1
|
Timmann S, Wu TH, Golz C, Alcarazo M. Reactivity of α-diazo sulfonium salts: rhodium-catalysed ring expansion of indenes to naphthalenes. Chem Sci 2024; 15:5938-5943. [PMID: 38665534 PMCID: PMC11040645 DOI: 10.1039/d4sc01138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the presence of catalytic amounts of the paddlewheel dirhodium complex Rh2(esp)2, α-diazo dibenzothiophenium salts generate highly electrophilic Rh-coordinated carbenes, which evolve differently depending on their substitution pattern. Keto-moieties directly attached to the azomethinic carbon promote carbene insertion into one of the adjacent C-S bonds, giving rise to highly electrophilic dibenzothiopyrilium salts. This intramolecular pathway is not operative when the carbene carbon bears ester or trifluoromethyl substituents; in fact, these species react with olefins delivering easy to handle cyclopropyl-substituted sulfonium salts. When indenes are the olefins of choice, the initially formed cyclopropyl rings smoothly open with concomitant departure of dibenzothiophene, enabling access to a series of 2-functionalized naphthalenes.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Tun-Hui Wu
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
2
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
3
|
Mironova IA, Kirsch SF, Zhdankin V, Yoshimura A, Yusubov MS. Hypervalent Iodine‐Mediated Azidation Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Mironova
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| | - Stefan F. Kirsch
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Fakultät für Mathematik und Naturwissenschaften GERMANY
| | - Viktor Zhdankin
- University of Minnesota Duluth Chemistry 1039 University Dr 55812 Duluth UNITED STATES
| | - Akira Yoshimura
- Aomori University: Aomori Daigaku Department of Pharmacy JAPAN
| | - Mekhman S. Yusubov
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| |
Collapse
|
4
|
Scott DE, Aloisio MD, Rodriguez JF, Morimoto M, Hamilton RJ, Brown O, Tykwinski RR, Stryker JM. Optimizing the Iodide/Iodonium/O
2
Oxidation Cycle Enhances the Scope, Selectivity, and Yields of Hydroiodic Acid‐Catalyzed Multicomponent Cyclocondensation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David E. Scott
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| | - Mark D. Aloisio
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| | - Jose F. Rodriguez
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| | - Masato Morimoto
- Energy Process Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 16-1 Onogawa Tsukuba Ibaraki 305-8569 Japan
| | - Robin J. Hamilton
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| | - Orain Brown
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| | - Rik R. Tykwinski
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| | - Jeffrey M. Stryker
- Department of Chemistry University of Alberta Edmonton AB, T6G 2G2 Canada
| |
Collapse
|
5
|
Yusubov MS, Zhdankin VV. Zefirov's reagent and related hypervalent iodine triflates. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Yusubov MS, Zhdankin VV. Zefirov's reagent and related hypervalent iodine triflates. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Qurban J, Elsherbini M, Alharbi H, Wirth T. Synthesis, characterisation, and reactivity of novel pseudocyclic hypervalent iodine reagents with heteroaryl carbonyl substituents. Chem Commun (Camb) 2019; 55:7998-8000. [DOI: 10.1039/c9cc03905h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New heteroatom-containing pseudocyclic iodanes are being introduces as alternatives to the Koser reagent.
Collapse
Affiliation(s)
- Jihan Qurban
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | | | - Haifa Alharbi
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Thomas Wirth
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| |
Collapse
|
8
|
Vlasenko YA, Postnikov PS, Trusova ME, Shafir A, Zhdankin VV, Yoshimura A, Yusubov MS. Synthesis of Five-Membered Iodine–Nitrogen Heterocycles from Benzimidazole-Based Iodonium Salts. J Org Chem 2018; 83:12056-12070. [DOI: 10.1021/acs.joc.8b01995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Pavel S. Postnikov
- The Tomsk Polytechnic University, 634050 Tomsk, Russia
- University of Chemistry and Technology, 16628 Prague, Czech Republic
| | | | - Alexandr Shafir
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Tarragona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC−CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Akira Yoshimura
- The Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | | |
Collapse
|
9
|
Yoshimura A, Shea MT, Makitalo CL, Jarvi ME, Rohde GT, Saito A, Yusubov MS, Zhdankin VV. Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle. Beilstein J Org Chem 2018; 14:1016-1020. [PMID: 29977373 PMCID: PMC6009394 DOI: 10.3762/bjoc.14.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/20/2018] [Indexed: 01/15/2023] Open
Abstract
A new bicyclic organohypervalent iodine heterocycle derivative of benziodazole was prepared by oxidation of 2-iodo-N,N’-diisopropylisophthalamide with m-chloroperoxybenzoic acid under mild conditions. Single crystal X-ray crystallography of this compound revealed a five-membered bis-heterocyclic structure with two covalent bonds between the iodine atom and the nitrogen atoms. This novel benziodazole is a very stable compound with good solubility in common organic solvents. This compound can be used as an efficient reagent for oxidatively assisted coupling of carboxylic acids with alcohols or amines to afford the corresponding esters or amides in moderate yields.
Collapse
Affiliation(s)
- Akira Yoshimura
- The Tomsk Polytechnic University, 634050 Tomsk, Russia.,Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| | - Michael T Shea
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| | - Cody L Makitalo
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| | - Melissa E Jarvi
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| | | | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | - Viktor V Zhdankin
- The Tomsk Polytechnic University, 634050 Tomsk, Russia.,Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|