1
|
Fernandez-Perez J, Senoo A, Caaveiro JMM, Nakakido M, de Vega S, Nakagawa I, Tsumoto K. Structural basis for the ligand promiscuity of the hydroxamate siderophore binding protein FtsB from Streptococcus pyogenes. Structure 2024:S0969-2126(24)00387-3. [PMID: 39395422 DOI: 10.1016/j.str.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Pathogenic bacteria must secure the uptake of nutritional metals such as iron for their growth, making their import systems attractive targets for the development of new antimicrobial modalities. In the pathogenic bacterium Streptococcus pyogenes, the iron uptake system FtsABCD transports iron encapsulated by siderophores of the hydroxamate class. However, the inability of S. pyogenes to produce these metabolites makes the biological and clinical relevance of this route unresolved. Herein, we demonstrated that the periplasmic binding protein FtsB recognizes not only the hydroxamate siderophore ferrichrome, as previously documented, but also ferrioxamine E (FOE), ferrioxamine B (FOB), and bisucaberin (BIS), each of them with high affinity (nM level). Up to seven aromatic residues in the binding pocket accommodate the variable backbones of the different siderophores through CH-π interactions, explaining ligand promiscuity. Collectively, our observations revealed how S. pyogenes exploits the diverse xenosiderophores produced by other microorganisms as iron sources to secure this precious nutrient.
Collapse
Affiliation(s)
- Jorge Fernandez-Perez
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akinobu Senoo
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jose M M Caaveiro
- Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Susana de Vega
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
2
|
Xu J, Ma S, Huang Y, Zhang Q, Huang L, Xu H, Suleiman IM, Li P, Wang Z, Xie J. Mycobacterium marinum MMAR_0267-regulated copper utilization facilitates bacterial escape from phagolysosome. Commun Biol 2024; 7:1180. [PMID: 39300168 DOI: 10.1038/s42003-024-06860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
The host limits Mycobacterium tuberculosis (Mtb) by enriching copper in high concentrations. This research investigates how Mtb escapes copper stress. The membrane protein encoded by Mtb Rv0102, when its homolog in M. smegmatis (MSMEG_4702) was knocked out, resulted in a fourfold decrease in intracellular copper levels and enhanced tolerance to elevated extracellular copper concentrations. Similarly, knockout mutants of its homolog in M. marinum (MMAR_0267) showed increased virulence in zebrafish and higher bacterial load within macrophages. In THP-1 cells infected with MMAR_0267 deletion mutants, the intracellular survival of these mutants increased, along with reduced THP-1 cell apoptosis. Deficiency in copper down-regulated the transcriptional level of the virulence factor CFP-10 in M. marinum, suppressed cytosolic signaling via the macrophage STING pathway, leading to decreased production of IFN-β and reduced cell apoptosis. In conclusion, these findings highlight the significant impact of copper on the survival and reproduction of mycobacteria, underscoring the importance of studying mycobacterial adaptation mechanisms in copper-rich environments.
Collapse
Affiliation(s)
- Junqi Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shaying Ma
- Chongqing Public Health Medical Center, Chongqing, China
| | - Yu Huang
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing, 400014, China
| | - Qiao Zhang
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing, 400014, China
| | - Lingxi Huang
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing, 400014, China
| | - Hongxiang Xu
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing, 400014, China
| | - Ismail Mohamed Suleiman
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing, 400014, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing, China.
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Jianping Xie
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
3
|
Zheng C, Zhai Y, Qiu J, Wang M, Xu Z, Chen X, Zhou X, Jiao X. ZntA maintains zinc and cadmium homeostasis and promotes oxidative stress resistance and virulence in Vibrio parahaemolyticus. Gut Microbes 2024; 16:2327377. [PMID: 38466137 PMCID: PMC10936601 DOI: 10.1080/19490976.2024.2327377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Although metals are essential for life, they are toxic to bacteria in excessive amounts. Therefore, the maintenance of metal homeostasis is critical for bacterial physiology and pathogenesis. Vibrio parahaemolyticus is a significant food-borne pathogen that mainly causes acute gastroenteritis in humans and acute hepatopancreatic necrosis disease in shrimp. Herein, we report that ZntA functions as a zinc (Zn) and cadmium (Cd) homeostasis mechanism and contributes to oxidative stress resistance and virulence in V. parahaemolyticus. zntA is remarkably induced by Zn, copper, cobalt, nickel (Ni), and Cd, while ZntA promotes V. parahaemolyticus growth under excess Zn/Ni and Cd conditions via maintaining Zn and Cd homeostasis, respectively. The growth of ΔzntA was inhibited under iron (Fe)-restricted conditions, and the inhibition was associated with Zn homeostasis disturbance. Ferrous iron supplementation improved the growth of ΔzntA under excess Zn, Ni or Cd conditions. The resistance of ΔzntA to H2O2-induced oxidative stress also decreased, and its virulence was attenuated in zebrafish models. Quantitative real-time PCR, mutagenesis, and β-galactosidase activity assays revealed that ZntR positively regulates zntA expression by binding to its promoter. Collectively, the ZntR-regulated ZntA is crucial for Zn and Cd homeostasis and contributes to oxidative stress resistance and virulence in V. parahaemolyticus.
Collapse
Affiliation(s)
- Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yimeng Zhai
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Mengxian Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Stewart L, Hong Y, Holmes IR, Firth SJ, Ahmed Y, Quinn J, Santos Y, Cobb SL, Jakubovics NS, Djoko KY. Salivary Antimicrobial Peptide Histatin-5 Does Not Display Zn(II)-Dependent or -Independent Activity against Streptococci. ACS Infect Dis 2023; 9:631-642. [PMID: 36826226 PMCID: PMC10012264 DOI: 10.1021/acsinfecdis.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Histatin-5 (Hst5) is a member of the histatin superfamily of cationic, His-rich, Zn(II)-binding peptides in human saliva. Hst5 displays antimicrobial activity against fungal and bacterial pathogens, often in a Zn(II)-dependent manner. In contrast, here we showed that under in vitro conditions that are characteristic of human saliva, Hst5 does not kill seven streptococcal species that normally colonize the human oral cavity and oropharynx. We further showed that Zn(II) does not influence this outcome. We then hypothesized that Hst5 exerts more subtle effects on streptococci by modulating Zn(II) availability. We initially proposed that Hst5 contributes to nutritional immunity by limiting nutrient Zn(II) availability and promoting bacterial Zn(II) starvation. By examining the interactions between Hst5 and Streptococcus pyogenes as a model Streptococcus species, we showed that Hst5 does not influence the expression of Zn(II) uptake genes. In addition, Hst5 did not suppress growth of a ΔadcAI mutant strain that is impaired in Zn(II) uptake. These observations establish that Hst5 does not promote Zn(II) starvation. Biochemical examination of purified peptides further confirmed that Hst5 binds Zn(II) with high micromolar affinities and does not compete with the AdcAI high-affinity Zn(II) uptake protein for binding nutrient Zn(II). Instead, we showed that Hst5 weakly limits the availability of excess Zn(II) and suppresses Zn(II) toxicity to a ΔczcD mutant strain that is impaired in Zn(II) efflux. Altogether, our findings led us to reconsider the function of Hst5 as a salivary antimicrobial agent and the role of Zn(II) in Hst5 function.
Collapse
Affiliation(s)
- Louisa
J. Stewart
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - YoungJin Hong
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Isabel R. Holmes
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Samantha J. Firth
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Yasmin Ahmed
- Biosciences
Institute, Newcastle University, Newcastle NE2 4HH, United Kingdom
| | - Janet Quinn
- Biosciences
Institute, Newcastle University, Newcastle NE2 4HH, United Kingdom
| | - Yazmin Santos
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L. Cobb
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | | | - Karrera Y. Djoko
- Department
of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Abdelbary MMH, Kuppe C, Michael SSY, Krüger T, Floege J, Conrads G. Impact of sucroferric oxyhydroxide on the oral and intestinal microbiome in hemodialysis patients. Sci Rep 2022; 12:9614. [PMID: 35689007 PMCID: PMC9187715 DOI: 10.1038/s41598-022-13552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hyperphosphatemia is a consequence of chronic kidney disease associated with mineral/bone impairment, increased cardiovascular events and mortality. Therapeutically, most dialysis patients have to take phosphate binders. Here, we investigated effects of the Fe(3+)-based phosphate binder sucroferric oxyhydroxide (SFOH) on the oral and gastrointestinal microbiome of 11 hemodialysis patients. Saliva, dental plaque and stool were collected at baseline, one and four weeks of SFOH intake and subjected to 16S rRNA gene (V3-V4 region) directed Illumina MiSeq-based analysis. Total Fe, Fe(2+) and Fe(3+) were determined in stool and saliva. Overall, the microbiome did not change significantly. However, some patient-, sample- and taxon-specific differences were noted, which allowed patients to be divided into those with a shift in their microbiome (6/11) and those without a shift (5/11). Total Fe and Fe(2+) were highest after one week of SFOH, particularly in patients who exhibited a shift in microbiome composition. Eight bacterial taxa showed significant unidirectional changes during treatment. In-depth microbiome analysis revealed that taxa that significantly benefited from iron plethora had no iron-binding siderophores or alternatives, which was in contrast to taxa that significantly declined under iron plethora. Patients with microbiome-shift were significantly younger and had higher serum phosphate concentrations. In conclusion, this study sheds light on the impact of iron on the microbiome of hemodialysis patients.
Collapse
Affiliation(s)
- Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital of Aachen, Pauwelsstr. 30, 52057, Aachen, Germany
| | - Christoph Kuppe
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - Sareh Said-Yekta Michael
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - Thilo Krüger
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
- DaVita Clinical Research GmbH, Geilenkirchen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital of Aachen, Pauwelsstr. 30, 52057, Aachen, Germany.
| |
Collapse
|
6
|
Zheng C, Qiu J, Zhao X, Yu S, Wang H, Wan M, Wei M, Jiao X. The AdcR-regulated AdcA and AdcAII contribute additively to zinc acquisition and virulence in Streptococcus suis. Vet Microbiol 2022; 269:109418. [PMID: 35430524 DOI: 10.1016/j.vetmic.2022.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Metals are necessary elements for bacteria. Typically, vertebrate hosts restrict invading bacterial pathogens from accessing metals. Therefore, bacteria have evolved high-affinity metal importers to acquire metals. Streptococcus suis is a major swine pathogen and an emerging zoonotic agent that endangers the swine industry and human health worldwide. Herein, we aimed to identify the zinc acquisition systems in S. suis and evaluate their roles in bacterial virulence. Bioinformatic analyses revealed that S. suis encodes homologues of AdcA and AdcAII, two well-characterised Zn-binding lipoproteins in certain streptococci. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that the expressions of adcA and adcAII were significantly upregulated in response to Zn limitation, with a higher expression level of adcAII than adcA. Gene deletion mutants and complementation strains were constructed; their growth characteristics under Zn-deficient and Zn-replete conditions indicated that AdcA and AdcAII have overlapping functionality in Zn acquisition. A mouse infection model was used to evaluate the roles of AdcA and AdcAII in S. suis virulence. Mice infected with the double mutant ΔadcAΔadcAII exhibited a significantly higher survival rate, decreased bacterial burden, and lower production of inflammatory cytokines compared to those infected with the wild type (WT) strain. Furthermore, ΔadcAΔadcAII showed reduced competitiveness in infection establishment compared with the WT strain. RNA sequencing, qRT-PCR, and electrophoretic mobility shift assays revealed that AdcR negatively regulates the expressions of adcA and adcAII. Collectively, our results demonstrated that AdcA and AdcAII, which are negatively regulated by AdcR, contribute additively to zinc acquisition and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoxian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Sijia Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hong Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengyan Wan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Menghani SV, Cutcliffe MP, Sanchez-Rosario Y, Pok C, Watson A, Neubert MJ, Ochoa K, Wu HJJ, Johnson MDL. N, N-Dimethyldithiocarbamate Elicits Pneumococcal Hypersensitivity to Copper and Macrophage-Mediated Clearance. Infect Immun 2022; 90:e0059721. [PMID: 35311543 PMCID: PMC9022595 DOI: 10.1128/iai.00597-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/12/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive, encapsulated bacterium that is a significant cause of disease burden in pediatric and elderly populations. The rise in unencapsulated disease-causing strains and antimicrobial resistance in S. pneumoniae has increased the need for developing new antimicrobial strategies. Recent work by our laboratory has identified N,N-dimethyldithiocarbamate (DMDC) as a copper-dependent antimicrobial against bacterial, fungal, and parasitic pathogens. As a bactericidal antibiotic against S. pneumoniae, DMDC's ability to work as a copper-dependent antibiotic and its ability to work in vivo warranted further investigation. Here, our group studied the mechanisms of action of DMDC under various medium and excess-metal conditions and investigated DMDC's interactions with the innate immune system in vitro and in vivo. Of note, we found that DMDC plus copper significantly increased the internal copper concentration, hydrogen peroxide stress, nitric oxide stress, and the in vitro macrophage killing efficiency and decreased capsule. Furthermore, we found that in vivo DMDC treatment increased the quantity of innate immune cells in the lung during infection. Taken together, this study provides mechanistic insights regarding DMDC's activity as an antibiotic at the host-pathogen interface.
Collapse
Affiliation(s)
- Sanjay V. Menghani
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Madeline P. Cutcliffe
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Yamil Sanchez-Rosario
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Chansorena Pok
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Alison Watson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Miranda J. Neubert
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Klariza Ochoa
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Hsin-Jung Joyce Wu
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Arizona Arthritis Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| |
Collapse
|
8
|
Francis JD, Guevara MA, Lu J, Madhi SA, Kwatra G, Aronoff DM, Manning SD, Gaddy JA. The antimicrobial activity of zinc against group B Streptococcus is strain-dependent across diverse sequence types, capsular serotypes, and invasive versus colonizing isolates. BMC Microbiol 2022; 22:23. [PMID: 35026981 PMCID: PMC8756620 DOI: 10.1186/s12866-021-02428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae or Group B Streptococcus (GBS) is an encapsulated gram-positive bacterial pathobiont that commonly colonizes the lower gastrointestinal tract and reproductive tract of human hosts. This bacterium can infect the gravid reproductive tract and cause invasive infections of pregnant patients and neonates. Upon colonizing the reproductive tract, the bacterial cell is presented with numerous nutritional challenges imposed by the host. One strategy employed by the host innate immune system is intoxication of bacterial invaders with certain transition metals such as zinc. METHODOLOGY Previous work has demonstrated that GBS must employ elegant strategies to circumnavigate zinc stress in order to survive in the vertebrate host. We assessed 30 strains of GBS from diverse isolation sources, capsular serotypes, and sequence types for susceptibility or resistance to zinc intoxication. RESULTS Invasive strains, such as those isolated from early onset disease manifestations of GBS infection were significantly less susceptible to zinc toxicity than colonizing strains isolated from rectovaginal swabs of pregnant patients. Additionally, capsular type III (cpsIII) strains and the ST-17 and ST-19 strains exhibited the greatest resilience to zinc stress, whereas ST-1 and ST-12 strains as well as those possessing capsular type Ib (cpsIb) were more sensitive to zinc intoxication. Thus, this study demonstrates that the transition metal zinc possesses antimicrobial properties against a wide range of GBS strains, with isolation source, capsular serotype, and sequence type contributing to susceptibility or resistance to zinc stress.
Collapse
Affiliation(s)
- Jamisha D Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Miriam A Guevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - David M Aronoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, A2200 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, U.S.A
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center Nashville, Nashville, TN, 37232, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, A2200 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, U.S.A..
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
9
|
Zheng C, Wei M, Qiu J, Jia M, Zhou X, Jiao X. TroR Negatively Regulates the TroABCD System and Is Required for Resistance to Metal Toxicity and Virulence in Streptococcus suis. Appl Environ Microbiol 2021; 87:e0137521. [PMID: 34378993 PMCID: PMC8478451 DOI: 10.1128/aem.01375-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that causes severe swine and human infections. Metals are essential nutrients for life; however, excess metals are toxic to bacteria. Therefore, maintenance of intracellular metal homeostasis is important for bacterial survival. Here, we characterize a DtxR family metalloregulator, TroR, in S. suis. TroR is located upstream of the troABCD operon, whose expression was found to be significantly downregulated in response to excess manganese (Mn). Deletion of troR resulted in reduced growth when S. suis was cultured in metal-replete medium supplemented with elevated concentrations of zinc (Zn), copper (Cu), or cobalt (Co). Mn supplementation could alleviate the growth defects of the ΔtroR mutant under Zn and Co excess conditions; however, it impaired the growth of the wild-type (WT) and complemented (CΔtroR) strains under Cu excess conditions. The growth of ΔtroR was also inhibited in metal-depleted medium supplemented with elevated concentrations of Mn. Moreover, the ΔtroR mutant accumulated increased levels of intracellular Mn and Co, rather than Zn and Cu. Deletion of troR in S. suis led to significant upregulation of the troABCD operon. Furthermore, troA expression in the WT strain was induced by ferrous iron [Fe(II)] and Co and repressed by Mn and Cu; the repression of troA was mediated by TroR. Finally, TroR is required for S. suis virulence in an intranasal mouse model. Together, these data suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis. IMPORTANCE Metals are essential nutrients for life; however, the accumulation of excess metals in cells can be toxic to bacteria. In the present study, we identified a metalloregulator, TroR, in Streptococcus suis, which is an emerging zoonotic pathogen. In contrast to the observations in other species that TroR homologs usually contribute to the maintenance of homeostasis of one or two metals, we demonstrated that TroR is required for resistance to the toxicity conferred by multiple metals in S. suis. We also found that deletion of troR resulted in significant upregulation of the troABCD operon, which has been demonstrated to be involved in manganese acquisition in S. suis. Moreover, we demonstrated that TroR is required for the virulence of S. suis in an intranasal mouse model. Collectively, these results suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, the Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
van Beek LF, Surmann K, van den Berg van Saparoea HB, Houben D, Jong WSP, Hentschker C, Ederveen THA, Mitsi E, Ferreira DM, van Opzeeland F, van der Gaast-de Jongh CE, Joosten I, Völker U, Schmidt F, Luirink J, Diavatopoulos DA, de Jonge MI. Exploring metal availability in the natural niche of Streptococcus pneumoniae to discover potential vaccine antigens. Virulence 2021; 11:1310-1328. [PMID: 33017224 PMCID: PMC7550026 DOI: 10.1080/21505594.2020.1825908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nasopharyngeal colonization by Streptococcus pneumoniae is a prerequisite for pneumococcal transmission and disease. Current vaccines protect only against disease and colonization caused by a limited number of serotypes, consequently allowing serotype replacement and transmission. Therefore, the development of a broadly protective vaccine against colonization, transmission and disease is desired but requires a better understanding of pneumococcal adaptation to its natural niche. Hence, we measured the levels of free and protein-bound transition metals in human nasal fluid, to determine the effect of metal concentrations on the growth and proteome of S. pneumoniae. Pneumococci cultured in medium containing metal levels comparable to nasal fluid showed a highly distinct proteomic profile compared to standard culture conditions, including the increased abundance of nine conserved, putative surface-exposed proteins. AliA, an oligopeptide binding protein, was identified as the strongest protective antigen, demonstrated by the significantly reduced bacterial load in a murine colonization and a lethal mouse pneumonia model, highlighting its potential as vaccine antigen.
Collapse
Affiliation(s)
- Lucille F van Beek
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany
| | | | | | | | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Elena Mitsi
- Liverpool School of Tropical medicine, Respiratory Infection Group , Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Daniela M Ferreira
- Liverpool School of Tropical medicine, Respiratory Infection Group , Liverpool, United Kingdom of Great Britain and Northern Ireland
| | - Fred van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Christa E van der Gaast-de Jongh
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Irma Joosten
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald , Greifswald, Germany.,Proteomics Core, Weill Cornell Medicine-Qatar , Doha, Qatar
| | - Joen Luirink
- Abera Bioscience AB , Solna, Sweden.,Department of Molecular Microbiology, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases , Nijmegen, The Netherlands
| |
Collapse
|
11
|
Cellular Mn/Zn Ratio Influences Phosphoglucomutase Activity and Capsule Production in Streptococcus pneumoniae D39. J Bacteriol 2021; 203:e0060220. [PMID: 33875543 PMCID: PMC8316032 DOI: 10.1128/jb.00602-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Capsular polysaccharide (CPS) is a major virulence determinant for many human-pathogenic bacteria. Although the essential functional roles for CPS in bacterial virulence have been established, knowledge of how CPS production is regulated remains limited. Streptococcus pneumoniae (pneumococcus) CPS expression levels and overall thickness change in response to available oxygen and carbohydrate. These nutrients in addition to transition metal ions can vary significantly between host environmental niches and infection stage. Since the pneumococcus must modulate CPS expression among various host niches during disease progression, we examined the impact of the nutritional transition metal availability of manganese (Mn) and zinc (Zn) on CPS production. We demonstrate that increased Mn/Zn ratios increase CPS production via Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway in a transcription-independent manner. Furthermore, we find that the downstream CPS protein CpsB, an Mn-dependent phosphatase, does not promote aberrant dephosphorylation of its target capsule-tyrosine kinase CpsD during Mn stress. Together, these data reveal a direct role for cellular Mn/Zn ratios in the regulation of CPS biosynthesis via the direct activation of Pgm. We propose a multilayer mechanism used by the pneumococcus in regulating CPS levels across various host niches. IMPORTANCE Evolving evidence strongly indicates that maintenance of metal homeostasis is essential for establishing colonization and continued growth of bacterial pathogens in the vertebrate host. In this study, we demonstrate the impact of cellular manganese/zinc (Mn/Zn) ratios on bacterial capsular polysaccharide (CPS) production, an important virulence determinant of many human-pathogenic bacteria, including Streptococcus pneumoniae. We show that higher Mn/Zn ratios increase CPS production via the Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway. The findings provide a direct role for Mn/Zn homeostasis in the regulation of CPS expression levels and further support the ability of metal cations to act as important cellular signaling mediators in bacteria.
Collapse
|
12
|
Zhong Y, Igalavithana AD, Zhang M, Li X, Rinklebe J, Hou D, Tack FMG, Alessi DS, Tsang DCW, Ok YS. Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1790-1808. [PMID: 32789328 DOI: 10.1039/d0em00057d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biochar is an effective amendment for trace metal/metalloid (TMs) immobilization in soils. The capacity of biochar to immobilize TMs in soil can be positively or negatively altered due to the changes in the surface and structural chemistry of biochar after soil application. Biochar surfaces are oxidized in soils and induce structural changes through physical and biochemical weathering processes. These changes in the biochar surface and structural chemistry generally increase its ability to immobilize TMs, although the generation of dissolved black carbon during weathering may increase TM mobility. Moreover, biochar modification can improve its capacity to immobilize TMs in soils. Over the short-term, engineered/modified biochar exhibited increased TM immobilization capacity compared with unmodified biochar. In the long-term, no large distinctions in such capacities were seen between modified and unmodified biochars due to weathering. In addition, artificial weathering at laboratories also revealed increased TM immobilization in soils. Continued collection of mechanistic evidence will help evaluate the effect of natural and artificial weathering, and biochar modification on the long-term TM immobilization capacity of biochar with respect to feedstock and synthesis conditions in contaminated soils.
Collapse
Affiliation(s)
- Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea.
| | - Ming Zhang
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea. and Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| | - Xiaodian Li
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea. and Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany and Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Korea
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Korea. and Department of Environmental Engineering, China Jiliang University, No. 258 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
13
|
Akhter F, Womack E, Vidal JE, Le Breton Y, McIver KS, Pawar S, Eichenbaum Z. Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen's global transcriptome. Sci Rep 2020; 10:15202. [PMID: 32938947 PMCID: PMC7494912 DOI: 10.1038/s41598-020-71910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae (Spn) must acquire iron from the host to establish infection. We examined the impact of hemoglobin, the largest iron reservoir in the body, on pneumococcal physiology. Supplementation with hemoglobin allowed Spn to resume growth in an iron-deplete medium. Pneumococcal growth with hemoglobin was unusually robust, exhibiting a prolonged logarithmic growth, higher biomass, and extended viability in both iron-deplete and standard medium. We observed the hemoglobin-dependent response in multiple serotypes, but not with other host proteins, free iron, or heme. Remarkably, hemoglobin induced a sizable transcriptome remodeling, effecting virulence and metabolism in particular genes facilitating host glycoconjugates use. Accordingly, Spn was more adapted to grow on the human α − 1 acid glycoprotein as a sugar source with hemoglobin. A mutant in the hemoglobin/heme-binding protein Spbhp-37 was impaired for growth on heme and hemoglobin iron. The mutant exhibited reduced growth and iron content when grown in THYB and hemoglobin. In summary, the data show that hemoglobin is highly beneficial for Spn cultivation in vitro and suggest that hemoglobin might drive the pathogen adaptation in vivo. The hemoglobin receptor, Spbhp-37, plays a role in mediating the positive influence of hemoglobin. These novel findings provide intriguing insights into pneumococcal interactions with its obligate human host.
Collapse
Affiliation(s)
- Fahmina Akhter
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, MD, USA.,Wound Infections Department, Bacterial Diseases Branch, The Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, MD, USA
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | |
Collapse
|
14
|
Jia M, Wei M, Zhang Y, Zheng C. Transcriptomic Analysis of Streptococcus suis in Response to Ferrous Iron and Cobalt Toxicity. Genes (Basel) 2020; 11:genes11091035. [PMID: 32887434 PMCID: PMC7563783 DOI: 10.3390/genes11091035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing serious infections in swine and humans. Although metals are essential for life, excess amounts of metals are toxic to bacteria. Transcriptome-level data of the mechanisms for resistance to metal toxicity in S. suis are available for no metals other than zinc. Herein, we explored the transcriptome-level changes in S. suis in response to ferrous iron and cobalt toxicity by RNA sequencing. Many genes were differentially expressed in the presence of excess ferrous iron and cobalt. Most genes in response to cobalt toxicity showed the same expression trends as those in response to ferrous iron toxicity. qRT-PCR analysis of the selected genes confirmed the accuracy of RNA sequencing results. Bioinformatic analysis of the differentially expressed genes indicated that ferrous iron and cobalt have similar effects on the cellular processes of S. suis. Ferrous iron treatment resulted in down-regulation of several oxidative stress tolerance-related genes and up-regulation of the genes in an amino acid ABC transporter operon. Expression of several genes in the arginine deiminase system was down-regulated after ferrous iron and cobalt treatment. Collectively, our results suggested that S. suis alters the expression of multiple genes to respond to ferrous iron and cobalt toxicity.
Collapse
Affiliation(s)
- Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (M.J.); (M.W.); (Y.Z.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-1520-527-9658
| |
Collapse
|
15
|
The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathog 2020; 16:e1008761. [PMID: 32790758 PMCID: PMC7447016 DOI: 10.1371/journal.ppat.1008761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.
Collapse
|
16
|
Deng X, Tian H, Yang R, Han Y, Wei K, Zheng C, Liu Z, Chen T. Oral Probiotics Alleviate Intestinal Dysbacteriosis for People Receiving Bowel Preparation. Front Med (Lausanne) 2020; 7:73. [PMID: 32181256 PMCID: PMC7059130 DOI: 10.3389/fmed.2020.00073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Bowel preparation is necessary for successful colonoscopy, while it can seriously affect intestinal microbial composition and damage the intestinal mucosal barriers in humans. Methods: To figure out whether probiotics can sustain intestinal homeostasis and guard people's health, the probiotic drug of Bifidobacterium Tetragenous viable Bacteria Tablets (P group, n = 16) or placebo (C group, n = 16) was used for volunteers receiving bowel preparation, and high-throughput sequencing method was applied to monitor their intestinal microbial changes. Results: The present results suggested that bowel preparation obviously reduced the intestinal microbial diversity, while taking probiotics significantly restored it to normal level. In addition, probiotics sharply reduced the abundance of pathogenic Proteobacteria, and obviously lowered the ratio of Firmicutes/Bacteroidetes compared with control group at phylum level (P < 0.05). And probiotics markedly decreased the abundance of pathogenic Acinetobacter and Streptococcus, while greatly enriched the relative abundance of beneficial bacteria Bacteroides, Roseburia, Faecalibacterium, and Parabacteroides at genus level (P < 0.05). Conclusion: Probiotic drugs, e.g., Bifidobacterium Tetragenous viable Bacteria Tablets, can be used to restore intestinal dysbacteriosis caused by bowel preparation, and reduce side effects during colonoscopy.
Collapse
Affiliation(s)
- Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huakai Tian
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Han
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Kehong Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Zheng C, Jia M, Gao M, Lu T, Li L, Zhou P. PmtA functions as a ferrous iron and cobalt efflux pump in Streptococcus suis. Emerg Microbes Infect 2020; 8:1254-1264. [PMID: 31469035 PMCID: PMC7012047 DOI: 10.1080/22221751.2019.1660233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metals are nutrients essential for life. However, an excess of metals can be toxic to cells, and host-imposed metal toxicity is an important mechanism for controlling bacterial infection. Accordingly, bacteria have evolved metal efflux systems to maintain metal homeostasis. Here, we established that PmtA functions as a ferrous iron [Fe(II)] and cobalt [Co(II)] efflux pump in Streptococcus suis, an emerging zoonotic pathogen responsible for severe infections in both humans and pigs. pmtA expression is induced by Fe(II), Co(II), and nickel [Ni(II)], whereas PmtA protects S. suis against Fe(II) and ferric iron [Fe(III)]-induced bactericidal effect, as well as Co(II) and zinc [Zn(II)]-induced bacteriostatic effect. In the presence of elevated concentrations of Fe(II) and Co(II), ΔpmtA accumulates high levels of intracellular iron and cobalt, respectively. ΔpmtA is also more sensitive to streptonigrin, a Fe(II)-activated antibiotic. Furthermore, growth defects of ΔpmtA under Fe(II) or Co(II) excess conditions can be alleviated by manganese [Mn(II)] supplementation. Finally, PmtA plays a role in tolerance to H2O2-induced oxidative stress, yet is not involved in the virulence of S. suis in mice. Together, these data demonstrate that S. suis PmtA acts as a Fe(II) and Co(II) efflux pump, and contributes to oxidative stress resistance.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Miaomiao Gao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Tianyu Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Lingzhi Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| |
Collapse
|
18
|
Yang XY, Li N, Xu JY, Sun X, He QY. Lipoprotein SPD_1609 of Streptococcus pneumoniae Promotes Adherence and Invasion to Epithelial Cells Contributing to Bacterial Virulence. Front Microbiol 2019; 10:1769. [PMID: 31417540 PMCID: PMC6682666 DOI: 10.3389/fmicb.2019.01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023] Open
Abstract
In most bacteria, iron plays a vital role in pathogenesis processes. To support survival and infection, Streptococcus pneumoniae has evolved three ABC transporters, PiaABC, PiuABC, and PitABC. Moreover, indirect evidence supports that operon 804 may be a novel ABC transporter in S. pneumoniae. We have recently described the identification of lipoprotein SPD_1609 in operon 804; however, whether the SPD_1609 protein affects the virulence of S. pneumoniae has not yet been studied. In the present work, alignment analysis showed that lipoprotein SPD_1609 is conserved in a variety of gram-positive bacteria, and deletion of the spd_1609 gene led to a reduction in adherence and invasion of S. pneumoniae to host cells. RT-qPCR assays indicated that deletion of the spd_1609 gene resulted in decreased expression of genes involved in colonization. Furthermore, decreased virulence in a mouse bacteremia infection model caused by the loss of the lipoprotein encoded by spd_1609 was also demonstrated. Overall, these data provide insights into the functional role of lipoprotein SPD_1609 in pneumococcal pathogenesis, suggesting its possibility to be developed as a novel S. pneumoniae vaccine candidate.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China.,Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing-Yu Xu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Rowe HM, Karlsson E, Echlin H, Chang TC, Wang L, van Opijnen T, Pounds SB, Schultz-Cherry S, Rosch JW. Bacterial Factors Required for Transmission of Streptococcus pneumoniae in Mammalian Hosts. Cell Host Microbe 2019; 25:884-891.e6. [PMID: 31126758 DOI: 10.1016/j.chom.2019.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/18/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
The capacity of Streptococcus pneumoniae to successfully transmit and colonize new human hosts is a critical aspect of pneumococcal population biology and a prerequisite for invasive disease. However, the bacterial mechanisms underlying this process remain largely unknown. To identify bacterial factors required for transmission, we conducted a high-throughput genetic screen with a transposon sequencing (Tn-seq) library of a pneumococcal strain in a ferret transmission model. Key players in both metabolism and transcriptional regulation were identified as required for efficient bacterial transmission. Targeted deletion of the putative C3-degrading protease CppA, iron transporter PiaA, or competence regulatory histidine kinase ComD significantly decreased transmissibility in a mouse model, further validating the screen. Maternal vaccination with recombinant surface-exposed PiaA and CppA alone or in combination blocked transmission in offspring and were more effective than capsule-based vaccines. These data underscore the possibility of targeting pneumococcal transmission as a means of eliminating invasive disease in the population.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik Karlsson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Haley Echlin
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Wang
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stanley B Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Group A Streptococcus co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochem J 2019; 476:595-611. [PMID: 30670571 DOI: 10.1042/bcj20180902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.
Collapse
|
21
|
Dirhodium (II) complex interferes with iron-transport system to exert antibacterial action against Streptococcus pneumoniae. J Proteomics 2018; 194:160-167. [PMID: 30521977 DOI: 10.1016/j.jprot.2018.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 01/03/2023]
Abstract
Drug resistance in bacteria is becoming a significant threat to global public health, and the development of novel and efficient antibacterial compounds is urgently needed. Recently, rhodium complexes have attracted attention as antimicrobial agents, yet their antibacterial mechanism remains unknown. In this study, we observed that the dirhodium (II) complex Rh2Ac4 inhibited Streptococcus. pneumoniae growth without significant cytotoxic side-effects on host cells in vitro. We subsequently investigated the antibacterial mechanism of Rh2Ac4 using iTRAQ-based proteomics combined with cellular and biochemical assays. Bioinformatics analysis on the proteomic alterations demonstrated that six molecular functional groups, including metal ion binding and twelve metabolic pathways, were significantly affected after treatment with Rh2Ac4. The interaction network analysis of metal ion binding proteins suggested that Rh2Ac4 decreased the protein expression levels of SPD_1652, SPD_1590 and Gap, which are associated with haem uptake/metabolism. Cellular and biochemical assays further confirmed that Rh2Ac4 could be taken up by bacteria via the PiuABCD haem-uptake system. The structurally similar Rh complex may compete with Fe-haem to decrease Fe-uptake via the PiuABCD system, disrupting iron metabolism to exert its antibacterial activity against S. pneumoniae. These data indicate that Rh2Ac4 is a promising new drug for the treatment of S. pneumoniae infections.
Collapse
|
22
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
23
|
Miao X, He J, Zhang L, Zhao X, Ge R, He QY, Sun X. A Novel Iron Transporter SPD_1590 in Streptococcus pneumoniae Contributing to Bacterial Virulence Properties. Front Microbiol 2018; 9:1624. [PMID: 30079056 PMCID: PMC6062600 DOI: 10.3389/fmicb.2018.01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae, a Gram-positive human pathogen, has evolved three main transporters for iron acquisition from the host: PiaABC, PiuABC, and PitABC. Our previous study had shown that the mRNA and protein levels of SPD_1590 are significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, suggesting that SPD_1590 might be a novel iron transporter in S. pneumoniae. In the present study, using spd1590-knockout, -complemented, and -overexpressing strains and the purified SPD_1590 protein, we show that SPD_1590 can bind hemin, probably supplementing the function of PiuABC, to provide the iron necessary for the bacterium. Furthermore, the results of iTRAQ quantitative proteomics and cell-infection studies demonstrate that, similarly to other metal-ion uptake proteins, SPD_1590 is important for bacterial virulence properties. Overall, these results provide a better understanding of the biology of this clinically important bacterium.
Collapse
Affiliation(s)
- Xinyu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiaojiao He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Cao K, Lai F, Zhao XL, Wei QX, Miao XY, Ge R, He QY, Sun X. The mechanism of iron-compensation for manganese deficiency of Streptococcus pneumoniae. J Proteomics 2018; 184:62-70. [DOI: 10.1016/j.jprot.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
|
25
|
Disruption of a Novel Iron Transport System Reverses Oxidative Stress Phenotypes of a dpr Mutant Strain of Streptococcus mutans. J Bacteriol 2018; 200:JB.00062-18. [PMID: 29735760 DOI: 10.1128/jb.00062-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 01/30/2023] Open
Abstract
The Dps-like peroxide resistance protein (Dpr) is essential for H2O2 stress tolerance and aerobic growth of the oral pathogen Streptococcus mutans Dpr accumulates during oxidative stress, protecting the cell by sequestering iron ions and thereby preventing the generation of toxic hydroxyl radicals that result from the interaction of iron with H2O2 Previously, we reported that the SpxA1 and SpxA2 regulators positively regulate expression of dpr in S. mutans Using an antibody raised against S. mutans Dpr, we confirmed at the protein level the central and cooperative nature of SpxA1 and SpxA2 regulation in Dpr production. During phenotypic characterization of the S. mutans Δdpr strain, we observed the appearance of distinct colony variants, which sometimes lost the oxidative stress sensitivity typical of Δdpr strains. Whole-genome sequencing of these phenotypically distinct Δdpr isolates revealed that a putative iron transporter operon, smu995-smu998, was a genomic hot spot with multiple single nucleotide polymorphisms identified within the different isolates. Deletion of smu995 or the entire smu995-smu998 operon in the Δdpr background strain completely reversed the oxidative stress-sensitive phenotypes associated with dpr inactivation. Conversely, inactivation of genes encoding the ferrous iron transport system FeoABC did not alleviate phenotypes of the Δdpr strain. Preliminary characterization of strains lacking smu995-smu998, feoABC, and the iron/manganese transporter gene sloABC revealed the interactive nature of these three systems in iron transport but also indicated that there may be additional iron uptake systems in S. mutansIMPORTANCE The dental caries-associated pathogen Streptococcus mutans routinely encounters oxidative stress within the human plaque biofilm. Previous studies revealed that the iron-binding protein Dpr confers protection toward oxidative stress by limiting free iron availability, which is associated with the generation of toxic hydroxyl radicals. Here, we report the identification of spontaneously occurring mutations within Δdpr strains. Several of those mutations were mapped to the operon smu995-smu998, revealing a previously uncharacterized system that appears to be important in iron acquisition. Disruption of the smu995-smu998 operon resulted in reversion of the stress-sensitive phenotype typical of a Δdpr strain. Our data suggest that the Smu995-Smu998 system works along with other known metal transport systems of S. mutans, i.e., FeoABC and SloABC, to coordinate iron uptake.
Collapse
|