1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Kang Q, Zhang B, Cao Y, Song X, Ye X, Li X, Wu H, Chen Y, Chen B. Causal prior-embedded physics-informed neural networks and a case study on metformin transport in porous media. WATER RESEARCH 2024; 261:121985. [PMID: 38968734 DOI: 10.1016/j.watres.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.
Collapse
Affiliation(s)
- Qiao Kang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Yiqi Cao
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xing Song
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xudong Ye
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Hongjing Wu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Yuanzhu Chen
- School of Computing, Queen's University, Kingston, ON, K7L 2N8, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada.
| |
Collapse
|
3
|
Dong L, Li S, Huang J, Li WJ, Ali M. Co-occurrence, toxicity, and biotransformation pathways of metformin and its intermediate product guanylurea: Current state and future prospects for enhanced biodegradation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171108. [PMID: 38395159 DOI: 10.1016/j.scitotenv.2024.171108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Accumulation of metformin and its biotransformation product "guanylurea" are posing an increasing concern due to their low biodegradability under natural attenuated conditions. Therefore, in this study, we reviewed the unavoidable function of metformin in human body and the route of its release in different water ecosystems. In addition, metformin and its biotransformation product guanylurea in aquatic environments caused certain toxic effects on aquatic organisms which include neurotoxicity, endocrine disruption, production of ROS, and acetylcholinesterase disturbance in aquatic organisms. Moreover, microorganisms are the first to expose and deal with the release of these contaminants, therefore, the mechanisms of biodegradation pathways of metformin and guanylurea under aerobic and anaerobic environments were studied. It has been reported that certain microbes, such as Aminobacter sp. and Pseudomonas putida can carry potential enzymatic pathways to degrade the dead-end product "guanylurea", and hence guanylurea is no longer the dead-end product of metformin. However, these microbes can easily be affected by certain geochemical cycles, therefore, we proposed certain strategies that can be helpful in the enhanced biodegradation of metformin and its biotransformation product guanylurea. A better understanding of the biodegradation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of the emerging contaminants of concern, metformin and guanylurea in the near future.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Science, Jiaying University, Meizhou, China
| | - Jie Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
4
|
Elizalde-Velázquez GA, Herrera-Vázquez SE, Gómez-Oliván LM, García-Medina S. Health impact assessment after Danio rerio long-term exposure to environmentally relevant concentrations of metformin and guanylurea. CHEMOSPHERE 2023; 341:140070. [PMID: 37689151 DOI: 10.1016/j.chemosphere.2023.140070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The antidiabetic drug metformin (MET) and its metabolite guanylurea (GUA) have been frequently and ubiquitously detected in surface water. Consequently, there has been a consistent rise in studying the toxicity of MET and GUA in fish over the past decade. Nonetheless, it is noteworthy that no study has assessed the harmful effects both compounds might trigger on fish blood and organs after chronic exposure. Taking into consideration the data above, our research strived to accomplish two primary objectives: Firstly, to assess the effect of comparable concentrations of MET and GUA (1, 40, 100 μg/L) on the liver, gills, gut, and brain of Danio rerio after six months of flow-through exposure. Secondly, to compare the outcomes to identify which compound prompts more significant oxidative stress and apoptosis in organs and blood parameter alterations. Herein, findings indicate that both compounds induced oxidative damage and increased the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3). Chronic exposure to MET and GUA also generated fluctuations in glucose, creatinine, phosphorus, liver enzymes, red and white blood count, hemoglobin, and hematocrit levels. The observed biochemical changes indicate that MET and GUA are responsible for inducing hepatic damage in fish, whereas hematological alterations suggest that both compounds cause anemia. Considering GUA altered to a more considerable extent the values of all endpoints compared to the control group, it is suggested transformation product GUA is more toxic than MET. Moreover, based on the above evidence, it can be inferred that a six-month exposure to MET and GUA can impair REDOX status and generate apoptosis in fish, adversely affecting their essential organs' functioning.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico. https://orcid.org/0000-0002-7248-3449
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
5
|
Li T, Xu ZJ, Zhou NY. Aerobic Degradation of the Antidiabetic Drug Metformin by Aminobacter sp. Strain NyZ550. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1510-1519. [PMID: 36624085 DOI: 10.1021/acs.est.2c07669] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metformin is becoming one of the most common emerging contaminants in surface and wastewater. Its biodegradation generally leads to the accumulation of guanylurea in the environment, but the microorganisms and mechanisms involved in this process remain elusive. Here, Aminobacter sp. strain NyZ550 was isolated and characterized for its ability to grow on metformin as a sole source of carbon, nitrogen, and energy under oxic conditions. This isolate also assimilated a variety of nitrogenous compounds, including dimethylamine. Hydrolysis of metformin by strain NyZ550 was accompanied by a stoichiometric accumulation of guanylurea as a dead-end product. Based on ion chromatography, gas chromatography-mass spectrometry, and comparative transcriptomic analyses, dimethylamine was identified as an additional hydrolytic product supporting the growth of the strain. Notably, a microbial mixture consisting of strain NyZ550 and an engineered Pseudomonas putida PaW340 expressing a guanylurea hydrolase was constructed for complete elimination of metformin and its persistent product guanylurea. Overall, our results not only provide new insights into the metformin biodegradation pathway, leading to the commonly observed accumulation of guanylurea in the environment, but also open doors for the complete degradation of the new pollutant metformin.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhi-Jing Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
6
|
He Y, Zhang Y, Ju F. Metformin Contamination in Global Waters: Biotic and Abiotic Transformation, Byproduct Generation and Toxicity, and Evaluation as a Pharmaceutical Indicator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13528-13545. [PMID: 36107956 DOI: 10.1021/acs.est.2c02495] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is the first-line antidiabetic drug and one of the most prescribed medications worldwide. Because of its ubiquitous occurrence in global waters and demonstrated ecotoxicity, metformin, as with other pharmaceuticals, has become a concerning emerging contaminant. Metformin is subject to transformation, producing numerous problematic transformation byproducts (TPs). The occurrence, removal, and toxicity of metformin have been continually reviewed; yet, a comprehensive analysis of its transformation pathways, byproduct generation, and the associated change in adverse effects is lacking. In this review, we provide a critical overview of the transformation fate of metformin during water treatments and natural processes and compile the 32 organic TPs generated from biotic and abiotic pathways. These TPs occur in aquatic systems worldwide along with metformin. Enhanced toxicity of several TPs compared to metformin has been demonstrated through organism tests and necessitates the development of complete mineralization techniques for metformin and more attention on TP monitoring. We also assess the potential of metformin to indicate overall contamination of pharmaceuticals in aquatic environments, and compared to the previously acknowledged ones, metformin is found to be a more robust or comparable indicator of such overall pharmaceutical contamination. In addition, we provide insightful avenues for future research on metformin.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| |
Collapse
|
7
|
Koagouw W, Hazell RJ, Ciocan C. Induction of apoptosis in the gonads of Mytilus edulis by metformin and increased temperature, via regulation of HSP70, CASP8, BCL2 and FAS. MARINE POLLUTION BULLETIN 2021; 173:113011. [PMID: 34649205 DOI: 10.1016/j.marpolbul.2021.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds have been considered contaminants of emerging concern, in response to evidence that these substances may adversely affect aquatic organisms. Here we expose mussels for 7 days to metformin, the most commonly prescribed anti-diabetes treatment, at a concentration of 40 μg/L and a high temperature of 20 °C. The apoptosis-related genes HSP70, CASP8, BCL2 and FAS showed variation in expression in gonadal tissue. The results suggest that complex interactions between these genes are modulating the onset of apoptotic changes such as atresia and follicle degeneration. The temperature induced apoptosis may be initiated by overexpression of CASP8. Conversely, metformin may induce apoptosis by suppressing the anti-apoptotic gene BCL2, thus promoting the process. Interestingly, apoptosis and follicle degeneration are likely FAS-mediated, following the synergistic effect of metformin and temperature. The potential of metformin to act as a non-traditional EDC, due to its impact on the reproductive system in mussels is discussed.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4AT, United Kingdom; Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton BN2 4AT, United Kingdom; National Research and Innovation Agency, Jl. M. H. Thamrin No. 8 Jakarta, Indonesia.
| | - Richard J Hazell
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Corina Ciocan
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4AT, United Kingdom; Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton BN2 4AT, United Kingdom.
| |
Collapse
|
8
|
Tassoulas LJ, Robinson A, Martinez-Vaz B, Aukema KG, Wackett LP. Filling in the Gaps in Metformin Biodegradation: a New Enzyme and a Metabolic Pathway for Guanylurea. Appl Environ Microbiol 2021; 87:e03003-20. [PMID: 33741630 PMCID: PMC8208167 DOI: 10.1128/aem.03003-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
The widely prescribed pharmaceutical metformin and its main metabolite, guanylurea, are currently two of the most common contaminants in surface and wastewater. Guanylurea often accumulates and is poorly, if at all, biodegraded in wastewater treatment plants. This study describes Pseudomonas mendocina strain GU, isolated from a municipal wastewater treatment plant, using guanylurea as its sole nitrogen source. The genome was sequenced with 36-fold coverage and mined to identify guanylurea degradation genes. The gene encoding the enzyme initiating guanylurea metabolism was expressed, and the enzyme was purified and characterized. Guanylurea hydrolase, a newly described enzyme, was shown to transform guanylurea to one equivalent (each) of ammonia and guanidine. Guanidine also supports growth as a sole nitrogen source. Cell yields from growth on limiting concentrations of guanylurea revealed that metabolism releases all four nitrogen atoms. Genes encoding complete metabolic transformation were identified bioinformatically, defining the pathway as follows: guanylurea to guanidine to carboxyguanidine to allophanate to ammonia and carbon dioxide. The first enzyme, guanylurea hydrolase, is a member of the isochorismatase-like hydrolase protein family, which includes biuret hydrolase and triuret hydrolase. Although homologs, the three enzymes show distinct substrate specificities. Pairwise sequence comparisons and the use of sequence similarity networks allowed fine structure discrimination between the three homologous enzymes and provided insights into the evolutionary origins of guanylurea hydrolase.IMPORTANCE Metformin is a pharmaceutical most prescribed for type 2 diabetes and is now being examined for potential benefits to COVID-19 patients. People taking the drug pass it largely unchanged, and it subsequently enters wastewater treatment plants. Metformin has been known to be metabolized to guanylurea. The levels of guanylurea often exceed that of metformin, leading to the former being considered a "dead-end" metabolite. Metformin and guanylurea are water pollutants of emerging concern, as they persist to reach nontarget aquatic life and humans, the latter if it remains in treated water. The present study has identified a Pseudomonas mendocina strain that completely degrades guanylurea. The genome was sequenced, and the genes involved in guanylurea metabolism were identified in three widely separated genomic regions. This knowledge advances the idea that guanylurea is not a dead-end product and will allow for bioinformatic identification of the relevant genes in wastewater treatment plant microbiomes and other environments subjected to metagenomic sequencing.
Collapse
Affiliation(s)
- Lambros J Tassoulas
- Department of Biochemistry, University of Minnesota, Saint Paul, Minnesota, USA
| | - Ashley Robinson
- Department of Biochemistry, University of Minnesota, Saint Paul, Minnesota, USA
| | - Betsy Martinez-Vaz
- Department of Biochemistry, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kelly G Aukema
- Department of Biochemistry, University of Minnesota, Saint Paul, Minnesota, USA
| | - Lawrence P Wackett
- Department of Biochemistry, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
9
|
Parrott JL, Pacepavicius G, Shires K, Clarence S, Khan H, Gardiner M, Sullivan C, Alaee M. Fathead minnow exposed to environmentally relevant concentrations of metformin for one life cycle show no adverse effects. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metformin is a glucose-lowering drug taken for diabetes. It is excreted by humans in urine and detected in municipal wastewater effluents and rivers. Fathead minnows ( Pimephales promelas) were exposed over a life cycle to measured concentrations of metformin: 3.0, 31, and 322 μg/L. No significant changes were observed in survival, maturation, growth, condition factor, or liver size. Relative ovary size of females exposed to 322 μg/L metformin was significantly larger than controls. There was no induction of vitellogenin in plasma of minnows, and gonad maturation was not statistically different from controls. The start of breeding was delayed by 9–10 d in the mid- and high metformin treatments (statistically significant only in the mid-concentration), but numbers and quality of eggs were not statistically different from controls. There were no effects of metformin on survival or growth of offspring. Exposure to metformin at environmentally relevant concentrations (i.e., 3.0 and 31 μg/L metformin) caused no adverse effects in fathead minnows exposed for a life cycle, with the exception of a delay in time to first breeding (that did not impact overall egg production). The results of the study are important to help understand whether metformin concentrations in rivers and lakes can harm fishes.
Collapse
Affiliation(s)
- Joanne L. Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Grazina Pacepavicius
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Kallie Shires
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Stacey Clarence
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Hufsa Khan
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Madelaine Gardiner
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Cheryl Sullivan
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Mehran Alaee
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
10
|
Schneider NO, Tassoulas LJ, Zeng D, Laseke AJ, Reiter NJ, Wackett LP, Maurice MS. Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine. Biochemistry 2020; 59:3258-3270. [PMID: 32786413 DOI: 10.1021/acs.biochem.0c00537] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.
Collapse
Affiliation(s)
- Nicholas O Schneider
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lambros J Tassoulas
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Amanda J Laseke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108-6106, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108-6106, United States
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|