1
|
Pütz E, Tutzschky I, Frerichs H, Tremel W. In situ generation of H 2O 2 using CaO 2 as peroxide storage depot for haloperoxidase mimicry with surface-tailored Bi-doped mesoporous CeO 2 nanozymes. NANOSCALE 2023; 15:5209-5218. [PMID: 36285584 DOI: 10.1039/d2nr02575b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing the size, morphology and interfacial charge of catalyst particles at the nanometer scale can enhance their performance. We demonstrate this with nanoceria which is a functional mimic of haloperoxidases, a group of enzymes that halogenates organic substrates in the presence of hydrogen peroxide. These reactions in aqueous solution require the presence of H2O2. We demonstrate in situ generation of H2O2 from a CaO2 reservoir in polyether sulfone (PES) and poly(vinylidene fluoride) (PVDF) polymer beads, which circumvents the external addition of H2O2 and expands the scope of applications for haloperoxidase reactions. The catalytic activity of nanoceria was enhanced significantly by Bi3+ substitution. Bi-doped mesoporous ceria nanoparticles with tunable surface properties were prepared by changing the reaction time. Increasing reaction time increases the surface area SBET of the mesoporous Bi0.2Ce0.8O1.9 nanoparticles and the Ce3+/Ce4+ ratio, which is associated with the ζ-potential. In this way, the catalytic activity of nanoceria could be tuned in a straightforward manner. H2O2 required for the reaction was released steadily over a long period of time from a CaO2 storage depot incorporated in polyether sulfone (PES) and poly(vinylidene fluoride) (PVDF) beads together with Bi0.2Ce0.8O1.9 particles, which may be used as precision fillers and templates for biological applications. The spheres are prepared as a dry powder with no surface functionalization or coatings. They are inert, chemically stable, and safe for handling. The feasibility of this approach was demonstrated using a haloperoxidase assay.
Collapse
Affiliation(s)
- Eva Pütz
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Ina Tutzschky
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Hajo Frerichs
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Wolfgang Tremel
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
2
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
3
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Zhu P, Li D, Yang Q, Su P, Wang H, Heimann K, Zhang W. Commercial cultivation, industrial application, and potential halocarbon biosynthesis pathway of Asparagopsis sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Grabarczyk M, Wińska K, Mączka W. An Overview of Synthetic Methods for the Preparation of Halolactones. Curr Org Synth 2020; 16:98-111. [PMID: 31965924 DOI: 10.2174/1570179415666180918152652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/22/2022]
Abstract
Halolactones are used both in chemical synthesis as intermediates as well as in various industries. These compounds may be secondary metabolites of living organisms, although they are mainly obtained by chemical synthesis. The substrates for the synthesis of chloro-, bromo- and iodolactones are often unsaturated carboxylic acids, and sometimes they are unsaturated esters. The article presents a number of different methods for the production of halolactones, both racemic mixtures and enantiomerically enriched compounds.
Collapse
Affiliation(s)
- Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| |
Collapse
|
7
|
Mubarak MQE, de Visser SP. Reactivity patterns of vanadium(iv/v)-oxo complexes with olefins in the presence of peroxides: a computational study. Dalton Trans 2019; 48:16899-16910. [PMID: 31670737 DOI: 10.1039/c9dt03048d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vanadium porphyrin complexes are naturally occurring substances found in crude oil and have been shown to have medicinal properties as well. Little is known on their activities with substrates; therefore, we decided to perform a detailed density functional theory study on the properties and reactivities of vanadium(iv)- and vanadium(v)-oxo complexes with a TPPCl8 or 2,3,7,8,12,13,17,18-octachloro-meso-tetraphenylporphyrinato ligand system. In particular, we investigated the reactivity of [VV(O)(TPPCl8)]+ and [VIV(O)(TPPCl8)] with cyclohexene in the presence of H2O2 or HCO4-. The work shows that vanadium(iv)-oxo and vanadium(v)-oxo are sluggish oxidants by themselves and react with olefins slowly. However, in the presence of hydrogen peroxide, these metal-oxo species can be transformed into a side-on vanadium-peroxo complex, which reacts with substrates more efficiently. Particularly with anionic axial ligands, the side-on vanadium-peroxo and vanadium-oxo complexes produced epoxides from cyclohexene via small barrier heights. In addition to olefin epoxidation, we investigated aliphatic hydroxylation mechanisms by the same oxidants and some oxidants show efficient and viable cyclohexene hydroxylation mechanisms. The work implies that vanadium-oxo and vanadium-peroxo complexes can react with double bonds through epoxidation, and under certain conditions also undergo hydroxylation, but the overall reactivity is highly dependent on the equatorial ligand, the local environment and the presence or absence of anionic axial ligands.
Collapse
Affiliation(s)
- M Qadri E Mubarak
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | |
Collapse
|
8
|
Sineli PE, Herrera HM, Cuozzo SA, Dávila Costa JS. Quantitative proteomic and transcriptional analyses reveal degradation pathway of γ-hexachlorocyclohexane and the metabolic context in the actinobacterium Streptomyces sp. M7. CHEMOSPHERE 2018; 211:1025-1034. [PMID: 30223317 DOI: 10.1016/j.chemosphere.2018.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Highly contaminated γ-hexachlorocyclohexane (lindane) areas were reported worldwide. Low aqueous solubility and high hydrophobicity make lindane particularly resistant to microbial degradation. Physiological and genetic Streptomyces features make this genus more appropriate for bioremediation compared with others. Complete degradation of lindane was only proposed in the genus Sphingobium although the metabolic context of the degradation was not considered. Streptomyces sp.M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic, RT-qPCR and exhaustive bioinformatic analysis to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. In addition, results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. To our knowledge, this is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Collapse
Affiliation(s)
- Pedro E Sineli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Hector M Herrera
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Sergio A Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - José S Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina.
| |
Collapse
|
9
|
Timmins A, Fowler NJ, Warwicker J, Straganz GD, de Visser SP. Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase? Front Chem 2018; 6:513. [PMID: 30425979 PMCID: PMC6218459 DOI: 10.3389/fchem.2018.00513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
In this work we present the first computational study on the hectochlorin biosynthesis enzyme HctB, which is a unique three-domain halogenase that activates non-amino acid moieties tethered to an acyl-carrier, and as such may have biotechnological relevance beyond other halogenases. We use a combination of small cluster models and full enzyme structures calculated with quantum mechanics/molecular mechanics methods. Our work reveals that the reaction is initiated with a rate-determining hydrogen atom abstraction from substrate by an iron (IV)-oxo species, which creates an iron (III)-hydroxo intermediate. In a subsequent step the reaction can bifurcate to either halogenation or hydroxylation of substrate, but substrate binding and positioning drives the reaction to optimal substrate halogenation. Furthermore, several key residues in the protein have been identified for their involvement in charge-dipole interactions and induced electric field effects. In particular, two charged second coordination sphere amino acid residues (Glu223 and Arg245) appear to influence the charge density on the Cl ligand and push the mechanism toward halogenation. Our studies, therefore, conclude that nonheme iron halogenases have a chemical structure that induces an electric field on the active site that affects the halide and iron charge distributions and enable efficient halogenation. As such, HctB is intricately designed for a substrate halogenation and operates distinctly different from other nonheme iron halogenases.
Collapse
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| | - Nicholas J. Fowler
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Grit D. Straganz
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Institute of Molecular Biosciences, Graz University, Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
A Comparative Review on the Catalytic Mechanism of Nonheme Iron Hydroxylases and Halogenases. Catalysts 2018. [DOI: 10.3390/catal8080314] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enzymatic halogenation and haloperoxidation are unusual processes in biology; however, a range of halogenases and haloperoxidases exist that are able to transfer an aliphatic or aromatic C–H bond into C–Cl/C–Br. Haloperoxidases utilize hydrogen peroxide, and in a reaction with halides (Cl−/Br−), they react to form hypohalides (OCl−/OBr−) that subsequently react with substrate by halide transfer. There are three types of haloperoxidases, namely the iron-heme, nonheme vanadium, and flavin-dependent haloperoxidases that are reviewed here. In addition, there are the nonheme iron halogenases that show structural and functional similarity to the nonheme iron hydroxylases and form an iron(IV)-oxo active species from a reaction of molecular oxygen with α-ketoglutarate on an iron(II) center. They subsequently transfer a halide (Cl−/Br−) to an aliphatic C–H bond. We review the mechanism and function of nonheme iron halogenases and hydroxylases and show recent computational modelling studies of our group on the hectochlorin biosynthesis enzyme and prolyl-4-hydroxylase as examples of nonheme iron halogenases and hydroxylases. These studies have established the catalytic mechanism of these enzymes and show the importance of substrate and oxidant positioning on the stereo-, chemo- and regioselectivity of the reaction that takes place.
Collapse
|
11
|
Karabencheva-Christova TG, Torras J, Mulholland AJ, Lodola A, Christov CZ. Mechanistic Insights into the Reaction of Chlorination of Tryptophan Catalyzed by Tryptophan 7-Halogenase. Sci Rep 2017; 7:17395. [PMID: 29234124 PMCID: PMC5727139 DOI: 10.1038/s41598-017-17789-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Tryptophan 7-halogenase catalyzes chlorination of free tryptophan to 7-chlorotryptophan, which is the first step in the antibiotic pyrrolnitrin biosynthesis. Many biologically and pharmaceutically active natural products contain chlorine and thus, an understanding of the mechanism of its introduction into organic molecules is important. Whilst enzyme-catalyzed chlorination is accomplished with ease, it remains a difficult task for the chemists. Therefore, utilizing enzymes in the synthesis of chlorinated organic compounds is important, and providing atomistic mechanistic insights about the reaction mechanism of tryptophan 7-halogenase is vital and timely. In this work, we examined a mechanism for the reaction of tryptophan chlorination, performed by tryptophan 7-halogenase, by calculating potential energy and free energy surfaces using two different Combined Quantum Mechanical/Molecular Mechanical (QM/MM) methods both employing Density Functional Theory (DFT) for the QM region. Both computational strategies agree on the nature of the rate-limiting step and provided close results for the reaction barriers of the two reaction steps. The calculations for both the potential energy and the free energy profiles showed very similar geometric features and hydrogen bonding interactions for the characterized stationary points.
Collapse
Affiliation(s)
- Tatyana G Karabencheva-Christova
- Department of Chemistry, Michigan Technological University, Houghton, 49931, MI, USA.
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Juan Torras
- Department of Chemical Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, C. Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Alessio Lodola
- Pharmacy Department, Università di Parma, V. le P.G Usberti 27/A, Campus Universitario, 431124, Parma, Italy
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University, Houghton, 49931, MI, USA
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
12
|
Shafizadeh N, Soorkia S, Grégoire G, Broquier M, Crestoni ME, Soep B. Dioxygen Binding to Protonated Heme in the Gas Phase, an Intermediate Between Ferric and Ferrous Heme. Chemistry 2017; 23:13493-13500. [DOI: 10.1002/chem.201702615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Niloufar Shafizadeh
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| | - Michel Broquier
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Université Paris-Sud, CNRS, IOGS, Université Paris-Saclay; 91405 Orsay France
| | - Maria-Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco; Università degli Studi di Roma “La Sapienza”; P. le A. Moro 5 00185 Roma Italy
| | - Benoît Soep
- LIDYL, CEA, CNRS; Université Paris-Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| |
Collapse
|
13
|
Smith DRM, Uria AR, Helfrich EJN, Milbredt D, van Pée KH, Piel J, Goss RJM. An Unusual Flavin-Dependent Halogenase from the Metagenome of the Marine Sponge Theonella swinhoei WA. ACS Chem Biol 2017; 12:1281-1287. [PMID: 28198609 DOI: 10.1021/acschembio.6b01115] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uncultured bacteria from sponges have been demonstrated to be responsible for the generation of many potent, bioactive natural products including halogenated metabolites.1 The identification of gene clusters from the metagenomes of such bacterial communities enables the discovery of enzymes that mediate new and useful chemistries and allows insight to be gained into the biogenesis of potentially pharmacologically important natural products. Here we report a new pathway to the keramamides (krm); the first functional evidence for the existence of a distinct producer in the Theonella swinhoei WA chemotype is revealed, and a key enzyme on the pathway, a unique flavin-dependent halogenase with a broad substrate specificity, with potential as a useful new biocatalytic tool, is described.
Collapse
Affiliation(s)
- Duncan R. M. Smith
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Agustinus R. Uria
- Institute
of Microbiology, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Eric J. N. Helfrich
- Institute
of Microbiology, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute
of Microbiology, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Rebecca J. M. Goss
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|