1
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Zheng Y, Young ND, Song J, Gasser RB. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Int J Mol Sci 2023; 24:12320. [PMID: 37569696 PMCID: PMC10418638 DOI: 10.3390/ijms241512320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.
Collapse
Affiliation(s)
- Yuanting Zheng
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Neil D. Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
3
|
Taki AC, Wang T, Nguyen NN, Ang CS, Leeming MG, Nie S, Byrne JJ, Young ND, Zheng Y, Ma G, Korhonen PK, Koehler AV, Williamson NA, Hofmann A, Chang BCH, Häberli C, Keiser J, Jabbar A, Sleebs BE, Gasser RB. Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868. Front Pharmacol 2022; 13:1014804. [PMID: 36313370 PMCID: PMC9616048 DOI: 10.3389/fphar.2022.1014804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber’s pole worm, and in other socioeconomically important parasitic nematodes. The “hit-to-target” workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Nghi N. Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G. Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas A. Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Bill C. H. Chang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Cécile Häberli
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Brad E. Sleebs, ; Robin B. Gasser,
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Brad E. Sleebs, ; Robin B. Gasser,
| |
Collapse
|
4
|
Untargeted Multimodal Metabolomics Investigation of the Haemonchus contortus Exsheathment Secretome. Cells 2022; 11:cells11162525. [PMID: 36010603 PMCID: PMC9406637 DOI: 10.3390/cells11162525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 °C) was developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic nematodes, Haemonchus contortus (barber‘s pole worm). This study reports the use of multimodal untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva (iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines, as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractability of parasitic nematodes for characterizing small molecule host–parasite interactions related to pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.
Collapse
|
5
|
Wang T, Nie S, Reid GE, Gasser RB. Helminth lipidomics: Technical aspects and future prospects. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100018. [PMID: 35284853 PMCID: PMC8906070 DOI: 10.1016/j.crpvbd.2021.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/03/2022]
Abstract
Lipidomics is a relatively recent molecular research field, and explores lipids (fats) and their biology using advanced mass spectrometry technologies. Although this field has expanded significantly in biomedical and biotechnological disciplines, it is still in its infancy in molecular parasitology. Our goal here is to review and discuss technical aspects of MS-based lipidomics and its recent applications to parasitic worms, as well as challenges and future directions for worm lipid research. In a multi-omic paradigm, we expect that the exploration of lipidomic data for parasitic worms will yield important insights into lipid-associated biological pathways and processes, including the regulation of essential signalling pathways, parasite invasion, establishment, adaptation and development. Lipids are involved in critical biological functions in parasitic worms. Lipidomics is an emerging research field in molecular helminthology. This article covers technological advances and applications to parasitic worms. It also discusses challenges and future directions for lipidomic research.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
7
|
Young ND, Stroehlein AJ, Wang T, Korhonen PK, Mentink-Kane M, Stothard JR, Rollinson D, Gasser RB. Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium. Nat Commun 2022; 13:977. [PMID: 35190553 PMCID: PMC8861042 DOI: 10.1038/s41467-022-28634-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.
Collapse
Affiliation(s)
- Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute (BRI), Rockville, MD, USA
| | - J Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, London, UK
- London Centre for Neglected Tropical Disease Research, London, UK
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Korhonen PK, Shaban B, Faux NG, Kinkar L, Chang BCH, Wang D, Yang B, Young ND, Gasser RB. 'Escalibur' - a practical pipeline for the de novo-analysis of nucleotide variation in non-model eukaryotes. Mol Ecol Resour 2022; 22:2120-2126. [PMID: 35182034 PMCID: PMC9314989 DOI: 10.1111/1755-0998.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/10/2022]
Abstract
The revolution in genomics has enabled large‐scale population genetic investigations of a wide range of organisms, but there has been a relatively limited focus on improving analytical pipelines. To efficiently analyse large data sets, highly integrated and automated software pipelines, which are easy to use, efficient, reliable, reproducible and run in multiple computational environments, are required. A number of software workflows have been developed to handle and process such data sets for population genetic analyses, but effective, specialized pipelines for genetic and statistical analyses of nonmodel organisms are lacking. For most species, resources for variomes (sets of genetic variations found in populations of species) are not available, and/or genome assemblies are often incomplete and fragmented, complicating the selection of the most suitable reference genome when multiple assemblies are available. Additionally, the biological samples used often contain extraneous DNA from sources other than the species under investigation (e.g., microbial contamination), which needs to be removed prior to genetic analyses. For these reasons, we established a new pipeline, called Escalibur, which includes: functionalities, such as data trimming and mapping; selection of a suitable reference genome; removal of contaminating read data; recalibration of base calls; and variant‐calling. Escalibur uses a proven gatk variant caller and workflow description language (WDL), and is, therefore, a highly efficient and scalable pipeline for the genome‐wide identification of nucleotide variation in eukaryotes. This pipeline is available at https://gitlab.unimelb.edu.au/bioscience/escalibur (version 0.3‐beta) and is essentially applicable to any prokaryote or eukaryote.
Collapse
Affiliation(s)
- Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, 3010, Victoria, Australia
| | - Babak Shaban
- Melbourne Data Analytics Platform (MDAP), The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Noel G Faux
- Melbourne Data Analytics Platform (MDAP), The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, 3010, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, 3010, Victoria, Australia
| | - Daxi Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, 3010, Victoria, Australia.,BGI-Shenzhen, Shenzhen, China
| | - Bicheng Yang
- BGI Australia, Oceania, BGI Group, CBCRB Building, Herston Road, Herston, Queensland, 4006, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, 3010, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, 3010, Victoria, Australia
| |
Collapse
|
9
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Excretory/secretory proteins of adult Toxocara canis induce changes in the expression of proteins involved in the NOD1-RIP2-NF-κB pathway and modulate cytokine production in mouse macrophages. Exp Parasitol 2021; 229:108152. [PMID: 34419413 DOI: 10.1016/j.exppara.2021.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/16/2023]
Abstract
Dog roundworm (Toxocara canis) is the major causative agent of toxocarosis, a parasitic disease of both veterinary and medical importance. Knowledge gaps in fundamental and applied aspects hinder the control of this important zoonotic disease. To have a better understanding of Toxocara infection and host immune responses, mouse macrophages were exposed to excretory/secretory (ES) proteins released by adult worms of T. canis in vitro. The messenger RNA transcription and protein expression of nucleotide-binding oligomerization domain-containing protein 1 (NOD1), receptor interacting protein 2 (RIP2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in macrophages were analysed using quantitative real-time PCR (qRT-PCR) and Western blot. The levels of tumour necrosis factor alpha (TNF-ɑ), interleukin-1 beta (IL-1β) and IL-6 released by the stimulated macrophages were analysed using enzyme-linked immunosorbent assay. It was found that 20 μg/mL ES proteins of adult T. canis induced the expression of NOD1, RIP2 and NF-κB in mouse macrophages at both transcriptional and translational levels after 9 h of incubation in vitro. Incubation with 20 μg/mL ES proteins also modulated the production of pro-inflammatory cytokines TNF-ɑ, IL-1β and IL-6 by the macrophages. Taken together, ES proteins of adult T. canis appeared to be able to affect the macrophage NOD1-RIP2-NF-κB signalling pathway, which might play a role in regulating the production of proinflammatory cytokines. Further investigation of these aspects should lead to a better understanding of immune recognition of and modulation by Toxocara canis in host animals.
Collapse
|
11
|
Wang T, Gasser RB. Prospects of Using High-Throughput Proteomics to Underpin the Discovery of Animal Host-Nematode Interactions. Pathogens 2021; 10:825. [PMID: 34209223 PMCID: PMC8308620 DOI: 10.3390/pathogens10070825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023] Open
Abstract
Parasitic nematodes impose a significant public health burden, and cause major economic losses to agriculture worldwide. Due to the widespread of anthelmintic resistance and lack of effective vaccines for most nematode species, there is an urgent need to discover novel therapeutic and vaccine targets, informed through an understanding of host-parasite interactions. Proteomics, underpinned by genomics, enables the global characterisation proteins expressed in a particular cell type, tissue and organism, and provides a key to insights at the host-parasite interface using advanced high-throughput mass spectrometry-based proteomic technologies. Here, we (i) review current mass-spectrometry-based proteomic methods, with an emphasis on a high-throughput 'bottom-up' approach; (ii) summarise recent progress in the proteomics of parasitic nematodes of animals, with a focus on molecules inferred to be involved in host-parasite interactions; and (iii) discuss future research directions that could enhance our knowledge and understanding of the molecular interplay between nematodes and host animals, in order to work toward new, improved methods for the treatment, diagnosis and control of nematodiases.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
12
|
Taki AC, Byrne JJ, Wang T, Sleebs BE, Nguyen N, Hall RS, Korhonen PK, Chang BC, Jackson P, Jabbar A, Gasser RB. High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus. Pharmaceuticals (Basel) 2021; 14:ph14070616. [PMID: 34206910 PMCID: PMC8308562 DOI: 10.3390/ph14070616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber’s pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021–2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Paul Jackson
- Johnson & Johnson, Global Public Health, Janssen Research and Development, San Diego, CA 92121, USA;
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Correspondence:
| |
Collapse
|
13
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Zheng Z, Chen J, Ma G, Satoskar AR, Li J. Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasit Vectors 2020; 13:510. [PMID: 33046138 PMCID: PMC7552375 DOI: 10.1186/s13071-020-04397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Emerging drug resistance of Leishmania species poses threaten to the effective control and elimination programme of this neglected tropical disease. Methods In this work, we conducted drug-resistance testing, whole genome resequencing and proteome profiling for a recently reported clinical isolate with supposed drug resistance (HCZ), and two reference sensitive strains (DD8 and 9044) of Leishmania donovani, to explore molecular mechanisms underlying drug resistance in this parasite. Results With reference to DD8 and 9044 strains, HCZ isolate showed higher-level virulence and clear resistance to antimonials in promastigote culture, infected macrophages and animal experiment. Pairwise genomic comparisons revealed genetic variations (86 copy number variations, 271 frameshift mutations in protein-coding genes and two site mutations in non-coding genes) in HCZ isolate that were absent from the reference sensitive strains. Proteomic analysis indicated different protein expression between HCZ isolate and reference strains, including 69 exclusively detected proteins and 82 consistently down-/upregulated molecules in the HCZ isolate. Integrative analysis showed linkage of 12 genomic variations (gene duplication, insertion and deletion) and their protein expression changes in HCZ isolate, which might be associated with pathogenic and antimony-resistant phenotype. Functional annotation analyses further indicated that molecules involved in nucleotide-binding, fatty acid metabolism, oxidation-reduction and transport might play a role in host-parasite interaction and drug-resistance. Conclusions This comprehensive integrative work provided novel insights into the genetic basis underlying virulence and resistance, suggesting new aspects to be investigated for a better intervention against L. donovani and associated diseases.![]()
Collapse
Affiliation(s)
- Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus, USA.,Department of Microbiology, Ohio State University, Columbus, USA
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Ma G, Gasser RB, Wang T, Korhonen PK, Young ND. Toward integrative 'omics of the barber's pole worm and related parasitic nematodes. INFECTION GENETICS AND EVOLUTION 2020; 85:104500. [PMID: 32795511 DOI: 10.1016/j.meegid.2020.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Advances in nucleic acid sequencing, mass spectrometry and computational biology have facilitated the identification, annotation and analysis of genes, transcripts, proteins and metabolites in model nematodes (Caenorhabditis elegans and Pristionchus pacificus) and socioeconomically important parasitic nematodes (Clades I, III, IV and V). Significant progress has been made in genomics and transcriptomics as well as in the proteomics and lipidomics of Haemonchus contortus (the barber's pole worm) - one of the most pathogenic representatives of the order Strongylida. Here, we review salient aspects of genomics, transcriptomics, proteomics, lipidomics, glycomics and functional genomics, and discuss the rise of integrative 'omics of this economically important parasite. Although our knowledge of the molecular biology, genetics and biochemistry of H. contortus and related species has progressed significantly, much remains to be explored, particularly in areas such as drug resistance, unique/unknown genes, host-parasite interactions, parasitism and the pathogenesis of disease, by integrating the use of multiple 'omics methods. This approach should lead to a better understanding of H. contortus and its relatives at a 'systems biology' level, and should assist in developing new interventions against these parasites.
Collapse
Affiliation(s)
- Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|