1
|
Ferreira AL, Ghanim M, Xu Y, Pinheiro PV. Interactions between Common Bean Viruses and Their Whitefly Vector. Viruses 2024; 16:1567. [PMID: 39459901 PMCID: PMC11512337 DOI: 10.3390/v16101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although there is a lot of information about some of these viruses, most of what we know has been developed using model systems, such as tomato plants and tomato yellow leaf curl virus (TYLCV). There is still very little information on the most relevant common bean viruses, such as bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), bean dwarf mosaic virus (BDMV), cowpea mild mottle virus (CPMMV), and bean yellow disorder virus (BnYDV). In this review, we discuss the available data in the most up-to-date literature and suggest future research avenues to contribute to the development of management tools for preventing or reducing the damage caused by viruses in this important crop.
Collapse
Affiliation(s)
- Amanda L. Ferreira
- Institute of Tropical Pathology and Public Health (IPTSP), Universidade Federal de Goiás (UFG), Goiânia 74605-050, GO, Brazil;
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
2
|
Mhlanga NM, Pate AE, Arinaitwe W, Carr JP, Murphy AM. Reduction in vertical transmission rate of bean common mosaic virus in bee-pollinated common bean plants. Virol J 2024; 21:147. [PMID: 38943139 PMCID: PMC11214251 DOI: 10.1186/s12985-024-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.
Collapse
Affiliation(s)
- Netsai M Mhlanga
- National Institute of Agricultural Botany, New Rd, East Malling, West Malling, ME19 6BJ, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- International Centre for Tropical Agriculture (CIAT), Dong Dok, Ban Nongviengkham, Vientiane, Lao People's Democratic Republic
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
3
|
Li Z, Qin J, Zhu Y, Zhou M, Zhao N, Zhou E, Wang X, Chen X, Cui X. Occurrence, distribution, and genetic diversity of faba bean viruses in China. Front Microbiol 2024; 15:1424699. [PMID: 38962134 PMCID: PMC11219563 DOI: 10.3389/fmicb.2024.1424699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
With worldwide cultivation, the faba bean (Vicia faba L.) stands as one of the most vital cool-season legume crops, serving as a major component of food security. China leads global faba bean production in terms of both total planting area and yield, with major production hubs in Yunnan, Sichuan, Jiangsu, and Gansu provinces. The faba bean viruses have caused serious yield losses in these production areas, but previous researches have not comprehensively investigated this issue. In this study, we collected 287 faba bean samples over three consecutive years from eight provinces/municipalities of China. We employed small RNA sequencing, RT-PCR, DNA sequencing, and phylogenetic analysis to detect the presence of viruses and examine their incidence, distribution, and genetic diversity. We identified a total of nine distinct viruses: bean yellow mosaic virus (BYMV, Potyvirus), milk vetch dwarf virus (MDV, Nanovirus), vicia cryptic virus (VCV, Alphapartitivirus), bean common mosaic virus (BCMV, Potyvirus), beet western yellows virus (BWYV, Polerovirus), broad bean wilt virus (BBWV, Fabavirus), soybean mosaic virus (SMV, Potyvirus), pea seed-borne mosaic virus (PSbMV, Potyvirus), and cucumber mosaic virus (CMV, Cucumovirus). BYMV was the predominant virus found during our sampling, followed by MDV and VCV. This study marks the first reported detection of BCMV in Chinese faba bean fields. Except for several isolates from Gansu and Yunnan provinces, our sequence analysis revealed that the majority of BYMV isolates contain highly conserved nucleotide sequences of coat protein (CP). Amino acid sequence alignment indicates that there is a conserved NAG motif at the N-terminal region of BYMV CP, which is considered important for aphid transmission. Our findings not only highlight the presence and diversity of pathogenic viruses in Chinese faba bean production, but also provide target pathogens for future antiviral resource screening and a basis for antiviral breeding.
Collapse
Affiliation(s)
- Zongdi Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Jiachao Qin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Yuxiang Zhu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Mimi Zhou
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Na Zhao
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Enqiang Zhou
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Xuejun Wang
- Department of Economic Crops, Yanjiang Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Nantong, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Li J, Li Z, Wu Z, Sun Y, Niu S, Guo M, Zhang L. Molecular Characteristics of Bean Common Mosaic Virus Occurring in Inner Mongolia, China. Genes (Basel) 2024; 15:133. [PMID: 38275614 PMCID: PMC10815410 DOI: 10.3390/genes15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Bean common mosaic virus (BCMV) was detected on common bean (Phaseolus vulgaris) plants showing wrinkled and/or narrow leaves, curling, shrinking and chlorosis of leaves, dwarfing of plants, and mottled pods in Inner Mongolia and named BCMV-22Huhe. Its genome has a size of 10,062 bp and was deposited in GenBank under the accession number OR778613. It is closely related to BCMV-Az (GenBank accession no. KP903372, in China) in the lineage of AzBMV. A recombination event was detected for BCMV-22Huhe among the 99 BCMV isolates published in the NCBI GenBank database, showing that BCMV-CJ25 (MK069986, found in Mexico) was a potential major parent, and the minor parent is unknown. This work is the first description of the occurrence of BCMV in Inner Mongolia, China.
Collapse
Affiliation(s)
- Jingru Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China (Z.L.)
| | - Zhengnan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China (Z.L.)
| | - Zhanmin Wu
- Ordos Center of Agriculture and Animal Husbandry Ecology and Resource Protection, Ordos 017000, China
| | - Yu Sun
- Ordos Center of Agriculture and Animal Husbandry Ecology and Resource Protection, Ordos 017000, China
| | - Suqing Niu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010010, China
| | - Mengze Guo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China (Z.L.)
| | - Lei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China (Z.L.)
| |
Collapse
|
5
|
Brine TJ, Crawshaw S, Murphy AM, Pate AE, Carr JP, Wamonje FO. Identification and characterization of Phaseolus vulgaris endornavirus 1, 2 and 3 in common bean cultivars of East Africa. Virus Genes 2023; 59:741-751. [PMID: 37563541 PMCID: PMC10500008 DOI: 10.1007/s11262-023-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Persistent viruses include members of the family Endornavirus that cause no apparent disease and are transmitted exclusively via seed or pollen. It is speculated that these RNA viruses may be mutualists that enhance plant resilience to biotic and abiotic stresses. Using reverse transcription coupled polymerase chain reactions, we investigated if common bean (Phaseolus vulgaris L.) varieties popular in east Africa were hosts for Phaseolus vulgaris endornavirus (PvEV) 1, 2 or 3. Out of 26 bean varieties examined, four were infected with PvEV1, three were infected with both PvEV1 and PvEV2 and three had infections of all three (PvEV) 1, 2 and 3. Notably, this was the first identification of PvEV3 in common bean from Africa. Using high-throughput sequencing of two east African bean varieties (KK022 and KK072), we confirmed the presence of these viruses and generated their genomes. Intra- and inter-species sequence comparisons of these genomes with comparator sequences from GenBank revealed clear species demarcation. In addition, phylogenetic analyses based on sequences generated from the helicase domains showed that geographical distribution does not correlate to genetic relatedness or the occurrence of endornaviruses. These findings are an important first step towards future investigations to determine if these viruses engender positive effects in common bean, a vital crop in east Africa.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sam Crawshaw
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK.
| |
Collapse
|
6
|
Brine TJ, Viswanathan SB, Murphy AM, Pate AE, Wamonje FO, Carr JP. Investigating the interactions of endornaviruses with each other and with other viruses in common bean, Phaseolus vulgaris. Virol J 2023; 20:216. [PMID: 37737192 PMCID: PMC10515030 DOI: 10.1186/s12985-023-02184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Plant viruses of the genus Alphaendornavirus are transmitted solely via seed and pollen and generally cause no apparent disease. It has been conjectured that certain plant endornaviruses may confer advantages on their hosts through improved performance (e.g., seed yield) or resilience to abiotic or biotic insult. We recently characterised nine common bean (Phaseolus vulgaris L.) varieties that harboured either Phaseolus vulgaris endornavirus (PvEV1) alone, or PvEV1 in combination with PvEV2 or PvEV1 in combination with PvEV2 and PvEV3. Here, we investigated the interactions of these endornaviruses with each other, and with three infectious pathogenic viruses: cucumber mosaic virus (CMV), bean common mosaic virus (BCMV), and bean common mosaic necrosis virus (BCMNV). RESULTS In lines harbouring PvEV1, PvEV1 and PvEV2, or PvEV1, PvEV2 plus PvEV3, the levels of PvEV1 and PvEV3 RNA were very similar between lines, although there were variations in PvEV2 RNA accumulation. In plants inoculated with infectious viruses, CMV, BCMV and BCMNV levels varied between lines, but this was most likely due to host genotype differences rather than to the presence or absence of endornaviruses. We tested the effects of endornaviruses on seed production and seedborne transmission of infectious pathogenic viruses but found no consistent relationship between the presence of endornaviruses and seed yield or protection from seedborne transmission of infectious pathogenic viruses. CONCLUSIONS It was concluded that endornaviruses do not interfere with each other's accumulation. There appears to be no direct synergy or competition between infectious pathogenic viruses and endornaviruses, however, the effects of host genotype may obscure interactions between endornaviruses and infectious viruses. There is no consistent effect of endornaviruses on seed yield or susceptibility to seedborne transmission of other viruses.
Collapse
Affiliation(s)
- Thomas J Brine
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Pest and Pathogen Ecology, National Institute of Agricultural Botany, East Malling, ME19 6BJ, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
7
|
Dell’Olmo E, Tiberini A, Sigillo L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:2040. [PMID: 37653957 PMCID: PMC10221191 DOI: 10.3390/plants12102040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Pulses have gained popularity over the past few decades due to their use as a source of protein in food and their favorable impact on soil fertility. Despite being essential to modern agriculture, these species face a number of challenges, such as agronomic crop management and threats from plant seed pathogens. This review's goal is to gather information on the distribution, symptomatology, biology, and host range of seedborne pathogens. Important diagnostic techniques are also discussed as a part of a successful process of seed health certification. Additionally, strategies for sustainable control are provided. Altogether, the data collected are suggested as basic criteria to set up a conscious laboratory approach.
Collapse
Affiliation(s)
- Eliana Dell’Olmo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification (CREA-DC), Via C. G. Bertero, 22, 00156 Rome, Italy
| | - Loredana Sigillo
- Council for Agricultural Research and Economics, Research Center for Vegetable and Ornamental Crops (CREA-OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
8
|
Jha UC, Nayyar H, Chattopadhyay A, Beena R, Lone AA, Naik YD, Thudi M, Prasad PVV, Gupta S, Dixit GP, Siddique KHM. Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. FRONTIERS IN PLANT SCIENCE 2023; 14:1183505. [PMID: 37229109 PMCID: PMC10204772 DOI: 10.3389/fpls.2023.1183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, Pulse Research Station, S.D. Agricultural University SK Nagar, SK Nagar, Gujarat, India
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University (KAU), Thiruvananthapuram, Kerala, India
| | - Ajaz A. Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST)-Kashmir, Srinagar, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Girish Prasad Dixit
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Rashid S, Wani F, Ali G, Sofi TA, Dar ZA, Hamid A. Viral metatranscriptomic approach to study the diversity of virus(es) associated with Common Bean (Phaseolus vulgaris L.) in the North-Western Himalayan region of India. Front Microbiol 2022; 13:943382. [PMID: 36212886 PMCID: PMC9532741 DOI: 10.3389/fmicb.2022.943382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses are a major threat to legume production worldwide. In recent years, new virus strains have emerged with increasing frequencies in various legume cropping systems, which demands the development of cutting-edge virus surveillance techniques. In this study, we surveyed the common bean fields of Kashmir valley for virus infection using a total of 140 symptomatic and non-symptomatic leaf samples collected from different locations. The genetic diversity of viruses was examined by high-throughput sequencing (HTS) with three viruses being identified, namely, Bean Common Mosaic Virus (BCMV), Bean Common Mosaic Necrosis Virus (BCMNV), and Clover Yellow Vein Virus (ClYVV). BCMNV and ClYVV are new reports from India. De novo assembly of transcriptome constructed near-complete genomes of these viruses. RT-PCR results confirmed the presence of these viruses with an emerge incidence of 56. 4% for BCMV, 27.1% for BCMNV and 16.4 for ClYVV in the valley. Several samples were found to contain multiple virus infections with BCMV being the most predominant. Recombination events were detected in the genomes of BCMV and ClYVV, but not BCMNV. Phylogenetic and pairwise identity matrix evidence suggests viral import from multiple countries. Our results demonstrate that HTS followed by multiplex PCR assay is a simple, rapid, and reliable approach for simultaneous diagnosis of plant viruses.
Collapse
Affiliation(s)
- Shahjahan Rashid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Farhana Wani
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Gowhar Ali
- Department of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Tariq A. Sofi
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Zahoor Ahmed Dar
- Department of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
- *Correspondence: Aflaq Hamid
| |
Collapse
|
10
|
Fresnillo P, Jover-Gil S, Samach A, Candela H. Complete Genome Sequence of an Isolate of Passiflora chlorosis virus from Passion Fruit (Passiflora edulis Sims). PLANTS 2022; 11:plants11141838. [PMID: 35890472 PMCID: PMC9317278 DOI: 10.3390/plants11141838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
We report the first complete genome sequence of an isolate of Passiflora chlorosis virus (PaCV), a member of the Potyviridae family, identified in passion fruit (Passiflora edulis Sims) plants grown in Israel. The assembled genome is 9672 nucleotides long and encodes a 3084 amino acids polyprotein that is predicted to be proteolytically cleaved into 10 mature peptides. Our analysis of the genome sequence shows that PaCV is a distinct species, sharing 68.5% nucleotide sequence identity and 71.5% amino acid sequence identity with isolates of the bean common mosaic necrosis virus (BCMNV), the most closely related virus classified within the genus Potyvirus. Using quantitative PCR, we detected the virus in RNA samples from leaves exhibiting symptoms of infection, with higher levels in clearly chlorotic leaves, but not in those from healthy leaves.
Collapse
Affiliation(s)
- Patricia Fresnillo
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (P.F.); (A.S.)
| | - Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain;
| | - Alon Samach
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (P.F.); (A.S.)
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain;
- Correspondence:
| |
Collapse
|
11
|
Survey of Viruses Infecting Tomato, Cucumber and Mung Bean in Tajikistan. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral diseases are major constraints to tomato, cucumber and mung bean production in most areas where these crops are grown. To identify the viruses on the crops in Tajikistan, a field survey was conducted in 2019. Samples of cucumber, mung bean and tomato with virus-like symptoms were collected and the viruses present were diagnosed by RT-PCR and PCR. Across all the samples, a very high proportion of the samples were infected with viruses from the genera Cucumovirus and Potyvirus. Cucumber mosaic virus (CMV; Cucumovirus) was very common in the collected samples of the three crops. As for Potyvirus, Potato virus Y (PVY) was detected in the collected tomato samples, Zucchini yellow mosaic virus (ZYMV) was identified in the collected cucumber samples, and Bean common mosaic virus (BCMV) was detected in 53% of the mung bean samples. Over 68% of the collected samples were infected with two or more viruses, suggesting that mixed infections are common for the three crops. Due to the results that the most identified viruses for the three crops are transmitted by aphids, the management of aphids is extremely important for the production of tomato, cucumber and mung bean in Tajikistan.
Collapse
|
12
|
Tarquini G, Martini M, Maestri S, Firrao G, Ermacora P. The Virome of ‘Lamon Bean’: Application of MinION Sequencing to Investigate the Virus Population Associated with Symptomatic Beans in the Lamon Area, Italy. PLANTS 2022; 11:plants11060779. [PMID: 35336661 PMCID: PMC8951528 DOI: 10.3390/plants11060779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
‘Lamon bean’ is a protected geographical indication (PGI) for a product of four varieties of bean (Phaseolus vulgaris L.) grown in a specific area of production, which is located in the Belluno district, Veneto region (N.E. of Italy). In the last decade, the ‘Lamon bean’ has been threatened by severe virus epidemics that have compromised its profitability. In this work, the full virome of seven bean samples showing different foliar symptoms was obtained by MinION sequencing. Evidence that emerged from sequencing was validated through RT-PCR and ELISA in a large number of plants, including different ecotypes of Lamon bean and wild herbaceous hosts that may represent a virus reservoir in the field. Results revealed the presence of bean common mosaic virus (BCMV), cucumber mosaic virus (CMV), peanut stunt virus (PSV), and bean yellow mosaic virus (BYMV), which often occurred as mixed infections. Moreover, both CMV and PSV were reported in association with strain-specific satellite RNAs (satRNAs). In conclusion, this work sheds light on the cause of the severe diseases affecting the ‘Lamon bean’ by exploitation of MinION sequencing.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
| | - Marta Martini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
| | - Simone Maestri
- Department of Biotechnology, University of Verona, I-37134 Verona, Italy;
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
- Correspondence:
| |
Collapse
|
13
|
Soler-Garzón A, McClean PE, Miklas PN. Coding Mutations in Vacuolar Protein-Sorting 4 AAA+ ATPase Endosomal Sorting Complexes Required for Transport Protein Homologs Underlie bc-2 and New bc-4 Gene Conferring Resistance to Bean Common Mosaic Virus in Common Bean. FRONTIERS IN PLANT SCIENCE 2021; 12:769247. [PMID: 34966401 PMCID: PMC8710759 DOI: 10.3389/fpls.2021.769247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Bean common mosaic virus (BCMV) is a major disease in common bean (Phaseolus vulgaris L.). Host plant resistance is the most effective strategy to minimize crop damage against BCMV and the related Bean common mosaic necrosis virus (BCMNV). To facilitate breeding for resistance, we sought to identify candidate genes and develop markers for the bc-2 gene and the unknown gene with which it interacts. Genome-wide association study (GWAS) of the Durango Diversity Panel (DDP) identified a peak region for bc-2 on chromosome Pv11. Haplotype mapping narrowed the bc-2 genomic interval and identified Phvul.011G092700, a vacuolar protein-sorting 4 (Vps4) AAA+ ATPase endosomal sorting complexes required for transport (ESCRT) protein, as the bc-2 candidate gene. The race Durango Phvul.011G092700 gene model, bc-2 [UI 111], contains a 10-kb deletion, while the race Mesoamerican bc-2 [Robust] consists of a single nucleotide polymorphism (SNP) deletion. Each mutation introduces a premature stop codon, and they exhibit the same interaction with the pathogroups (PGs) tested. Phvul.005G125100, another Vps4 AAA+ ATPase ESCRT protein, was identified as the candidate gene for the new recessive bc-4 gene, and the recessive allele is likely an amino acid substitution in the microtubule interacting and transport (MIT) domain. The two Vps4 AAA+ ATPase ESCRT proteins exhibit high similarity to the Zym Cucsa.385040 candidate gene associated with recessive resistance to Zucchini yellow mosaic virus in cucumber. bc-2 alone has no resistance effect but, when combined with bc-4, provides resistance to BCMV (except PG-V) but not BCMNV, and, when combined with bc-u d, provides resistance to BCMV (except BCMV PG-VII) and BCMNV. So instead of different resistance alleles (i.e., bc-2 and bc-2 2), there is only bc-2 with a differential reaction based on whether it is combined with bc-4 or bc-u d , which are tightly linked in repulsion. The new tools and enhanced understanding of this host-virus pathogen interaction will facilitate breeding common beans for resistance to BCMV and BCMNV.
Collapse
Affiliation(s)
- Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, WA, United States
| |
Collapse
|
14
|
Xue B, Shang J, Yang J, Zhang L, Du J, Yu L, Yang W, Naeem M. Development of a multiplex RT-PCR assay for the detection of soybean mosaic virus, bean common mosaic virus and cucumber mosaic virus in field samples of soybean. J Virol Methods 2021; 298:114278. [PMID: 34499966 DOI: 10.1016/j.jviromet.2021.114278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Soybean is susceptible to viral diseases which are often present as mixed infections. The individual simplex RT-PCR methods used for the identification of multiple viruses are more tedious and time-consuming than the corresponding multiplex RT-PCR. This study used soybean mosaic virus (SMV), bean common mosaic virus (BCMV) and cucumber mosaic virus (CMV)-infected leaf samples from southern China as the test materials to evaluate a multiplex RT-PCR assay developed for the simultaneous detection of these viruses. The parameters optimised included the annealing temperature, extension time, number of cycles, and primer type and concentration. The specific fragments sizes obtained by the multiplex RT-PCR were 550 bp (SMV), 288 bp (BCMV) and 99 bp (CMV). The assay was tested using infected soybean samples obtained from farmers' fields in Sichuan Province, China. The multiplex RT-PCR assay had high sensitivity, was rapid and simple, and could be used for the diagnosis of soybean infected with various combinations of these viruses in the field.
Collapse
Affiliation(s)
- Bing Xue
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| | - JunBo Du
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Yu
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - WenYu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco-physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammd Naeem
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Mhlanga NM, Murphy AM, Wamonje FO, Cunniffe NJ, Caulfield JC, Glover BJ, Carr JP. An Innate Preference of Bumblebees for Volatile Organic Compounds Emitted by Phaseolus vulgaris Plants Infected With Three Different Viruses. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum L.) plants emit volatile organic compounds (VOCs) attractive to bumblebees (Bombus terrestris L.), which are important tomato pollinators, but which do not transmit CMV. We investigated if this effect was unique to the tomato-CMV pathosystem. In two bean (Phaseolus vulgaris L.) cultivars, infection with the potyviruses bean common mosaic virus (BCMV) or bean common mosaic necrosis virus (BCMNV), or with the cucumovirus CMV induced quantitative changes in VOC emission detectable by coupled gas chromatography–mass spectrometry. In free-choice olfactometry assays bumblebees showed an innate preference for VOC blends emitted by virus-infected non-flowering bean plants and flowering CMV-infected bean plants, over VOCs emitted by non-infected plants. Bumblebees also preferred VOCs of flowering BCMV-infected plants of the Wairimu cultivar over non-infected plants, but the preference was not significant for BCMV-infected plants of the Dubbele witte cultivar. Bumblebees did not show a significant preference for VOCs from BCMNV-infected flowering bean plants but differential conditioning olfactometric assays showed that bumblebees do perceive differences between VOC blends emitted by flowering BCMNV-infected plants over non-infected plants. These results are consistent with the concept that increased pollinator attraction may be a virus-to-host payback, and show that virus-induced changes in bee-attracting VOC emission is not unique to one virus-host combination.
Collapse
|
16
|
Mwaipopo B, Rajamäki ML, Ngowi N, Nchimbi-Msolla S, Njau PJR, Valkonen JPT, Mbanzibwa DR. Next-Generation Sequencing-Based Detection of Common Bean Viruses in Wild Plants from Tanzania and Their Mechanical Transmission to Common Bean Plants. PLANT DISEASE 2021; 105:2541-2550. [PMID: 33449805 DOI: 10.1094/pdis-07-20-1420-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viral diseases are a major threat for common bean production. According to recent surveys, >15 different viruses belonging to 11 genera were shown to infect common bean (Phaseolus vulgaris L.) in Tanzania. Virus management requires an understanding of how viruses survive from one season to the next. During this study, we explored the possibility that alternative host plants have a central role in the survival of common bean viruses. We used next-generation sequencing (NGS) techniques to sequence virus-derived small interfering RNAs together with conventional reverse-transcription PCRs (RT-PCRs) to detect viruses in wild plants. Leaf samples for RNA extraction and NGS were collected from 1,430 wild plants around and within common bean fields in four agricultural zones in Tanzania. At least partial genome sequences of viruses potentially belonging to 25 genera were detected. The greatest virus diversity was detected in the eastern and northern zones, whereas wild plants in the Lake zone and especially in the southern highlands zone showed only a few viruses. The RT-PCR analysis of all collected plant samples confirmed the presence of yam bean mosaic virus and peanut mottle virus in wild legume plants. Of all viruses detected, only two viruses, cucumber mosaic virus and a novel bromovirus related to cowpea chlorotic mottle virus and brome mosaic virus, were mechanically transmitted from wild plants to common bean plants. The data generated during this study are crucial for the development of viral disease management strategies and predicting crop viral disease outbreaks in different agricultural regions in Tanzania and beyond.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Beatrice Mwaipopo
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Neema Ngowi
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
| | - Susan Nchimbi-Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Paul J R Njau
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Deusdedith R Mbanzibwa
- Disease Control Unit, Tanzania Agricultural Research Institute - Mikocheni Centre, Dar es Salaam, Tanzania
| |
Collapse
|
17
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
18
|
Chatzivassiliou EK. An Annotated List of Legume-Infecting Viruses in the Light of Metagenomics. PLANTS 2021; 10:plants10071413. [PMID: 34371616 PMCID: PMC8309371 DOI: 10.3390/plants10071413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Legumes, one of the most important sources of human food and animal feed, are known to be susceptible to a plethora of plant viruses. Many of these viruses cause diseases which severely impact legume production worldwide. The causal agents of some important virus-like diseases remain unknown. In recent years, high-throughput sequencing technologies have enabled us to identify many new viruses in various crops, including legumes. This review aims to present an updated list of legume-infecting viruses. Until 2020, a total of 168 plant viruses belonging to 39 genera and 16 families, officially recognized by the International Committee on Taxonomy of Viruses (ICTV), were reported to naturally infect common bean, cowpea, chickpea, faba-bean, groundnut, lentil, peas, alfalfa, clovers, and/or annual medics. Several novel legume viruses are still pending approval by ICTV. The epidemiology of many of the legume viruses are of specific interest due to their seed-transmission and their dynamic spread by insect-vectors. In this review, major aspects of legume virus epidemiology and integrated control approaches are also summarized.
Collapse
Affiliation(s)
- Elisavet K Chatzivassiliou
- Plant Pathology Laboratory, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
19
|
Combined Transcriptomic and Proteomic Analysis of Myzus persicae, the Green Peach Aphid, Infected with Cucumber Mosaic Virus. INSECTS 2021; 12:insects12050372. [PMID: 33919000 PMCID: PMC8142985 DOI: 10.3390/insects12050372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV (cucumber mosaic virus) by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control Myzus persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription. Abstract Aphids transmit CMV (cucumber mosaic virus) in a non-persistent manner. However, little is known about the mechanism of CMV transmission. In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control M. persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription.
Collapse
|
20
|
Chen B, Wu D, Zheng H, Li G, Cao Y, Chen J, Yan F, Song X, Lin L. Complete genome sequence of passiflora virus Y infecting passion fruit in China. Arch Virol 2021; 166:1489-1493. [PMID: 33635433 DOI: 10.1007/s00705-021-05013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
The complete genome sequence of passiflora virus Y (PaVY) from passion fruit growing in Guangdong province, China, was determined. The entire positive single-strand RNA genome comprises 9681 nucleotides (nt) excluding the poly(A) tail and encodes a polyprotein of 3084 amino acids flanked by 5' and 3' untranslated regions of 169 and 257 nt, respectively. In sequence comparisons and phylogenetic analysis, PaVY appears to represent a new species in the bean common mosaic virus subgroup of the genus Potyvirus. This is the first report of the complete genome sequence of PaVY and the first report of this virus in China.
Collapse
Affiliation(s)
- Binghua Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Dali Wu
- Shenzhen Noposion Agrochemical Co., Ltd, Shenzhen, 518102, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guangze Li
- Shenzhen Noposion Agrochemical Co., Ltd, Shenzhen, 518102, China
| | - Yuhao Cao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuemei Song
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
21
|
Goh CJ, Hahn Y. Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of NIa-Pro protease in each of seven cleavage sites. PLoS One 2021; 16:e0245853. [PMID: 33493199 PMCID: PMC7833154 DOI: 10.1371/journal.pone.0245853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Potyviruses encode a large polyprotein that undergoes proteolytic processing, producing 10 mature proteins: P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb-RdRp, and CP. While P1/HC-Pro and HC-Pro/P3 junctions are cleaved by P1 and HC-Pro, respectively, the remaining seven are processed by NIa-Pro. In this study, we analyzed 135 polyprotein sequences from approved potyvirus species and deduced the consensus amino acid residues at five positions (from −4 to +1, where a protease cleaves between −1 and +1) in each of nine cleavage sites. In general, the newly deduced consensus sequences were consistent with the previous ones. However, seven NIa-Pro cleavage sites showed distinct amino acid preferences despite being processed by the same protease. At position −2, histidine was the dominant amino acid residue in most cleavage sites (57.8–60.7% of analyzed sequences), except for the NIa-Pro/NIb-RdRp junction where it was absent. At position −1, glutamine was highly dominant in most sites (88.2–97.8%), except for the VPg/NIa-Pro junction where glutamic acid was found in all the analyzed proteins (100%). At position +1, serine was the most abundant residue (47.4–86.7%) in five out of seven sites, while alanine (52.6%) and glycine (82.2%) were the most abundant in the P3/6K1 and 6K2/VPg junctions, respectively. These findings suggest that each NIa-Pro cleavage site is finely tuned for differential characteristics of proteolytic reactions. The newly deduced consensus sequences may be useful resources for the development of models and methods to accurately predict potyvirus polyprotein processing sites.
Collapse
Affiliation(s)
- Chul Jun Goh
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
22
|
Post-COVID-19 Action: Guarding Africa's Crops against Viral Epidemics Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions. Viruses 2020; 12:v12111276. [PMID: 33182262 PMCID: PMC7695315 DOI: 10.3390/v12111276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The COVID-19 pandemic has shown that understanding the genomics of a virus, diagnostics and breaking virus transmission is essential in managing viral pandemics. The same lessons can apply for plant viruses. There are plant viruses that have severely disrupted crop production in multiple countries, as recently seen with maize lethal necrosis disease in eastern and southern Africa. High-throughput sequencing (HTS) is needed to detect new viral threats. Equally important is building local capacity to develop the tools required for rapid diagnosis of plant viruses. Most plant viruses are insect-vectored, hence, biological insights on virus transmission are vital in modelling disease spread. Research in Africa in these three areas is in its infancy and disjointed. Despite intense interest, uptake of HTS by African researchers is hampered by infrastructural gaps. The use of whole-genome information to develop field-deployable diagnostics on the continent is virtually inexistent. There is fledgling research into plant-virus-vector interactions to inform modelling of viral transmission. The gains so far have been modest but encouraging, and therefore must be consolidated. For this, I propose the creation of a new Research Centre for Africa. This bold investment is needed to secure the future of Africa’s crops from insect-vectored viral diseases.
Collapse
|
23
|
Wamonje FO, Donnelly R, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield J, Mutuku JM, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. Different Plant Viruses Induce Changes in Feeding Behavior of Specialist and Generalist Aphids on Common Bean That Are Likely to Enhance Virus Transmission. FRONTIERS IN PLANT SCIENCE 2020; 10:1811. [PMID: 32082355 PMCID: PMC7005137 DOI: 10.3389/fpls.2019.01811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/27/2019] [Indexed: 05/23/2023]
Abstract
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) cause serious epidemics in common bean (Phaseolus vulgaris), a vital food security crop in many low-to-medium income countries, particularly in Sub-Saharan Africa. Aphids transmit these viruses "non-persistently," i.e., virions attach loosely to the insects' stylets. Viruses may manipulate aphid-host interactions to enhance transmission. We used direct observation and electrical penetration graph measurements to see if the three viruses induced similar or distinct changes in feeding behaviors of two aphid species, Aphis fabae and Myzus persicae. Both aphids vector BCMV, BCMNV, and CMV but A. fabae is a legume specialist (the dominant species in bean fields) while M. persicae is a generalist that feeds on and transmits viruses to diverse plant hosts. Aphids of both species commenced probing epidermal cells (behavior optimal for virus acquisition and inoculation) sooner on virus-infected plants than on mock-inoculated plants. Infection with CMV was especially disruptive of phloem feeding by the bean specialist aphid A. fabae. A. fabae also experienced mechanical stylet difficulty when feeding on virus-infected plants, and this was also exacerbated for M. persicae. Overall, feeding on virus-infected host plants by specialist and generalist aphids was affected in different ways but all three viruses induced similar effects on each aphid type. Specifically, non-specialist (M. persicae) aphids encountered increased stylet difficulties on plants infected with BCMV, BCMNV, or CMV, whereas specialist aphids (A. fabae) showed decreased phloem ingestion on infected plants. Probing and stylet pathway activity (which facilitate virus transmission) were not decreased by any of the viruses for either of the aphid species, except in the case of A. fabae on CMV-infected bean, where these activities were increased. Overall, these virus-induced changes in host-aphid interactions are likely to enhance non-persistent virus transmission, and data from this work will be useful in epidemiological modeling of non-persistent vectoring of viruses by aphids.
Collapse
Affiliation(s)
- Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Christine Woodcock
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - John Caulfield
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - J. Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Toby J. A. Bruce
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | | | - John A. Pickett
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Wamonje FO, Tungadi TD, Murphy AM, Pate AE, Woodcock C, Caulfield JC, Mutuku JM, Cunniffe NJ, Bruce TJA, Gilligan CA, Pickett JA, Carr JP. Three Aphid-Transmitted Viruses Encourage Vector Migration From Infected Common Bean ( Phaseolus vulgaris) Plants Through a Combination of Volatile and Surface Cues. FRONTIERS IN PLANT SCIENCE 2020; 11:613772. [PMID: 33381144 PMCID: PMC7767818 DOI: 10.3389/fpls.2020.613772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 05/14/2023]
Abstract
Bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV) are important pathogens of common bean (Phaseolus vulgaris), a crop vital for food security in sub-Saharan Africa. These viruses are vectored by aphids non-persistently, with virions bound loosely to stylet receptors. These viruses also manipulate aphid-mediated transmission by altering host properties. Virus-induced effects on host-aphid interactions were investigated using choice test (migration) assays, olfactometry, and analysis of insect-perceivable volatile organic compounds (VOCs) using gas chromatography (GC)-coupled mass spectrometry, and GC-coupled electroantennography. When allowed to choose freely between infected and uninfected plants, aphids of the legume specialist species Aphis fabae, and of the generalist species Myzus persicae, were repelled by plants infected with BCMV, BCMNV, or CMV. However, in olfactometer experiments with A. fabae, only the VOCs emitted by BCMNV-infected plants repelled aphids. Although BCMV, BCMNV, and CMV each induced distinctive changes in emission of aphid-perceivable volatiles, all three suppressed emission of an attractant sesquiterpene, α-copaene, suggesting these three different viruses promote migration of virus-bearing aphids in a similar fashion.
Collapse
Affiliation(s)
- Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna D. Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - J. Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: John P. Carr, ;
| |
Collapse
|
25
|
Abstract
Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia; .,Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350, USA;
| |
Collapse
|
26
|
Wainaina JM, Ateka E, Makori T, Kehoe MA, Boykin LM. A metagenomic study of DNA viruses from samples of local varieties of common bean in Kenya. PeerJ 2019; 7:e6465. [PMID: 30891366 PMCID: PMC6422016 DOI: 10.7717/peerj.6465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is the primary source of protein and nutrients in the majority of households in sub-Saharan Africa. However, pests and viral diseases are key drivers in the reduction of bean production. To date, the majority of viruses reported in beans have been RNA viruses. In this study, we carried out a viral metagenomic analysis on virus symptomatic bean plants. Our virus detection pipeline identified three viral fragments of the double-stranded DNA virus Pelargonium vein banding virus (PVBV) (family, Caulimoviridae, genus Badnavirus). This is the first report of the dsDNA virus and specifically PVBV in legumes to our knowledge. In addition two previously reported +ssRNA viruses the bean common mosaic necrosis virus (BCMNVA) (Potyviridae) and aphid lethal paralysis virus (ALPV) (Dicistroviridae) were identified. Bayesian phylogenetic analysis of the Badnavirus (PVBV) using amino acid sequences of the RT/RNA-dependent DNA polymerase region showed the Kenyan sequence (SRF019_MK014483) was closely matched with two Badnavirus viruses: Dracaena mottle virus (DrMV) (YP_610965) and Lucky bamboo bacilliform virus (ABR01170). Phylogenetic analysis of BCMNVA was based on amino acid sequences of the Nib region. The BCMNVA phylogenetic tree resolved two clades identified as clade (I and II). Sequence from this study SRF35_MK014482, clustered within clade I with other Kenyan sequences. Conversely, Bayesian phylogenetic analysis of ALPV was based on nucleotide sequences of the hypothetical protein gene 1 and 2. Three main clades were resolved and identified as clades I-III. The Kenyan sequence from this study (SRF35_MK014481) clustered within clade II, and nested within a sub-clade; comprising of sequences from China and an earlier ALPV sequences from Kenya isolated from maize (MF458892). Our findings support the use of viral metagenomics to reveal the nascent viruses, their viral diversity and evolutionary history of these viruses. The detection of ALPV and PVBV indicate that these viruses have likely been underreported due to the unavailability of diagnostic tools.
Collapse
Affiliation(s)
- James M. Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Monica A. Kehoe
- Diagnostic Laboratory Service, Plant Pathology, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Laura M. Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
27
|
Wainaina JM, Kubatko L, Harvey J, Ateka E, Makori T, Karanja D, Boykin LM, Kehoe MA. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. PeerJ 2019; 7:e6297. [PMID: 30783563 PMCID: PMC6377593 DOI: 10.7717/peerj.6297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plant viral diseases are one of the major limitations in legume production within sub-Saharan Africa (SSA), as they account for up to 100% in production losses within smallholder farms. In this study, field surveys were conducted in the western highlands of Kenya with viral symptomatic leaf samples collected. Subsequently, next-generation sequencing was carried out to gain insights into the molecular evolution and evolutionary relationships of Bean common mosaic necrosis virus (BCMNV) and Cowpea aphid-borne mosaic virus (CABMV) present within symptomatic common bean and cowpea. Eleven near-complete genomes of BCMNV and two for CABMV were obtained from western Kenya. Bayesian phylogenomic analysis and tests for differential selection pressure within sites and across tree branches of the viral genomes were carried out. Three well-supported clades in BCMNV and one supported clade for CABMNV were resolved and in agreement with individual gene trees. Selection pressure analysis within sites and across phylogenetic branches suggested both viruses were evolving independently, but under strong purifying selection, with a slow evolutionary rate. These findings provide valuable insights on the evolution of BCMNV and CABMV genomes and their relationship to other viral genomes globally. The results will contribute greatly to the knowledge gap involving the phylogenomic relationship of these viruses, particularly for CABMV, for which there are few genome sequences available, and inform the current breeding efforts towards resistance for BCMNV and CABMV.
Collapse
Affiliation(s)
- James M Wainaina
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura Kubatko
- Ohio State University, Columbus, OH, United States of America
| | - Jagger Harvey
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University, Manhattan, KS, United States of America
| | - Elijah Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Timothy Makori
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - David Karanja
- Kenya Agricultural and Livestock Research Organization (KARLO), Machakos, Kenya
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Monica A Kehoe
- Plant Pathology, Department of Primary Industries and Regional Development Diagnostic Laboratory Service, South Perth, Australia
| |
Collapse
|
28
|
Alves-Freitas DMT, Pinheiro-Lima B, Faria JC, Lacorte C, Ribeiro SG, Melo FL. Double-Stranded RNA High-Throughput Sequencing Reveals a New Cytorhabdovirus in a Bean Golden Mosaic Virus-Resistant Common Bean Transgenic Line. Viruses 2019; 11:E90. [PMID: 30669683 PMCID: PMC6357046 DOI: 10.3390/v11010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Using double-strand RNA (dsRNA) high-throughput sequencing, we identified five RNA viruses in a bean golden mosaic virus (BGMV)-resistant common bean transgenic line with symptoms of viral infection. Four of the identified viruses had already been described as infecting common bean (cowpea mild mottle virus, bean rugose mosaic virus, Phaseolus vulgaris alphaendornavirus 1, and Phaseolus vulgaris alphaendornavirus 2) and one is a putative new plant rhabdovirus (genus Cytorhabdovirus), tentatively named bean-associated cytorhabdovirus (BaCV). The BaCV genome presented all five open reading frames (ORFs) found in most rhabdoviruses: nucleoprotein (N) (ORF1) (451 amino acids, aa), phosphoprotein (P) (ORF2) (445 aa), matrix (M) (ORF4) (287 aa), glycoprotein (G) (ORF5) (520 aa), and an RNA-dependent RNA polymerase (L) (ORF6) (114 aa), as well as a putative movement protein (P3) (ORF3) (189 aa) and the hypothetical small protein P4. The predicted BaCV proteins were compared to homologous proteins from the closest cytorhabdoviruses, and a low level of sequence identity (15⁻39%) was observed. The phylogenetic analysis shows that BaCV clustered with yerba mate chlorosis-associated virus (YmCaV) and rice stripe mosaic virus (RSMV). Overall, our results provide strong evidence that BaCV is indeed a new virus species in the genus Cytorhabdovirus (family Rhabdoviridae), the first rhabdovirus to be identified infecting common bean.
Collapse
Affiliation(s)
| | - Bruna Pinheiro-Lima
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
| | | | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, 70.770-917 Brasília, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, Brazil.
- Departamento de Fitopatologia, Universidade de Brasília, 70910-900 Brasília, Brazil.
| |
Collapse
|
29
|
Worrall EA, Bravo-Cazar A, Nilon AT, Fletcher SJ, Robinson KE, Carr JP, Mitter N. Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. FRONTIERS IN PLANT SCIENCE 2019; 10:265. [PMID: 30930914 PMCID: PMC6429036 DOI: 10.3389/fpls.2019.00265] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 05/19/2023]
Abstract
Plant viruses are difficult to control, and they decrease both the quality and yield of crops, thus threatening global food security. A new approach that uses topical application of double-stranded RNA (dsRNA) to induce antiviral RNA-interference has been shown to be effective at preventing virus infection in a range of plants following mechanical inoculation. In this study, topical application of dsRNA was effective against mechanical inoculation and aphid-mediated inoculation with the potyvirus bean common mosaic virus (BCMV). Topical application of dsRNAs targeting either the coding region of the potyviral nuclear inclusion b (NIb) protein (BCMVNIb-dsRNA) or the coat protein (CP) coding region (BCMVCP-dsRNA) protected Nicotiana benthamiana and cowpea (Vigna unguiculata) plants against mechanical inoculation with BCMV. BCMVCP-dsRNA was selected for subsequent aphid transmission experiments. BCMVCP-dsRNA was loaded onto layered double hydroxide nanoparticles to form BCMVCP-BioClay which is a more stable formulation for delivering dsRNA than naked dsRNA. BCMVCP-BioClay was shown to be successful in protecting plants against BCMV transmission by the aphid Myzus persicae. Spraying detached N. benthamiana leaves with BCMVCP-BioClay 5 days prior to exposure to viruliferous aphids protected the leaves from infection by BCMV. Importantly, spraying of intact N. benthamiana and cowpea plants with BCMVCP-BioClay 5 days prior to exposure to viruliferous aphids protected plants of both species from BCMV infection. This study demonstrates that topical application of dsRNA using BioClay protects plants from aphid-mediated virus transmission, which is an important first step toward developing practical application of this approach in crop protection.
Collapse
Affiliation(s)
- Elizabeth A. Worrall
- Centre of Horticultural Science, Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Ana Bravo-Cazar
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Alexander T. Nilon
- Centre of Horticultural Science, Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen J. Fletcher
- Centre of Horticultural Science, Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Karl E. Robinson
- Centre of Horticultural Science, Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - John P. Carr
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
- *Correspondence: Neena Mitter,
| | - Neena Mitter
- Centre of Horticultural Science, Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Neena Mitter,
| |
Collapse
|
30
|
Mutuku JM, Wamonje FO, Mukeshimana G, Njuguna J, Wamalwa M, Choi SK, Tungadi T, Djikeng A, Kelly K, Domelevo Entfellner JB, Ghimire SR, Mignouna HD, Carr JP, Harvey JJW. Metagenomic Analysis of Plant Virus Occurrence in Common Bean ( Phaseolus vulgaris) in Central Kenya. Front Microbiol 2018; 9:2939. [PMID: 30581419 PMCID: PMC6293961 DOI: 10.3389/fmicb.2018.02939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Two closely related potyviruses, bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV), are regarded as major constraints on production of common bean (Phaseolus vulgaris L.) in Eastern and Central Africa, where this crop provides a high proportion of dietary protein as well as other nutritional, agronomic, and economic benefits. Previous studies using antibody-based assays and indicator plants indicated that BCMV and BCMNV are both prevalent in bean fields in the region but these approaches cannot distinguish between these potyviruses or detect other viruses that may threaten the crop. In this study, we utilized next generation shotgun sequencing for a metagenomic examination of viruses present in bean plants growing at two locations in Kenya: the University of Nairobi Research Farm in Nairobi's Kabete district and at sites in Kirinyaga County. RNA was extracted from leaves of bean plants exhibiting apparent viral symptoms and sequenced on the Illumina MiSeq platform. We detected BCMNV, cucumber mosaic virus (CMV), and Phaseolus vulgaris alphaendornaviruses 1 and 2 (PvEV1 and 2), with CMV present in the Kirinyaga samples. The CMV strain detected in this study was most closely related to Asian strains, which suggests that it may be a recent introduction to the region. Surprisingly, and in contrast to previous surveys, BCMV was not detected in plants at either location. Some plants were infected with PvEV1 and 2. The detection of PvEV1 and 2 suggests these seed transmitted viruses may be more prevalent in Eastern African bean germplasm than previously thought.
Collapse
Affiliation(s)
- J. Musembi Mutuku
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Francis O. Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gerardine Mukeshimana
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Mark Wamalwa
- Biotechnology Department, Kenyatta University, Nairobi, Kenya
| | - Seung-Kook Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Vegetable Research, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju County, South Korea
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Krys Kelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Sita R. Ghimire
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Hodeba D. Mignouna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jagger J. W. Harvey
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
31
|
Mallor C, Barberán M, Aibar J. Recovery of a Common Bean Landrace ( Phaseolus vulgaris L.) for Commercial Purposes. FRONTIERS IN PLANT SCIENCE 2018; 9:1440. [PMID: 30410497 PMCID: PMC6209639 DOI: 10.3389/fpls.2018.01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The "Caparrona" bean is a landrace that was grown largely in Monzón, and for that reason, it is also known by the name of "Caparrona de Monzón." Historical references mention that in the thirties of the last century, Caparrona beans reached a production higher than 200,000 kg. Nevertheless, the increasing modernization of agriculture at the end of the 20th century enhanced its replacement by newer varieties. As a result, only a few local growers continued producing Caparrona beans mainly for family use. However, in recent years, the high demand for local products, grown with environmentally friendly farming techniques, has reawakened interest in this local bean. In order to recover the Caparrona bean crop, a study was conducted with the aim of assessing this landrace, along with all the processes, from collecting seeds to securing the in situ and ex situ conservation. Six bean samples were initially collected from local farmers and the traditional knowledge was also recorded. After the first seed-borne virus test, two samples were rejected because of the positive results for Bean Common Mosaic Virus (BCMV). The four remaining samples were evaluated in a randomized complete block design with three replications at two locations. All through the growth phase of the plants, samples were taken for a virus test. Two samples tested positive for BCMV and were discarded. Between the two healthy seed samples, regarding morphology, chemical composition, and agronomic data, no significant statistical differences were found. Therefore, both samples were selected for commercial production. The seeds obtained from the assays were transferred to a recently created producers' association, which registered a private label to commercialize the Caparrona beans as a gourmet product. Seeds are also available from the Spanish BGHZ-CITA public genebank.
Collapse
Affiliation(s)
- Cristina Mallor
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, IA2 Instituto Agroalimentario de Aragón (CITA – Universidad de Zaragoza), Zaragoza, Spain
| | - Miguel Barberán
- Escuela Politécnica Superior de Huesca, IA2 Instituto Agroalimentario de Aragón (CITA – Universidad de Zaragoza), Zaragoza, Spain
| | - Joaquín Aibar
- Escuela Politécnica Superior de Huesca, IA2 Instituto Agroalimentario de Aragón (CITA – Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|
32
|
Worrall EA, Hayward AC, Fletcher SJ, Mitter N. Molecular characterization and analysis of conserved potyviral motifs in bean common mosaic virus (BCMV) for RNAi-mediated protection. Arch Virol 2018; 164:181-194. [DOI: 10.1007/s00705-018-4065-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023]
|
33
|
Jang YW, Jo Y, Cho WK, Choi H, Yoon YN, Lim SM, Lee YH, Bae JY, Lee BC. First Report of Bean Common Mosaic Necrosis Virus Infecting Soybean in Korea. PLANT DISEASE 2018; 102:PDIS09171474PDN. [PMID: 30113257 DOI: 10.1094/pdis-09-17-1474-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Y W Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50426, Korea
| | - Y Jo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - W K Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - H Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Y N Yoon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50426, Korea
| | - S M Lim
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50426, Korea
| | - Y H Lee
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - J Y Bae
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| | - B C Lee
- Crop Foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
34
|
Meziadi C, Blanchet S, Geffroy V, Pflieger S. Genetic resistance against viruses in Phaseolus vulgaris L.: State of the art and future prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:39-50. [PMID: 29223341 DOI: 10.1016/j.plantsci.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Viruses are obligate parasites that replicate intracellularly in many living organisms, including plants. Consequently, no chemicals are available that target only the virus without impacting host cells or vector organisms. The use of natural resistant varieties appears as the most reliable control strategy and remains the best and cheapest option in managing virus diseases, especially in the current ecological context of preserving biodiversity and environment in which the use of phytosanitary products becomes limited. Common bean is a grain legume cultivated mainly in Africa and Central-South America. Virus diseases of common bean have been extensively studied both by breeders to identify natural resistance genes in existing germplasms and by pathologists to understand the molecular bases of plant-virus interactions. Here we present a critical review in which we synthesize previous and recent information concerning 1) main viruses causing diseases in common bean, 2) genetic resistance to viruses in common bean, 3) the different resistance phenotypes observed and more particularly the effect of temperature, 4) the molecular bases of resistance genes to viruses in common bean, and 5) future prospects using transgenic-engineered resistant lines.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France
| | - Sophie Blanchet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, rue Noetzlin, CS 80004, 91192 Gif sur Yvette cedex, France.
| |
Collapse
|
35
|
Wamonje FO, Michuki GN, Braidwood LA, Njuguna JN, Musembi Mutuku J, Djikeng A, Harvey JJW, Carr JP. Viral metagenomics of aphids present in bean and maize plots on mixed-use farms in Kenya reveals the presence of three dicistroviruses including a novel Big Sioux River virus-like dicistrovirus. Virol J 2017; 14:188. [PMID: 28969654 PMCID: PMC5625602 DOI: 10.1186/s12985-017-0854-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. RESULTS Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. CONCLUSIONS The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel dicistrovirus infecting A. fabae.
Collapse
Affiliation(s)
- Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - George N Michuki
- International Livestock Research Institute, 30709 Naivasha Road, Nairobi, Kenya
- Present Address: The Africa Genomics Center and Consultancy, Nairobi, Kenya
| | - Luke A Braidwood
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Joyce N Njuguna
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, 30709-00100, Kenya
| | - J Musembi Mutuku
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, 30709-00100, Kenya
| | - Appolinaire Djikeng
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, 30709-00100, Kenya
- Present Address: Centre for Tropical Livestock Genetics and Health, The Roslin Institute & Royal (Dick) School of Veterinary Studies, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| | - Jagger J W Harvey
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, 30709-00100, Kenya
- Present Address: The Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University, Manhattan, KS, 66506, USA
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
36
|
Development of rapid and highly sensitive detection of Bean common mosaic necrosis virus in leguminous crops using loop-mediated isothermal amplification assay. J Virol Methods 2017; 249:117-120. [PMID: 28866364 DOI: 10.1016/j.jviromet.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022]
Abstract
Bean common mosaic necrosis virus (BCMNV) is a plant pathogenic virus that can infect leguminous crops such as kidney beans, sunn hemp, red beans, and mung beans. BCMNV has not been reported in Korea and is classified as a quarantine plant virus. Currently, the standard diagnostic method for diagnosis of BCMNV is reverse transcription (RT)-nested PCR system. However a more rapid monitoring system is needed to enable the testing of more samples. The use of highly efficient loop-mediated isothermal amplification (LAMP) assay for its detection has not yet been reported, and development of LAMP for detecting BCMNV in this study. In addition, confirmation of LAMP amplification can be achieved using restriction enzyme Mse I (T/TAA). The developed technique could be used for more rapid, specific and sensitive monitoring of BCMNV in leguminous crops than conventional nested RT-PCR.
Collapse
|
37
|
Feng X, Guzmán P, Myers JR, Karasev AV. Resistance to Bean common mosaic necrosis virus Conferred by the bc-1 Gene Affects Systemic Spread of the Virus in Common Bean. PHYTOPATHOLOGY 2017; 107:893-900. [PMID: 28475025 DOI: 10.1094/phyto-01-17-0013-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bean common mosaic necrosis virus (BCMNV) isolates belong to two pathogroups (PG), PG-III and PG-VI, which are distinguished in common bean due to the inability of the PG-III isolates of BCMNV to overcome the two recessive resistance alleles bc-1 and bc-12. The biological and molecular basis of this distinction between PG-III and PG-VI isolates of BCMNV is not known. Here, three isolates of BCMNV were typed biologically on a set of 12 bean differentials and molecularly through whole-genome sequencing. Two isolates (1755b and TN1a) were assigned to PG-VI and one isolate (NL8-CA) was assigned to PG-III. Isolate NL8-CA (PG-III) induced only local necrosis on inoculated leaves in 'Top Crop' and 'Jubila' bean harboring the I gene and the bc-1 allele, whereas isolates TN1, TN1a, and 1755b (all PG-VI) induced rapid whole-plant necrosis (WPN) in Top Crop 7 to 14 days postinoculation, and severe systemic necrosis but not WPN in Jubila 3 to 5 weeks postinoculation. In 'Redland Greenleaf C' expressing bc-1 and 'Redland Greenleaf B' expressing bc-12 alleles, isolate NL8-CA was able to systemically infect only a small proportion of upper uninoculated leaves (less than 13 and 3%, respectively). The whole genomes of isolates 1755b, TN1a, and NL8-CA were sequenced and sequence analysis revealed that, despite the overall high nucleotide sequence identity between PG-III and PG-VI isolates (approximately 96%), two areas of the BCMNV genome in the P1/HC-Pro and HC-Pro/P3 cistrons appeared to be more divergent between these two pathotypes of BCMNV. The data suggest that the phenotypic differences among PG-III and PG-VI isolates of BCMNV in common bean cultivars from host resistance groups 2, 3, and 9 carrying bc-1 alleles were related to the impaired systemic movement of the PG-III isolates to the upper, uninoculated leaves, and also suggest a role of the recessive bc-1 gene in interfering with systemic spread of BCMNV.
Collapse
Affiliation(s)
- Xue Feng
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Pablo Guzmán
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - James R Myers
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| | - Alexander V Karasev
- First and fourth authors: Department of PSES, University of Idaho, Moscow; second author: California Crop Improvement Association, Davis; third author: Department of Horticulture, Oregon State University, Corvallis; and fourth author: Bioinformatics and Computational Biology Program, University of Idaho, Moscow
| |
Collapse
|
38
|
Nordenstedt N, Marcenaro D, Chilagane D, Mwaipopo B, Rajamäki ML, Nchimbi-Msolla S, Njau PJR, Mbanzibwa DR, Valkonen JPT. Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS One 2017; 12:e0178242. [PMID: 28542624 PMCID: PMC5444779 DOI: 10.1371/journal.pone.0178242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/10/2017] [Indexed: 12/29/2022] Open
Abstract
Common bean (Phaseolus vulgaris) is an annual grain legume that was domesticated in Mesoamerica (Central America) and the Andes. It is currently grown widely also on other continents including Africa. We surveyed seedborne viruses in new common bean varieties introduced to Nicaragua (Central America) and in landraces and improved varieties grown in Tanzania (eastern Africa). Bean seeds, harvested from Nicaragua and Tanzania, were grown in insect-controlled greenhouse or screenhouse, respectively, to obtain leaf material for virus testing. Equal amounts of total RNA from different samples were pooled (30-36 samples per pool), and small RNAs were deep-sequenced (Illumina). Assembly of the reads (21-24 nt) to contiguous sequences and searches for homologous viral sequences in databases revealed Phaseolus vulgaris endornavirus 1 (PvEV-1) and PvEV-2 in the bean varieties in Nicaragua and Tanzania. These viruses are not known to cause symptoms in common bean and are considered non-pathogenic. The small-RNA reads from each pool of samples were mapped to the previously characterized complete PvEV-1 and PvEV-2 sequences (genome lengths ca. 14 kb and 15 kb, respectively). Coverage of the viral genomes was 87.9-99.9%, depending on the pool. Coverage per nucleotide ranged from 5 to 471, confirming virus identification. PvEV-1 and PvEV-2 are known to occur in Phaseolus spp. in Central America, but there is little previous information about their occurrence in Nicaragua, and no information about occurrence in Africa. Aside from Cowpea mild mosaic virus detected in bean plants grown from been seeds harvested from one region in Tanzania, no other pathogenic seedborne viruses were detected. The low incidence of infections caused by pathogenic viruses transmitted via bean seeds may be attributable to new, virus-resistant CB varieties released by breeding programs in Nicaragua and Tanzania.
Collapse
Affiliation(s)
- Noora Nordenstedt
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Delfia Marcenaro
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Nicaraguan Institute of Agricultural Technology (CNIAB-INTA), Managua, Nicaragua
| | - Daudi Chilagane
- Sokoine University of Agriculture, Morogoro, Tanzania
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Beatrice Mwaipopo
- Sokoine University of Agriculture, Morogoro, Tanzania
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | | | | | | | | | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Mwaipopo B, Nchimbi-Msolla S, Njau P, Tairo F, William M, Binagwa P, Kweka E, Kilango M, Mbanzibwa D. Viruses infecting common bean ( Phaseolus vulgaris L.) in Tanzania: A review on molecular characterization, detection and disease management options. AFRICAN JOURNAL OF AGRICULTURAL RESEARCH 2017; 12:AJAR-12-18-1486. [PMID: 33282144 PMCID: PMC7691756 DOI: 10.5897/ajar2017.12236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
Common bean (Phaseolus vulgaris L.) is a major legume crop, serving as a main source of dietary protein and calories and generating income for many Tanzanians. It is produced in nearly all agro-ecological zones of Tanzania. However, the average yields are low (<1000 kg/ha), which is attributed to many factors including virus diseases. The most important viruses of common bean in Tanzania are Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) but other viruses have also been reported. There has never been a review of common bean virus diseases in the country, and the lack of collated information makes their management difficult. Therefore, this review focuses on (1) occurrence of different viruses of common bean in Tanzania, (2) molecular characterization of these viruses, (3) detection tools for common bean viruses in Tanzania and (4) available options for managing virus diseases in the country. Literature and nucleotide sequence database searches revealed that common bean diseases are inadequately studied and that their causal viruses have not been adequately characterized at the molecular level in Tanzania. Increased awareness on common bean virus diseases in Tanzania is expected to result into informed development of strategies for management of the same and thus increased production, which in turn has implication on nutrition and income.
Collapse
Affiliation(s)
- Beatrice Mwaipopo
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, P. O. Box 3005, Morogoro, Tanzania
| | - Susan Nchimbi-Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, P. O. Box 3005, Morogoro, Tanzania
| | - Paul Njau
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, P. O. Box 3005, Morogoro, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
| | - Magdalena William
- Agricultural Research Institute -Maruku, P. O. Box 127, Bukoba, Tanzania
| | - Papias Binagwa
- Agricultural Research Institute -Selian, P. O. Box 6024, Arusha, Tanzania
| | - Elisiana Kweka
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
| | - Michael Kilango
- Agricultural Research Institute -Uyole, P. O. Box 400, Mbeya, Tanzania
| | - Deusdedith Mbanzibwa
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
40
|
First Complete Genome Sequence of Bean common mosaic necrosis virus from East Timor. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01049-16. [PMID: 27688343 PMCID: PMC5043561 DOI: 10.1128/genomea.01049-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here the first complete Bean common mosaic necrosis virus (BCMNV) genomic sequence isolated from virus-infected common bean (Phaseolus vulgaris) in East Timor, and compare it with six complete BMCNV genomes from the Netherlands, and one each from the United States, Tanzania, and an unspecified country. It most resembled the Netherlands strain NL-8 genome.
Collapse
|