
- Laboratory of Food Technology School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| |
Collapse
|
14
|
Mutalipassi M, Esposito R, Ruocco N, Viel T, Costantini M, Zupo V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021; 10:foods10071495. [PMID: 34203174 PMCID: PMC8303620 DOI: 10.3390/foods10071495] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that “wastes” of industrial processing represent up to 75% of the whole organisms, the loss of profit may be coupled with the loss of ecological sustainability, due to the scarce recycling of natural resources. Fish head, viscera, skin, bones, scales, as well as exoskeletons, pens, ink, and clam shells can be considered as useful wastes, in various weight percentages, according to the considered species and taxa. Besides several protein sources, still underexploited, the most interesting applications of fisheries and aquaculture by-products are foreseen in the biotechnological field. In fact, by-products obtained from marine sources may supply bioactive molecules, such as collagen, peptides, polyunsaturated fatty acids, antioxidant compounds, and chitin, as well as catalysts in biodiesel synthesis. In addition, those sources can be processed via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, to obtain compounds with antioxidant, anti-microbial, anti-cancer, anti-hypertensive, anti-diabetic, and anti-coagulant effects. Here, we review the main discards from fishery and aquaculture practices and analyse several bioactive compounds isolated from seafood by-products. In particular, we focus on the possible valorisation of seafood and their by-products, which represent a source of biomolecules, useful for the sustainable production of high-value nutraceutical compounds in our circular economy era.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
| | - Thomas Viel
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Correspondence: (M.C.); (V.Z.)
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
- Correspondence: (M.C.); (V.Z.)
| |
Collapse
|
15
|
Green microsaponification-based method for gas chromatography determination of sterol and squalene in cyanobacterial biomass. Talanta 2021; 224:121793. [PMID: 33379022 DOI: 10.1016/j.talanta.2020.121793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
Abstract
Sterol analysis of complex matrices can be very laborious. To minimize the existing drawbacks, a new micro-method of sterols and squalene determination in cyanobacteria was developed and applied to monitor their production of Phormidium autumnale cultured heterotrophically. Sample extraction/saponification and GC analysis of the target compounds were optimized separately using Plackett-Burman design (PB) followed by a central composite rotational design (CCRD). The most influential variables were identified to maximize compound recovery. Chloroform presented the highest capability to extract all target compounds with a horizontal shaker table (HST) for homogenization in the saponification step. For the pretreatment, a small amount of chloroform was used for 90 min at 50 °C and 6 min for the saponification time. The sample introduction in the GC injector was studied by evaluating pressure and injector temperature. High response for sterols and squalene were obtained between 19 and 23 psi and at 310 °C of injection temperature. The new method was able to determine different sterol concentrations: 0.2-0.6 mg kg-1 of squalene, 5-18 mg kg-1 of stigmasterol, 6 mg kg-1 of cholesterol, and 3 mg kg-1 of β-sitosterol, showing high analytical performance and fulfilling all steps, thus proving to be a promising technique.
Collapse
|
16
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
17
|
Mojiri A, Baharlooeian M, Zahed MA. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030977. [PMID: 33499398 PMCID: PMC7908223 DOI: 10.3390/ijerph18030977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/03/2022]
Abstract
Antibiotics are frequently applied to treat bacterial infections in humans and animals. However, most consumed antibiotics are excreted into wastewater as metabolites or in their original form. Therefore, removal of antibiotics from aquatic environments is of high research interest. In this study, we investigated the removal of sulfamethoxazole (SMX) and ofloxacin (OFX) with Chaetoceros muelleri, a marine diatom. The optimization process was conducted using response surface methodology (RSM) with two independent parameters, i.e., the initial concentration of antibiotics and contact time. The optimum removal of SMX and OFX were 39.8% (0.19 mg L−1) and 42.5% (0.21 mg L−1) at the initial concentration (0.5 mg L−1) and contact time (6.3 days). Apart from that, the toxicity effect of antibiotics on the diatom was monitored in different SMX and OFX concentrations (0 to 50 mg L−1). The protein (mg L−1) and carotenoid (μg L−1) content increased when the antibiotic concentration increased up to 20 mg L−1, while cell viability was not significantly affected up to 20 mg L−1 of antibiotic concentration. Protein content, carotenoid, and cell viability decreased during high antibiotic concentrations (more than 20 to 30 mg L−1). This study revealed that the use of Chaetoceros muelleri is an appealing solution to remove certain antibiotics from wastewater.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
- Correspondence:
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr 64199-34619, Iran;
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| |
Collapse
|