1
|
Cheng X, Bai X, Shang WY, Wei L, Jia JY, Yan TK, Gu QH. Profiling dendritic cells subsets in renal tissue of patients with crescentic glomerulonephritis. Int Urol Nephrol 2025; 57:263-273. [PMID: 39069601 DOI: 10.1007/s11255-024-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dendritic cells (DCs) have been speculated to be involved in the pathogenesis of glomerular diseases. However, the numbers and distribution of DC subsets in the kidneys of patients with crescentic glomerulonephritis (CrGN) have not been clearly elucidated. METHODS A total of 26 patients with biopsy-proven CrGN were enrolled. Indirect immunofluorescence staining was used to quantify DC subsets in renal specimens. Double staining of HLA with CD11C, BDCA2 and CD209 respectively was performed to detect DC subsets. The correlation between DC subsets infiltrated in the kidney and clinical and pathological parameters was investigated. RESULTS DC subsets were predominantly present in the kidney interstitium, particularly in the peri-glomerular area. The numbers of CD11C+DCs, BDCA2+DCs and CD209+DCs increased in the patients with CrGN and varied among different types of CrGN. Though significant correlation between DC subsets and the percentage of crescents had not been identified, a notable increase in the number of CD11C+DCs were observed with the chronic development of crescents. Furthermore, patients with severe tubulointerstitial injury exhibited significantly more infiltrations of CD11C+DCs, BDCA2+DCs and CD209+DCs. Moreover, the numbers of CD11C+DCs and BDCA2+DCs were found to correlate with the level of serum C3. CONCLUSIONS Patients with CrGN showed increased kidney infiltration of DC subsets, primarily localized in the renal interstitium and peri-glomerular region. The correlation between DC subsets and fibrosis of crescent and severe tubulointerstitial injury implied a potential involvement of DCs in the development of CrGN.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Bai
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen-Ya Shang
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Wei
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jun-Ya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tie-Kun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiu-Hua Gu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines (Basel) 2024; 12:1294. [PMID: 39591196 PMCID: PMC11598974 DOI: 10.3390/vaccines12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Dendritic cells (DCs) are present in almost all tissues, where they act as sentinels involved in innate recognition and the initiation of adaptive immune responses. The DC family consists of several cell lineages that are heterogenous in their development, phenotype, and function. Within these DC lineages, further subdivisions exist, resulting in smaller, less characterized subpopulations, each with its unique immunomodulatory capabilities. Given the interest in utilizing DC for experimental studies and for vaccination purposes, it becomes increasingly crucial to thoroughly classify and characterize these diverse DC subpopulations. This understanding is vital for comprehending their relative contribution to the initiation, regulation, and propagation of immune responses. To facilitate such investigation, we here provide an easy and ready-to-use multicolor flow cytometry staining panel for the analysis of conventional DC, plasmacytoid DC, and monocyte-derived DC populations isolated from mouse spleens. This adaptable panel can be easily customized for the analysis of other tissue-specific DC populations, providing a valuable tool for DC research.
Collapse
Affiliation(s)
- Ronald A. Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Lobel GP, Han N, Arocho WAM, Silber M, Shoush J, Noji MC, Jerrick To TK, Zhai L, Lesner NP, Simon MC, Haldar M. Glutamine availability regulates cDC subsets in tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613574. [PMID: 39345449 PMCID: PMC11429688 DOI: 10.1101/2024.09.17.613574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proliferating tumor cells take up glutamine for anabolic processes engendering glutamine deficiency in the tumor microenvironment. How this might impact immune cells is not well understood. Using multiple mouse models of soft tissue sarcomas, glutamine antagonists, as well as genetic and pharmacological inhibition of glutamine utilization, we found that the number and frequency of conventional dendritic cells (cDC) is dependent on microenvironmental glutamine levels. cDCs comprise two distinct subsets - cDC1 and cDC2, with the former subset playing a critical role in antigen cross-presentation and tumor immunity. While both subsets show dependence on Glutamine, cDC1s are particularly sensitive. Notably, glutamine antagonism did not reduce the frequency of DC precursors but decreased proliferation and survival of cDC1s. Further studies suggest a role of the nutrient sensing mTOR signaling pathway in this process. Taken together, these findings uncover glutamine dependence of cDC1s that is coopted by tumors to escape immune responses. One Sentence Summary Type 1 conventional dendritic cells require glutamine to maintain their number in non-lymphoid tissue. Significance Immune evasion is a key hallmark of cancer; however, the underlying pathways are diverse, tumor-specific and not fully elucidated. Many tumor cells avidly import glutamine to support their anabolic needs, creating a glutamine-deficient tumor microenvironment (TME). Herein, using mouse models of soft tissue sarcomas, we show that glutamine depletion in TME leads to reduced type 1 conventional dendritic cells - a cell type that is critical for adaptive immune responses. This work is a paradigm for how tumor cell metabolism can regulate anti-tumor immune responses and will be foundational to future efforts targeting glutamine metabolism for cancer immunotherapy.
Collapse
|
4
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
5
|
Sengupta A, Al-Otaibi N, Hinkula J. Sex-Specific Immune Responses to Seasonal Influenza Vaccination in Diabetic Individuals: Implications for Vaccine Efficacy. J Immunol Res 2023; 2023:3111351. [PMID: 37881338 PMCID: PMC10597737 DOI: 10.1155/2023/3111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/27/2023] Open
Abstract
Seasonal influenza vaccination has different implications on the immune response depending on the comorbidities. Diabetes is one such critical disease that increases the patient's susceptibility to influenza and suppresses vaccine efficacy and immunity. The sex of the individuals also plays a definitive role in the immune responses to both the vaccine and the infection. This study aims to understand the efficacy of the seasonal vaccine against influenza in diabetic groups and undergoing immune mechanisms in different sexes (females and males). In this study, we are reporting about a switching of the immune response of the infected and vaccinated diabetic females towards stronger Th1/Th17 responses with suppressed humoral immunity. They show increased cDC1, enhanced proinflammatory activities within T cells, CD8T activation, Th17 proliferation, and the majority of IgG2 antibody subtypes with reduced neutralization potential. Males with diabetes exhibit enhanced humoral Th2-immunity than the nondiabetic group. They exhibit higher cDC2, and DEC205 levels within them with an increase in plasma B lymphocytes, higher IgG1 subtypes in plasma cells, and influenza-hemagglutinin-specific IgG titer with stronger virus neutralization potential. Males with diabetes recovered better than the females as observed from the changes in their body weight. This study highlights the critical immune mechanisms and sex-specific swapping of their preferred immune response pathways against influenza after vaccination during diabetes. We propose a need for a sex-specific customized vaccine regimen to be implemented against influenza for individuals having diabetes to exploit the manifested strength and weakness in their protective immunity.
Collapse
Affiliation(s)
- Anirban Sengupta
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Noha Al-Otaibi
- King Abdulaziz City for Science and Technology (KACST), Riyad 11442, Saudi Arabia
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
6
|
Long H, Lichtnekert J, Andrassy J, Schraml BU, Romagnani P, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front Immunol 2023; 14:1194988. [PMID: 37868987 PMCID: PMC10587486 DOI: 10.3389/fimmu.2023.1194988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Mononuclear phagocytes (MP), i.e., monocytes, macrophages, and dendritic cells (DCs), are essential for immune homeostasis via their capacities to clear pathogens, pathogen components, and non-infectious particles. However, tissue injury-related changes in local microenvironments activate resident and infiltrating MP towards pro-inflammatory phenotypes that contribute to inflammation by secreting additional inflammatory mediators. Efficient control of injurious factors leads to a switch of MP phenotype, which changes the microenvironment towards the resolution of inflammation. In the same way, MP endorses adaptive structural responses leading to either compensatory hypertrophy of surviving cells, tissue regeneration from local tissue progenitor cells, or tissue fibrosis and atrophy. Under certain circumstances, MP contribute to the reversal of tissue fibrosis by clearance of the extracellular matrix. Here we give an update on the tissue microenvironment-related factors that, upon tissue injury, instruct resident and infiltrating MP how to support host defense and recover tissue function and integrity. We propose that MP are not intrinsically active drivers of organ injury and dysfunction but dynamic amplifiers (and biomarkers) of specific tissue microenvironments that vary across spatial and temporal contexts. Therefore, MP receptors are frequently redundant and suboptimal targets for specific therapeutic interventions compared to molecular targets upstream in adaptive humoral or cellular stress response pathways that influence tissue milieus at a contextual level.
Collapse
Affiliation(s)
- Hao Long
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University (LMU), Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, Nephrology and Dialysis Unit, Meyer Children’s Hospital, Firenze, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
7
|
Chen T, Cao Q, Wang R, Zheng G, Azmi F, Lee VW, Wang YM, Li H, Yu D, Rogers NM, Alexander SI, Harris DCH, Wang Y. Attenuation of renal injury by depleting cDC1 and by repurposing Flt3 inhibitor in anti-GBM disease. Clin Immunol 2023; 250:109295. [PMID: 36933629 DOI: 10.1016/j.clim.2023.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Previous studies found cDC1s to be protective in early stage anti-GBM disease through Tregs, but pathogenic in late stage Adriamycin nephropathy through CD8+ T cells. Flt3 ligand is a growth factor essential for cDC1 development and Flt3 inhibitors are currently used for cancer treatment. We conducted this study to clarify the role and mechanisms of effects of cDC1s at different time points in anti-GBM disease. In addition, we aimed to utilize drug repurposing of Flt3 inhibitors to target cDC1s as a treatment of anti-GBM disease. We found that in human anti-GBM disease, the number of cDC1s increased significantly, proportionally more than cDC2s. The number of CD8+ T cells also increased significantly and their number correlated with cDC1 number. In XCR1-DTR mice, late (day 12-21) but not early (day 3-12) depletion of cDC1s attenuated kidney injury in mice with anti-GBM disease. cDC1s separated from kidneys of anti-GBM disease mice were found to have a pro-inflammatory phenotype (i.e. express high level of IL-6 and IL-12) in late but not early stage. In the late depletion model, the number of CD8+ T cells was also reduced, but not Tregs. CD8+ T cells separated from kidneys of anti-GBM disease mice expressed high levels of cytotoxic molecules (granzyme B and perforin) and inflammatory cytokines (TNF-α and IFN-γ), and their expression reduced significantly after cDC1 depletion with diphtheria toxin. These findings were reproduced using a Flt3 inhibitor in wild type mice. Therefore, cDC1s are pathogenic in anti-GBM disease through activation of CD8+ T cells. Flt3 inhibition successfully attenuated kidney injury through depletion of cDC1s. Repurposing Flt3 inhibitors has potential as a novel therapeutic strategy for anti-GBM disease.
Collapse
Affiliation(s)
- Titi Chen
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Renal Medicine, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia.
| | - Qi Cao
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Ruifeng Wang
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Nephrology, The Second Hospital of Anhui Medical University, Anhui 230000, China
| | - Guoping Zheng
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Farhana Azmi
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Vincent W Lee
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Renal Medicine, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Yuan Ming Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Hongqi Li
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia; The Department of Gerontology, Anhui Provincial Hospital, the first affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Di Yu
- Faculty of Medicine, The University of Queensland Diamantina Institute, St Lucia, QLD 4072, Australia
| | - Natasha M Rogers
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Renal Medicine, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - David C H Harris
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Renal Medicine, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Yiping Wang
- The University of Sydney, Camperdown, NSW 2006, Australia; The Westmead Institute for Medical Research, Hawkesbury Road, Westmead, NSW 2145, Australia
| |
Collapse
|
8
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
10
|
Okunuki Y, Tabor SJ, Lee MY, Connor KM. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol 2021; 12:680568. [PMID: 34093583 PMCID: PMC8174453 DOI: 10.3389/fimmu.2021.680568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune uveitis is a sight-threatening ocular inflammatory condition in which the retina and uveal tissues become a target of autoreactive immune cells. The CD47 is a ubiquitously expressed transmembrane protein which plays multiple roles in fundamental cellular functions including phagocytosis, proliferation, and adhesion. Signal regulatory protein alpha (SIRPα), one of the CD47 ligands, is predominantly expressed in myeloid lineage cells such as dendritic cells (DCs) or macrophages, and CD47-SIRPα signaling pathway is implicated in the development of autoimmune diseases. Our current study demonstrates how CD47 depletion is effective in the prevention of experimental autoimmune uveitis (EAU), an animal model of human autoimmune uveitis, in animals deficient of CD47 (CD47-/- ). Systemic suppression of SIRPα+ DCs in animals deficient in CD47 resulted in the inability of autoreactive CD4+ T cells to develop, which is crucial to induction of EAU. Of interest, retinal microglia, the resident immune cell of the retina, express SIRPα, however these cells were not operative in EAU suppression in response to CD47 depletion. These results identify CD47 as a significant regulator in the development of SIRPα+ DCs that is vital to disease induction in EAU.
Collapse
Affiliation(s)
| | | | | | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Chen T, Cao Q, Wang R, Zheng G, Azmi F, Wang J, Lee VW, Wang YM, Yu H, Patel M, P'ng CH, Alexander SI, Rogers NM, Wang Y, Harris DCH. Conventional Type 1 Dendritic Cells (cDC1) in Human Kidney Diseases: Clinico-Pathological Correlations. Front Immunol 2021; 12:635212. [PMID: 34054804 PMCID: PMC8149958 DOI: 10.3389/fimmu.2021.635212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background cDC1 is a subset of conventional DCs, whose most recognized function is cross-presentation to CD8+ T cells. We conducted this study to investigate the number and location of cDC1s in various human kidney diseases as well as their correlation with clinico-pathological features and CD8+ T cells. Methods We analyzed 135 kidney biopsies samples. Kidney diseases included: acute tubular necrosis (ATN), acute interstitial nephritis (AIN), proliferative glomerulonephritis (GN) (IgA nephropathy, lupus nephritis, pauci-immune GN, anti-GBM disease), non-proliferative GN (minimal change disease, membranous nephropathy) and diabetic nephropathy. Indirect immunofluorescence staining was used to quantify cDC1s, CD1c+ DCs, and CD8+ T cells. Results cDC1s were rarely present in normal kidneys. Their number increased significantly in ATN and proliferative GN, proportionally much more than CD1c+ DCs. cDC1s were mainly found in the interstitium, except in lupus nephritis, pauci-immune GN and anti-GBM disease, where they were prominent in glomeruli and peri-glomerular regions. The number of cDC1s correlated with disease severity in ATN, number of crescents in pauci-immune GN, interstitial fibrosis in IgA nephropathy and lupus nephritis, as well as prognosis in IgA nephropathy. The number of CD8+ T cells also increased significantly in these conditions and cDC1 number correlated with CD8+ T cell number in lupus nephritis and pauci-immune GN, with many of them closely co-localized. Conclusions cDC1 number correlated with various clinic-pathological features and prognosis reflecting a possible role in these conditions. Their association with CD8+ T cells suggests a combined mechanism in keeping with the results in animal models.
Collapse
Affiliation(s)
- Titi Chen
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Qi Cao
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Guoping Zheng
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Farhana Azmi
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jeffery Wang
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Vincent W Lee
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Hong Yu
- Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Manish Patel
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Department of Urology, Westmead Hospital, Westmead, NSW, Australia
| | - Chow Heok P'ng
- Department of Anatomical Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Natasha M Rogers
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Yiping Wang
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - David C H Harris
- School of Medicine, The University of Sydney, Camperdown, NSW, Australia.,Centre for Transplant and Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
12
|
Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nat Commun 2021; 12:464. [PMID: 33469015 PMCID: PMC7815729 DOI: 10.1038/s41467-020-20659-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.
Collapse
|
13
|
Wei R, Lai N, Zhao L, Zhang Z, Zhu X, Guo Q, Chu C, Fu X, Li X. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother 2020; 133:110921. [PMID: 33378991 DOI: 10.1016/j.biopha.2020.110921] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) play a critical immuno-modulating role in pregnancy, which requires the maternal immune system to tolerate semiallogeneic fetus and at the same time to maintain adequate defense against pathogens. DCs interact closely with other immune components such as T cells, natural killer cells and macrophages, as well as the endocrine system to keep a pregnancy-friendly environment. Aberrant DC activities have been related to various pregnancy-associated diseases such as recurrent spontaneous abortion, preterm birth, pre-eclampsia, peripartum cardiomyopathy and infectious pregnancy complications. These findings make DCs an attractive candidate for prevention or therapy on the pregnancy-associated diseases. Here, we review recent findings that provide new insights into the roles of DCs in pregnancy and the related diseases. We also discuss the medical potentials to manipulate DCs in clinics. Whereas this is an emerging area with much work remaining, we anticipate that a better understanding of the role of DCs in maternal-fetal immunotolerance and a therapeutic manipulation of DCs will help women suffering from the pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Nannan Lai
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Chu Chu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoxiao Fu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
14
|
Lamiable O, Mayer JU, Munoz-Erazo L, Ronchese F. Dendritic cells in Th2 immune responses and allergic sensitization. Immunol Cell Biol 2020; 98:807-818. [PMID: 32738152 DOI: 10.1111/imcb.12387] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Allergic responses are characterized by the activation of a specific subset of effector CD4+ T cells, the T-helper type 2 (Th2) cells, that respond to harmless environmental antigens causing inflammation and pathology. Th2 cells are also found in the context of parasite infections, where they can mediate parasite clearance and expulsion, and support tissue repair. The process that leads to the activation of Th2 cells in vivo is incompletely understood: while it has become clear that "conventional" dendritic cells are essential antigen-presenting cells for the initiation of Th2 immune responses, the molecules that are expressed by dendritic cells exposed to allergens, and the mediators that are produced as a consequence and signal to naïve CD4+ T cells to promote their development into effector Th2, remain to be defined. Here we summarize recent developments in the identification of the dendritic cell subsets involved in Th2 responses, review potential mechanisms proposed to explain the generation of these immune responses, and discuss the direct and indirect signals that condition dendritic cells to drive the development of Th2 responses during allergen or parasite exposure.
Collapse
Affiliation(s)
| | | | | | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
15
|
Su Q, Bouteau A, Cardenas J, Uthra B, Wang Y, Smitherman C, Gu J, Igyártó BZ. Brief communication: Long-term absence of Langerhans cells alters the gene expression profile of keratinocytes and dendritic epidermal T cells. PLoS One 2020; 15:e0223397. [PMID: 31923202 PMCID: PMC6953782 DOI: 10.1371/journal.pone.0223397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Tissue-resident and infiltrating immune cells are continuously exposed to molecules derived from the local cells that often come in form of secreted factors, such as cytokines. These factors are known to impact the immune cells’ biology. However, very little is known about whether the tissue resident immune cells in return also affect the local environment. In this study, with the help of RNA-sequencing, we show for the first time that long-term absence of epidermal resident Langerhans cells led to significant gene expression changes in the local keratinocytes and resident dendritic epidermal T cells. Thus, immune cells might play an active role in maintaining tissue homeostasis, which should be taken in consideration at data interpretation.
Collapse
Affiliation(s)
- Qingtai Su
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, Texas, United States of America
| | - Aurélie Bouteau
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, Texas, United States of America
- Baylor University, Institute of Biomedical Studies, Waco, Texas, United States of America
| | - Jacob Cardenas
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Balaji Uthra
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Yuanyaun Wang
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Cynthia Smitherman
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Dallas, Texas, United States of America
| | - Botond Z. Igyártó
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, Texas, United States of America
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Keratinocytes Share Gene Expression Fingerprint with Epidermal Langerhans Cells via mRNA Transfer. J Invest Dermatol 2019; 139:2313-2323.e8. [DOI: 10.1016/j.jid.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
17
|
Cell-autonomous FLT3L shedding via ADAM10 mediates conventional dendritic cell development in mouse spleen. Proc Natl Acad Sci U S A 2019; 116:14714-14723. [PMID: 31262819 DOI: 10.1073/pnas.1818907116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conventional dendritic cells (cDCs) derive from bone marrow (BM) precursors that undergo cascades of developmental programs to terminally differentiate in peripheral tissues. Pre-cDC1s and pre-cDC2s commit in the BM to each differentiate into CD8α+/CD103+ cDC1s and CD11b+ cDC2s, respectively. Although both cDCs rely on the cytokine FLT3L during development, mechanisms that ensure cDC accessibility to FLT3L have yet to be elucidated. Here, we generated mice that lacked a disintegrin and metalloproteinase (ADAM) 10 in DCs (Itgax-cre × Adam10-fl/fl; ADAM10∆DC) and found that ADAM10 deletion markedly impacted splenic cDC2 development. Pre-cDC2s accumulated in the spleen with transcriptomic alterations that reflected their inability to differentiate and exhibited abrupt failure to survive as terminally differentiated cDC2s. Induced ADAM10 ablation also led to the reduction of terminally differentiated cDC2s, and restoration of Notch signaling, a major pathway downstream of ADAM10, only modestly rescued them. ADAM10∆DC BM failed to generate cDC2s in BM chimeric mice with or without cotransferred ADAM10-sufficient BM, indicating that cDC2 development required cell-autonomous ADAM10. We determined cDC2s to be sources of soluble FLT3L, as supported by decreased serum FLT3L concentration and the retention of membrane-bound FLT3L on cDC2 surfaces in ADAM10∆DC mice, and by demonstrating the release of soluble FLT3L by cDC2 in ex vivo culture supernatants. Through in vitro studies utilizing murine embryonic fibroblasts, we determined FLT3L to be a substrate for ADAM10. These data collectively reveal cDC2s as FLT3L sources and highlight a cell-autonomous mechanism that may enhance FLT3L accessibility for cDC2 development and survival.
Collapse
|
18
|
Choi JY, Kim JH, Hossain FMA, Uyangaa E, Park SO, Kim B, Kim K, Eo SK. Indispensable Role of CX 3CR1 + Dendritic Cells in Regulation of Virus-Induced Neuroinflammation Through Rapid Development of Antiviral Immunity in Peripheral Lymphoid Tissues. Front Immunol 2019; 10:1467. [PMID: 31316515 PMCID: PMC6610490 DOI: 10.3389/fimmu.2019.01467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
A coordinated host immune response mediated via chemokine network plays a crucial role in boosting defense mechanisms against pathogenic infections. The speed of Ag presentation and delivery by CD11c+ dendritic cells (DCs) to cognate T cells in lymphoid tissues may decide the pathological severity of the infection. Here, we investigated the role of CX3CR1 in the neuroinflammation induced by infection with Japanese encephalitis virus (JEV), a neurotrophic virus. Interestingly, CX3CR1 deficiency strongly enhanced susceptibility to JEV only after peripheral inoculation via footpad. By contrast, both CX3CR1+/+ and CX3CR1-/- mice showed comparable susceptibility to JEV following inoculation via intranasal and intraperitoneal routes. CX3CR1-/- mice exhibited lethal neuroinflammation after JEV inoculation via footpad route, showing high mortality, morbidity, pro-inflammatory cytokine expression, and uncontrolled CNS-infiltration of peripheral leukocytes including Ly-6Chi monocytes and Ly-6Ghi granulocytes. Furthermore, the absence of CX3CR1+CD11c+ DCs appeared to enhance susceptibility of CX3CR1-/- mice to JE after peripheral JEV inoculation. CX3CR1 ablation impaired the migration of CX3CR1+CD11c+ DCs from JEV-inoculated sites to draining lymph nodes (dLNs), resulting in decreased NK cell activation and JEV-specific CD4+/CD8+ T-cell responses. However, CX3CR1-competent mice showed rapid temporal expression of viral Ags in dLNs. Subsequently, JEV was rapidly cleared, with concomitant generation of antiviral NK cell activation and T-cell responses mediated by rapid migration of JEV Ag+CX3CR1+CD11c+ DCs. Using biallelic functional CX3CR1 expression system, the functional expression of CX3CR1 on CD11chi DCs appeared to be essentially required for inducing rapid and effective responses of NK cell activation and Ag-specific CD4+ T cells in dLNs. Strikingly, adoptive transfer of CX3CR1+CD11c+ DCs was found to completely restore the resistance of CX3CR1-/- recipients to JEV, as corroborated by the rapid delivery of JEV Ags in dLNs and attenuation of neuroinflammation in the CNS. Collectively, these results indicate that CX3CR1+CD11c+ DCs play an important role in generating rapid and effective responses of antiviral NK cell activation and Ag-specific T cells after peripheral inoculation with the virus, thereby resulting in conferring resistance to viral infection by reducing the peripheral viral burden.
Collapse
Affiliation(s)
- Jin Young Choi
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Jin Hyoung Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Ferdaus Mohd Altaf Hossain
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Erdenebelig Uyangaa
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Seong Ok Park
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan-si, South Korea
| | - Seong Kug Eo
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| |
Collapse
|
19
|
Papaioannou NE, Pasztoi M, Schraml BU. Understanding the Functional Properties of Neonatal Dendritic Cells: A Doorway to Enhance Vaccine Effectiveness? Front Immunol 2019; 9:3123. [PMID: 30687326 PMCID: PMC6335269 DOI: 10.3389/fimmu.2018.03123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Increased susceptibility to infectious diseases is a hallmark of the neonatal period of life that is generally attributed to a relative immaturity of the immune system. Dendritic cells (DCs) are innate immune sentinels with vital roles in the initiation and orchestration of immune responses, thus, constituting a promising target for promoting neonatal immunity. However, as is the case for other immune cells, neonatal DCs have been suggested to be functionally immature compared to their adult counterparts. Here we review some of the unique aspects of neonatal DCs that shape immune responses in early life and speculate whether the functional properties of neonatal DCs could be exploited or manipulated to promote more effective vaccination in early life.
Collapse
Affiliation(s)
- Nikos E Papaioannou
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maria Pasztoi
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Barbara U Schraml
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany.,Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
20
|
De Santis S, Serino G, Fiorentino MR, Galleggiante V, Gena P, Verna G, Liso M, Massaro M, Lan J, Troisi J, Cataldo I, Bertamino A, Pinto A, Campiglia P, Santino A, Giannelli G, Fasano A, Calamita G, Chieppa M. Aquaporin 9 Contributes to the Maturation Process and Inflammatory Cytokine Secretion of Murine Dendritic Cells. Front Immunol 2018; 9:2355. [PMID: 30386332 PMCID: PMC6198254 DOI: 10.3389/fimmu.2018.02355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells able to trigger the adaptive immune response to specific antigens. When non-self-antigens are captured, DCs switch from an “immature” to a “mature” state to fulfill their function. Among the several surface proteins involved in DCs maturation, the role of aquaporins (AQPs) is still poorly understood. Here we investigated the expression profile of Aqps in murine bone marrow derived dendritic cells (BMDCs). Among the Aqps analyzed, Aqp9 was the most expressed by DCs. Its expression level was significantly upregulated 6 h following LPS exposure. Chemical inhibition of Aqp9 led to a decreased inflammatory cytokines secretion. BMDCs from AQP9-KO mice release lower amount of inflammatory cytokines and chemokines and increased release of IL-10. Despite the reduced release of inflammatory cytokines, Aqp9-KO mice were not protected from DSS induced colitis. All together, our data indicate that AQP9 blockade can be an efficient strategy to reduce DCs inflammatory response but it is not sufficient to protect from acute inflammatory insults such as DSS induced colitis.
Collapse
Affiliation(s)
- Stefania De Santis
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy.,Pineta Grande Hospital, Castelvolturno, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Maria R Fiorentino
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Vanessa Galleggiante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Patrizia Gena
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Giulio Verna
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Marina Liso
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Monica Massaro
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Jinggang Lan
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Jacopo Troisi
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Theoreo srl-Spin-off Company of the University of Salerno, Salerno, Italy
| | - Ilaria Cataldo
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, Lecce, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Alessio Fasano
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States.,European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Giuseppe Calamita
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
21
|
Tel-Karthaus N, Kers-Rebel ED, Looman MW, Ichinose H, de Vries CJ, Ansems M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front Immunol 2018; 9:1797. [PMID: 30123220 PMCID: PMC6085422 DOI: 10.3389/fimmu.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nina Tel-Karthaus
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike W Looman
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Carlie J de Vries
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|