1
|
McClanahan TR, Friedlander AM, Wickel J, Graham NAJ, Bruggemann JH, Guillaume MMM, Chabanet P, Porter S, Schleyer MH, Azali MK, Muthiga NA. Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14256. [PMID: 38545935 DOI: 10.1111/cobi.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 07/24/2024]
Abstract
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Collapse
Affiliation(s)
- Tim R McClanahan
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Alan M Friedlander
- Pristine Seas, National Geographic Society, Washington, DC, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, Hawaii, USA
| | | | | | - J Henrich Bruggemann
- UMR 9220 ENTROPIE, Université de La Réunion - IRD - CNRS - IFREMER - UNC, Saint Denis, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Mireille M M Guillaume
- Laboratoire d'Excellence CORAIL, Perpignan, France
- UMR BOREA, Muséum National d'Histoire Naturelle - Sorbonne U - CNRS - IRD - UCN - UA, Paris, France
| | - P Chabanet
- UMR 9220 ENTROPIE, Université de La Réunion - IRD - CNRS - IFREMER - UNC, Saint Denis, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| | - Sean Porter
- Oceanographic Research Institute, Durban, South Africa
| | | | - M Kodia Azali
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - N A Muthiga
- Kenya Marine Program, Wildlife Conservation Society, Mombasa, Kenya
| |
Collapse
|
2
|
McClanahan TR, Darling ES, Beger M, Fox HE, Grantham HS, Jupiter SD, Logan CA, Mcleod E, McManus LC, Oddenyo RM, Surya GS, Wenger AS, Zinke J, Maina JM. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14108. [PMID: 37144480 DOI: 10.1111/cobi.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate.
Collapse
Affiliation(s)
- Tim R McClanahan
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Emily S Darling
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Maria Beger
- School of Biology, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Helen E Fox
- Coral Reef Alliance, Oakland, California, USA
| | - Hedley S Grantham
- Forests and Climate Change, Wildlife Conservation Society, Bronx, New York, USA
| | - Stacy D Jupiter
- Melanesia Program, Wildlife Conservation Society, Suva, Fiji
| | - Cheryl A Logan
- Department of Marine Science, California State University, Monterey Bay, Seaside, California, USA
| | - Elizabeth Mcleod
- Global Reefs Program, The Nature Conservancy, Arlington, Virginia, USA
| | - Lisa C McManus
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Remy M Oddenyo
- Kenya Marine Program, Wildlife Conservation Society, Mombasa, Kenya
| | - Gautam S Surya
- Forests and Climate Change, Wildlife Conservation Society, Bronx, New York, USA
| | - Amelia S Wenger
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, Queensland, Australia
| | - Jens Zinke
- School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Joseph M Maina
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Eladawy A, Nakamura T, Yoshikai M. Multiscale hydrodynamics modeling reveals the temperature moderating role of the Northern Red Sea Islands. MARINE POLLUTION BULLETIN 2023; 194:115241. [PMID: 37480801 DOI: 10.1016/j.marpolbul.2023.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
A growing interest in the hydrodynamics of the Red Sea has been observed since the beginning of the 21st century. However, the interaction between the Gulf of Suez (GOS) and the Red Sea along with possible natural mitigation mechanisms of heat stress on its southern coral reef zones have not been adequately investigated. This study evaluated different Regional Ocean Modeling System (ROMS) simulations of the Red Sea using a nesting approach in the southern parts of the GOS to elucidate the three-dimensional nature of thermal variability. The developed regional ROMS model simulated the general circulation patterns and sea surface temperature on the TSUBAME 3.0 supercomputer operated by the Tokyo Institute of Technology. Ultimately, remotely sensed satellite data of Sea Surface Temperature (SST) spanning the period 2016-2020 were used to validate the regional model results. A further challenge posed by the scarcity of distributed depth-varying temperature data on the northern islands' region was overcome by using an offline nesting approach (i.e., incorporating boundary conditions from the parent domain) to simulate the local 3-D thermal regimes. Intriguingly, the results of the nested model scenarios confirmed unique northern islands-enhanced thermal moderating mechanisms where islands act as barriers to the impacts of the relatively warmer water originating from the eastern boundary current. Additionally, this study introduces a new approach to applying higher-resolution models to the precise spatial and temporal representation of thermal indices in a way that surpasses the widely adopted remote sensing approaches. In short, multiscale modeling provides a valuable approach for assessing the thermal regimes around one of the most precious marine ecosystems in the world.
Collapse
Affiliation(s)
- Ahmed Eladawy
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Ookayama 2-12-1 W8-13, Meguro, Tokyo 152-8552, Japan.
| | - Takashi Nakamura
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Ookayama 2-12-1 W8-13, Meguro, Tokyo 152-8552, Japan.
| | - Masaya Yoshikai
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Ookayama 2-12-1 W8-13, Meguro, Tokyo 152-8552, Japan; Coastal Marine Group School of Science, University of Waikato, Private Bag 3105 Hamilton, 3240, New Zealand.
| |
Collapse
|
4
|
Pei J, Chen S, Yu K, Hu J, Wang Y, Zhang J, Qin Z, Zhang R, Kuo TH, Chung HH, Hsu CC. Metabolomics Characterization of Scleractinia Corals with Different Life-History Strategies: A Case Study about Pocillopora meandrina and Seriatopora hystrix in the South China Sea. Metabolites 2022; 12:metabo12111079. [PMID: 36355162 PMCID: PMC9693324 DOI: 10.3390/metabo12111079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Life-history strategies play a critical role in susceptibility to environmental stresses for Scleractinia coral. Metabolomics, which is capable of determining the metabolic responses of biological systems to genetic and environmental changes, is competent for the characterization of species’ biological traits. In this study, two coral species (Pocillopora meandrina and Seriatopora hystrix in the South China Sea) with different life-history strategies (“competitive” and “weedy”) were targeted, and untargeted mass spectrometry metabolomics combined with molecular networking was applied to characterize their differential metabolic pathways. The results show that lyso-platelet activating factors (lyso-PAFs), diacylglyceryl carboxyhydroxymethylcholine (DGCC), aromatic amino acids, and sulfhydryl compounds were more enriched in P. meandrina, whereas new phospholipids, dehydrated phosphoglycerol dihydroceramide (de-PG DHC), monoacylglycerol (MAG), fatty acids (FA) (C < 18), short peptides, and guanidine compounds were more enriched in S. hystrix. The metabolic pathways involved immune response, energy metabolism, cellular membrane structure regulation, oxidative stress system, secondary metabolite synthesis, etc. While the immune system (lysoPAF) and secondary metabolite synthesis (aromatic amino acids and sulfhydryl compounds) facilitates fast growth and resistance to environmental stressors of P. meandrina, the cell membrane structure (structural lipids), energy storage (storage lipids), oxidative stress system (short peptides), and secondary metabolite synthesis (guanidine compounds) are beneficial to the survival of S. hystrix in harsh conditions. This study contributes to the understanding of the potential molecular traits underlying life-history strategies of different coral species.
Collapse
Affiliation(s)
- Jiying Pei
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Shiguo Chen
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| | - Junjie Hu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Yitong Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Jingjing Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Ruijie Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|