1
|
Ferrer-Curriu G, Rueda F, Revuelta-López E, García-García C, Codina P, Gálvez-Montón C, Roura S, Aimo A, Emdin M, Planavila A, Bayés-Genís A. Meteorin-like protein is associated with a higher risk profile and predicts a worse outcome in patients with STEMI. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:891-900. [PMID: 37105412 DOI: 10.1016/j.rec.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION AND OBJECTIVES Meteorin-like protein (Metrnl) is a cytokine involved in the attenuation of inflammation. In patients with heart failure, high levels of this biomarker are associated with a worse outcome. In this study, we evaluated the circulating levels and prognostic value of Metrnl in patients with ST-segment elevation myocardial infarction (STEMI). METHODS We enrolled STEMI patients undergoing primary percutaneous coronary intervention. Circulating Metrnl levels were measured in peripheral blood 12hours after symptom onset. The primary endpoint was a composite of all-cause mortality or nonfatal myocardial infarction (MI) at 3 years. RESULTS We studied 381 patients (mean age 61 years, 21% female, 8% Killip class III/IV). Metrnl levels were associated with age, cardiovascular risk factors and the extent of coronary artery disease, as well as with STEMI complications, particularly heart failure and cardiogenic shock. Multivariable Cox regression analysis revealed that Metrnl independently predicted all-cause death or nonfatal MI at 3 years (HR, 1.86; 95%CI, 1.23-2.81; P=.003). Moreover, patients in the highest tertile (> 491.6 pg/mL) were at higher risk for the composite endpoint than those in the lowest tertiles (HR, 3.24; 95%CI, 1.92-5.44; P <.001), even after adjustment by age, diabetes mellitus, cardiac arrest, Killip-Kimball III/IV class, left ventricular ejection fraction, and creatinine clearance (HR, 1.90; 95%CI, 1.10-3.29; P=.021). CONCLUSIONS Circulating Metrnl levels are associated with complications during the acute phase of STEMI and independently predict a worse outcome in these patients.
Collapse
Affiliation(s)
- Gemma Ferrer-Curriu
- ICREC Research Program, Institut de Recerca Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ferran Rueda
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Elena Revuelta-López
- ICREC Research Program, Institut de Recerca Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Cosme García-García
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Pau Codina
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Institut de Recerca Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Santiago Roura
- ICREC Research Program, Institut de Recerca Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| | - Alberto Aimo
- Interdisciplinary Center of Health Science, Scuola Superiore Sant'Anna, Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Interdisciplinary Center of Health Science, Scuola Superiore Sant'Anna, Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Anna Planavila
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Spain
| | - Antoni Bayés-Genís
- ICREC Research Program, Institut de Recerca Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain; Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
2
|
Tang S, Li R, Ma W, Lian L, Gao J, Cao Y, Gan L. Cardiac-to-adipose axis in metabolic homeostasis and diseases: special instructions from the heart. Cell Biosci 2023; 13:161. [PMID: 37667400 PMCID: PMC10476430 DOI: 10.1186/s13578-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023] Open
Abstract
Adipose tissue is essential for maintaining systemic metabolic homeostasis through traditional metabolic regulation, endocrine crosstalk, and extracellular vesicle production. Adipose dysfunction is a risk factor for cardiovascular diseases. The heart is a traditional pump organ. However, it has recently been recognized to coordinate interorgan cross-talk by providing peripheral signals known as cardiokines. These molecules include specific peptides, proteins, microRNAs and novel extracellular vesicle-carried cargoes. Current studies have shown that generalized cardiokine-mediated adipose regulation affects systemic metabolism. Cardiokines regulate lipolysis, adipogenesis, energy expenditure, thermogenesis during cold exposure and adipokine production. Moreover, cardiokines participate in pathological processes such as obesity, diabetes and ischemic heart injury. The underlying mechanisms of the cardiac-to-adipose axis mediated by cardiokines will be further discussed to provide potential therapeutic targets for metabolic diseases and support a new perspective on the need to correct adipose dysfunction after ischemic heart injury.
Collapse
Affiliation(s)
- Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Ruixin Li
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Wen Ma
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China
| | - Liu Lian
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Jiuyu Gao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China.
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China.
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Sawalha K, Norgard NB, Drees BM, López-Candales A. Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Curr Heart Fail Rep 2023; 20:287-299. [PMID: 37289373 DOI: 10.1007/s11897-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The emergence of biomarkers across medicine's subspecialties continues to evolve. In essence, a biomarker is a biological observation that clearly substitutes a clinical endpoint or intermediate outcome not only are more difficult to observe but also, biomarkers are easier, less expensive and could be measured over shorter periods. In general, biomarkers are versatile and not only used for disease screening and diagnosis but, most importantly, for disease characterization, monitoring, and determination of prognosis as well as individualized therapeutic responses. Obviously, heart failure (HF) is no exception to the use of biomarkers. Currently, natriuretic peptides are the most used biomarkers for both diagnosis and prognostication, while their role in the monitoring of treatment is still debatable. Although several other new biomarkers are currently under investigation regarding diagnosis and determination of prognosis, none of them are specific for HF, and none are recommended for routine clinical use at present. However, among these emerging biomarkers, we would like to highlight the potential for growth differentiation factor (GDF)-15 as a plausible new biomarker that could be helpful in providing prognostic information regarding HF morbidity and mortality.
Collapse
Affiliation(s)
- Khalid Sawalha
- Cardiometabolic Medicine Fellowship, University of Missouri-Kansas City, Kansas City, MO, USA.
- Section of Cardiovascular Medicine, University Health, Truman Medical Center, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO, 64108, USA.
| | - Nicholas B Norgard
- Department of Medicine, University Health Truman Medical Center, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Betty M Drees
- Department(s) of Internal Medicine, Biomedical and Health Informatics, Section of Endocrinology, UMKC School of Medicine, Kansas City, MO, USA
| | - Angel López-Candales
- Section of Cardiovascular Medicine, University Health, Truman Medical Center, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO, 64108, USA
| |
Collapse
|
4
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
5
|
Xu K, Shao Y, Saaoud F, Gillespie A, Drummer C, Liu L, Lu Y, Sun Y, Xi H, Tükel Ç, Pratico D, Qin X, Sun J, Choi ET, Jiang X, Wang H, Yang X. Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Front Cardiovasc Med 2021; 8:773473. [PMID: 34912867 PMCID: PMC8668339 DOI: 10.3389/fcvm.2021.773473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
To determine whether pro-inflammatory lipid lysophosphatidylinositols (LPIs) upregulate the expressions of membrane proteins for adhesion/signaling and secretory proteins in human aortic endothelial cell (HAEC) activation, we developed an EC biology knowledge-based transcriptomic formula to profile RNA-Seq data panoramically. We made the following primary findings: first, G protein-coupled receptor 55 (GPR55), the LPI receptor, is expressed in the endothelium of both human and mouse aortas, and is significantly upregulated in hyperlipidemia; second, LPIs upregulate 43 clusters of differentiation (CD) in HAECs, promoting EC activation, innate immune trans-differentiation, and immune/inflammatory responses; 72.1% of LPI-upregulated CDs are not induced in influenza virus-, MERS-CoV virus- and herpes virus-infected human endothelial cells, which hinted the specificity of LPIs in HAEC activation; third, LPIs upregulate six types of 640 secretomic genes (SGs), namely, 216 canonical SGs, 60 caspase-1-gasdermin D (GSDMD) SGs, 117 caspase-4/11-GSDMD SGs, 40 exosome SGs, 179 Human Protein Atlas (HPA)-cytokines, and 28 HPA-chemokines, which make HAECs a large secretory organ for inflammation/immune responses and other functions; fourth, LPIs activate transcriptomic remodeling by upregulating 172 transcription factors (TFs), namely, pro-inflammatory factors NR4A3, FOS, KLF3, and HIF1A; fifth, LPIs upregulate 152 nuclear DNA-encoded mitochondrial (mitoCarta) genes, which alter mitochondrial mechanisms and functions, such as mitochondrial organization, respiration, translation, and transport; sixth, LPIs activate reactive oxygen species (ROS) mechanism by upregulating 18 ROS regulators; finally, utilizing the Cytoscape software, we found that three mechanisms, namely, LPI-upregulated TFs, mitoCarta genes, and ROS regulators, are integrated to promote HAEC activation. Our results provide novel insights into aortic EC activation, formulate an EC biology knowledge-based transcriptomic profile strategy, and identify new targets for the development of therapeutics for cardiovascular diseases, inflammatory conditions, immune diseases, organ transplantation, aging, and cancers.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Aria Gillespie
- Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Lu Liu
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
| | - Hang Xi
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Çagla Tükel
- Center for Microbiology & Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Domenico Pratico
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xuebin Qin
- National Primate Research Center, Tulane University, Covington, LA, United States
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eric T. Choi
- Surgery (Division of Vascular and Endovascular Surgery), Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Hong Wang
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation and Lung Research, Philadelphia, PA, United States
- Departments of Cardiovascular Sciences, Metabolic Disease Research, Thrombosis Research, Philadelphia, PA, United States
| |
Collapse
|
6
|
GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021; 22:ijms22168889. [PMID: 34445593 PMCID: PMC8396208 DOI: 10.3390/ijms22168889] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.
Collapse
|
7
|
Ni D, Tang T, Lu Y, Xu K, Shao Y, Saaoud F, Saredy J, Liu L, Drummer C, Sun Y, Hu W, Lopez-Pastrana J, Luo JJ, Jiang X, Choi ET, Wang H, Yang X. Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Front Immunol 2021; 12:678201. [PMID: 34084175 PMCID: PMC8168470 DOI: 10.3389/fimmu.2021.678201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
We performed a transcriptomic analyses using the strategies we pioneered and made the following findings: 1) Normal lymphoid Tregs, diseased kidney Tregs, splenic Tregs from mice with injured muscle have 3, 17 and 3 specific (S-) pathways, respectively; 2) Tumor splenic Tregs share 12 pathways with tumor Tregs; tumor splenic Tregs and tumor Tregs have 11 and 8 S-pathways, respectively; 3) Normal and non-tumor disease Tregs upregulate some of novel 2641 canonical secretomic genes (SGs) with 24 pathways, and tumor Tregs upregulate canonical secretomes with 17 pathways; 4) Normal and non-tumor disease tissue Tregs upregulate some of novel 6560 exosome SGs with 56 exosome SG pathways (ESP), tumor Treg ESP are more focused than other Tregs; 5) Normal, non-tumor diseased Treg and tumor Tregs upregulate some of novel 961 innate immune caspase-1 SGs and 1223 innate immune caspase-4 SGs to fulfill their tissue/SG-specific and shared functions; 6) Most tissue Treg transcriptomes are controlled by Foxp3; and Tumor Tregs had increased Foxp3 non-collaboration genes with ROS and 17 other pathways; 7) Immune checkpoint receptor PD-1 does, but CTLA-4 does not, play significant roles in promoting Treg upregulated genes in normal and non-tumor disease tissue Tregs; and tumor splenic and tumor Tregs have certain CTLA-4-, and PD-1-, non-collaboration transcriptomic changes with innate immune dominant pathways; 8) Tumor Tregs downregulate more immunometabolic and innate immune memory (trained immunity) genes than Tregs from other groups; and 11) ROS significantly regulate Treg transcriptomes; and ROS-suppressed genes are downregulated more in tumor Tregs than Tregs from other groups. Our results have provided novel insights on the roles of Tregs in normal, injuries, regeneration, tumor conditions and some of canonical and innate immune non-canonical secretomes via ROS-regulatory mechanisms and new therapeutic targets for immunosuppression, tissue repair, cardiovascular diseases, chronic kidney disease, autoimmune diseases, transplantation, and cancers.
Collapse
Affiliation(s)
- Dong Ni
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - TingTing Tang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin J Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Rupérez C, Ferrer-Curriu G, Cervera-Barea A, Florit L, Guitart-Mampel M, Garrabou G, Zamora M, Crispi F, Fernandez-Solà J, Lupón J, Bayes-Genis A, Villarroya F, Planavila A. Meteorin-like/Meteorin-β protects heart against cardiac dysfunction. J Exp Med 2021; 218:e20201206. [PMID: 33635944 PMCID: PMC7923691 DOI: 10.1084/jem.20201206] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Meteorin-like/Meteorin-β (Metrnl/Metrnβ) is a secreted protein produced by skeletal muscle and adipose tissue that exerts metabolic actions that improve glucose metabolism. The role of Metrnβ in cardiac disease is completely unknown. Here, we show that Metrnβ-null mice exhibit asymmetrical cardiac hypertrophy, fibrosis, and enhanced signs of cardiac dysfunction in response to isoproterenol-induced cardiac hypertrophy and aging. Conversely, adeno-associated virus-mediated specific overexpression of Metrnβ in the heart prevents the development of cardiac remodeling. Furthermore, Metrnβ inhibits cardiac hypertrophy development in cardiomyocytes in vitro, indicating a direct effect on cardiac cells. Antibody-mediated blockage of Metrnβ in cardiomyocyte cell cultures indicated an autocrine action of Metrnβ on the heart, in addition to an endocrine action. Moreover, Metrnβ is highly produced in the heart, and analysis of circulating Metrnβ concentrations in a large cohort of patients reveals that it is a new biomarker of heart failure with an independent prognostic value.
Collapse
Affiliation(s)
- Celia Rupérez
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Gemma Ferrer-Curriu
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aina Cervera-Barea
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Laura Florit
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex – August Pi i Sunyer Biomedical Research Institute, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service, Hospital Clínic of Barcelona, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases, Barcelona, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex – August Pi i Sunyer Biomedical Research Institute, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service, Hospital Clínic of Barcelona, Barcelona, Spain
- Center for Biomedical Research Network on Rare Diseases, Barcelona, Spain
| | - Mònica Zamora
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Fàtima Crispi
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | | | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, Center for Biomedical Research Network on Cardiovascular Diseases, Badalona, Spain
| | - Antoni Bayes-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, Center for Biomedical Research Network on Cardiovascular Diseases, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
9
|
Salgado JV, Goes MA, Salgado Filho N. FGF21 and Chronic Kidney Disease. Metabolism 2021; 118:154738. [PMID: 33617873 DOI: 10.1016/j.metabol.2021.154738] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
The global nephrology community recognizes the increasing burden of kidney disease and its poor health outcomes in the general population. Given this, strategies to establish early diagnosis, improve understanding of the natural course and develop novel therapeutic interventions to slow progression and reduce complications are encouraged. Fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, has emerged as a master homeostasis regulator of local and systemic lipid, glucose and energy metabolism. In addition, FGF21 should be considered an autonomic and endocrine regulator of stress responses in general. Promising results has been shown in both dysmetabolic animal models and metabolic disease patients after pharmacological administration of FGF21 analogs. The association of FGF21 with renal function has been studied for more than ten years. However, the functional role of FGF21 in the kidney is still poorly understood. This review summarizes the biological effects of FGF21 and discusses what is currently known about this hormone and chronic kidney disease, highlighting important gaps that warrant further research.
Collapse
Affiliation(s)
- João Victor Salgado
- Division of Nephrology, Federal University of São Paulo, Brazil; Department of Physiological Sciences, Federal University of Maranhão, Brazil.
| | | | - Natalino Salgado Filho
- Kidney Disease Prevention Centre, University Hospital, Federal University of Maranhão, Brazil; Department of Medicine I, Federal University of Maranhão, Brazil
| |
Collapse
|
10
|
Zhang R, Xu K, Shao Y, Sun Y, Saredy J, Cutler E, Yao T, Liu M, Liu L, Drummer Iv C, Lu Y, Saaoud F, Ni D, Wang J, Li Y, Li R, Jiang X, Wang H, Yang X. Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Front Immunol 2021; 11:632239. [PMID: 33613572 PMCID: PMC7892453 DOI: 10.3389/fimmu.2020.632239] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
We used functional -omics angles and examined transcriptomic heterogeneity in CD4+Foxp3+ regulatory T cells (Treg) from spleen (s-Treg), lymph nodes (LN-Treg), intestine (int-Treg), and visceral adipose tissue (VAT-Treg), and made significant findings: 1) Five new shared Treg genes including NIBAN, TNFRSF1b, DUSP4,VAV2, and KLRG1, and 68 new signatures are identified. Among 27 signaling pathways shared in four tissue Treg, 22 pathways are innate immune pathways (81.5%); 2) s-Treg, LN-Treg, int-Treg, and VAT-Treg have zero, 49, 45, and 116 upregulated pathways, respectively; 3) 12, 7, and 15 out of 373 CD markers are identified as specific for LN-Treg, int-Treg, and VAT-Treg, respectively, which may initiate innate immune signaling; 4) 7, 49, 44, and 79 increased cytokines out of 1176 cytokines are identified for four Treg, respectively, suggesting that Treg have much more secretory proteins/cytokines than IL-10, TGF-β, and IL-35; 5) LN-Treg, int-Treg, and VAT-Treg have 13 additional secretory functions more than s-Treg, found by analyzing 1,706 secretomic genes; 6) 2, 20, 25, and 43 increased transcription factors (TFs) out of 1,496 TFs are identified four Treg, respectively; 7) LN-Treg and int-Treg have increased pyroptosis regulators but VAT-Treg have increased apoptosis regulators; 8) 1, 15, 19, and 31 increased kinases out of 661 kinome are identified for s-Treg, LN-Treg, int-Treg, and VAT-Treg, respectively; 9) comparing with that of s-Treg, LN-Treg, int-Treg, and VAT-Treg increase activated cluster (clusters 1–3) markers; and decrease resting cluster (clusters 4–6) markers; and 10) Treg promote tissue repair by sharing secretomes and TFs AHR, ETV5, EGR1, and KLF4 with stem cells, which partially promote upregulation of all the groups of Treg genes. These results suggest that stem cell-shared master genes make tissue Treg as the first T cell type using a Treg niche to maintain their Treg-ness with 80% innate immune pathways, and triple functions of immunosuppression, tissue repair, and homeostasis maintenance. Our results have provided novel insights on the roles of innate immune pathways on Treg heterogeneity and new therapeutic targets for immunosuppression, tissue repair, cardiovascular diseases, chronic kidney disease, autoimmune diseases, transplantation, and cancers.
Collapse
Affiliation(s)
- Ruijing Zhang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Second Hospital of Shanxi Medical University, Shanxi, China.,Shanxi Medical University, Shanxi, China.,Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Keman Xu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Elizabeth Cutler
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Tian Yao
- Shanxi Medical University, Shanxi, China
| | - Ming Liu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Shanxi Medical University, Shanxi, China
| | - Lu Liu
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer Iv
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Dong Ni
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jirong Wang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Nephrology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi, China
| | - Xiaohua Jiang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Cardiovascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Neurohumoral, cardiac and inflammatory markers in the evaluation of heart failure severity and progression. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2021; 18:47-66. [PMID: 33613659 PMCID: PMC7868913 DOI: 10.11909/j.issn.1671-5411.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart failure is common in adult population, accounting for substantial morbidity and mortality worldwide. The main risk factors for heart failure are coronary artery disease, hypertension, obesity, diabetes mellitus, chronic pulmonary diseases, family history of cardiovascular diseases, cardiotoxic therapy. The main factor associated with poor outcome of these patients is constant progression of heart failure. In the current review we present evidence on the role of established and candidate neurohumoral biomarkers for heart failure progression management and diagnostics. A growing number of biomarkers have been proposed as potentially useful in heart failure patients, but not one of them still resembles the characteristics of the “ideal biomarker.” A single marker will hardly perform well for screening, diagnostic, prognostic, and therapeutic management purposes. Moreover, the pathophysiological and clinical significance of biomarkers may depend on the presentation, stage, and severity of the disease. The authors cover main classification of heart failure phenotypes, based on the measurement of left ventricular ejection fraction, including heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, and the recently proposed category heart failure with mid-range ejection fraction. One could envisage specific sets of biomarker with different performances in heart failure progression with different left ventricular ejection fraction especially as concerns prediction of the future course of the disease and of left ventricular adverse/reverse remodeling. This article is intended to provide an overview of basic and additional mechanisms of heart failure progression will contribute to a more comprehensive knowledge of the disease pathogenesis.
Collapse
|
12
|
Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
|
13
|
Rochette L, Zeller M, Cottin Y, Vergely C. Insights Into Mechanisms of GDF15 and Receptor GFRAL: Therapeutic Targets. Trends Endocrinol Metab 2020; 31:939-951. [PMID: 33172749 DOI: 10.1016/j.tem.2020.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/25/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily proteins. GDF15 acts as an inflammatory marker, and it plays a role in pathogenesis of tumors, ischemic diseases, metabolic disorders, and neurodegenerative processes. GDF15 is not normally expressed in the tissue; it is prominently induced following 'injury'. GDF15 functions are critical for the regulation of endothelial adaptations after vascular damage. Recently, four research groups simultaneously identified glial-derived neurotrophic factor (GDNF)-family receptor α-like (GFRAL) in the brain, an orphan receptor as the receptor for GDF15, signaling through the coreceptor RET. In this article, new aspects of the biology of GDF15 and receptor GFRAL, and their relationship with various pathologies, are commented on.
Collapse
Affiliation(s)
- Luc Rochette
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France.
| | - Marianne Zeller
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France
| | - Yves Cottin
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France; Cardiology Unit, Dijon University Hospital Center, Dijon, France
| | - Catherine Vergely
- Research team, Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2, EA 7460), University of Bourgogne Franche-Comté, UFR des Sciences de Santé, 7 boulevard Jeanne d' Arc, 21079 DIJON, France
| |
Collapse
|
14
|
Growth Differentiation Factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy. Sci Rep 2020; 10:10111. [PMID: 32572108 PMCID: PMC7308386 DOI: 10.1038/s41598-020-66940-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1–49 months with oral deoxynucleosides. Patients were grouped according to age at treatment and biomarkers were analyzed at baseline and various time points after treatment initiation. GDF-15 was elevated on average 30-fold in children and 6-fold in adults before the start of treatment. There was a significant correlation between basal GDF-15 and severity based on pretreatment distance walked (6MWT) and weight (BMI). During treatment, GDF-15 significantly declined, and the decrease was accompanied by relevant clinical improvements. The decline was greater in the paediatric group, which included the most severe patients and showed the greatest clinical benefit, than in the adult patients. The decline of FGF-21 was less prominent and consistent. GDF-15 is a potential biomarker of severity and of therapeutic response for patients with TK2 deficiency. In addition, we show evidence of clinical benefit of deoxynucleoside treatment, especially when treatment is initiated at an early age.
Collapse
|
15
|
Benitez-Amaro A, Revuelta-López E, Bornachea O, Cedó L, Vea À, Herrero L, Roglans N, Soler-Botija C, de Gonzalo-Calvo D, Nasarre L, Camino-López S, García E, Mato E, Blanco-Vaca F, Bayes-Genis A, Sebastian D, Laguna JC, Serra D, Zorzano A, Escola-Gil JC, Llorente-Cortes V. Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Metabolism 2020; 106:154191. [PMID: 32112822 DOI: 10.1016/j.metabol.2020.154191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. METHODS We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). FINDINGS Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1-/-) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1-/- mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1-/- mice. CONCLUSIONS These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elena Revuelta-López
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Bornachea
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Lídia Cedó
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Àngela Vea
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain
| | - Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Nasarre
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Sandra Camino-López
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Eduardo García
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Eugenia Mato
- CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Blanco-Vaca
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Cardiology Service and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - David Sebastian
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Carles Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Carles Escola-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vicenta Llorente-Cortes
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Fernández-Solà J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients 2020; 12:E572. [PMID: 32098364 PMCID: PMC7071520 DOI: 10.3390/nu12020572] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic-dilated Cardiomyopathy (ACM) is the most prevalent form of ethanol-induced heart damage. Ethanol induces ACM in a dose-dependent manner, independently of nutrition, vitamin, or electrolyte disturbances. It has synergistic effects with other heart risk factors. ACM produces a progressive reduction in myocardial contractility and heart chamber dilatation, leading to heart failure episodes and arrhythmias. Pathologically, ethanol induces myocytolysis, apoptosis, and necrosis of myocytes, with repair mechanisms causing hypertrophy and interstitial fibrosis. Myocyte ethanol targets include changes in membrane composition, receptors, ion channels, intracellular [Ca2+] transients, and structural proteins, and disrupt sarcomere contractility. Cardiac remodeling tries to compensate for this damage, establishing a balance between aggression and defense mechanisms. The final process of ACM is the result of dosage and individual predisposition. The ACM prognosis depends on the degree of persistent ethanol intake. Abstinence is the preferred goal, although controlled drinking may still improve cardiac function. New strategies are addressed to decrease myocyte hypertrophy and interstitial fibrosis and try to improve myocyte regeneration, minimizing ethanol-related cardiac damage. Growth factors and cardiomyokines are relevant molecules that may modify this process. Cardiac transplantation is the final measure in end-stage ACM but is limited to those subjects able to achieve abstinence.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Internal Medicine Department, Hospital Clínic, Institut de Recerca August Pi i Sunyer (IDIBAPS), University of Barcelona, 08007 Catalunya, Spain;
- Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Zhang R, Saredy J, Shao Y, Yao T, Liu L, Saaoud F, Yang WY, Sun Y, Johnson C, Drummer C, Fu H, Lu Y, Xu K, Liu M, Wang J, Cutler E, Yu D, Jiang X, Li Y, Li R, Wang L, Choi ET, Wang H, Yang X. End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biol 2020; 34:101460. [PMID: 32179051 PMCID: PMC7327976 DOI: 10.1016/j.redox.2020.101460] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background The molecular mechanisms underlying chronic kidney disease (CKD) transition to end-stage renal disease (ESRD) and CKD acceleration of cardiovascular and other tissue inflammations remain poorly determined. Methods We conducted a comprehensive data analyses on 7 microarray datasets in peripheral blood mononuclear cells (PBMCs) from patients with CKD and ESRD from NCBI-GEO databases, where we examined the expressions of 2641 secretome genes (SG). Results 1) 86.7% middle class (molecular weight >500 Daltons) uremic toxins (UTs) were encoded by SGs; 2) Upregulation of SGs in PBMCs in patients with ESRD (121 SGs) were significantly higher than that of CKD (44 SGs); 3) Transcriptomic analyses of PBMC secretome had advantages to identify more comprehensive secretome than conventional secretomic analyses; 4) ESRD-induced SGs had strong proinflammatory pathways; 5) Proinflammatory cytokines-based UTs such as IL-1β and IL-18 promoted ESRD modulation of SGs; 6) ESRD-upregulated co-stimulation receptors CD48 and CD58 increased secretomic upregulation in the PBMCs, which were magnified enormously in tissues; 7) M1-, and M2-macrophage polarization signals contributed to ESRD- and CKD-upregulated SGs; 8) ESRD- and CKD-upregulated SGs contained senescence-promoting regulators by upregulating proinflammatory IGFBP7 and downregulating anti-inflammatory TGF-β1 and telomere stabilizer SERPINE1/PAI-1; 9) ROS pathways played bigger roles in mediating ESRD-upregulated SGs (11.6%) than that in CKD-upregulated SGs (6.8%), and half of ESRD-upregulated SGs were ROS-independent. Conclusions Our analysis suggests novel secretomic upregulation in PBMCs of patients with CKD and ESRD, act synergistically with uremic toxins, to promote inflammation and potential disease progression. Our findings have provided novel insights on PBMC secretome upregulation to promote disease progression and may lead to the identification of new therapeutic targets for novel regimens for CKD, ESRD and their accelerated cardiovascular disease, other inflammations and cancers. (Total words: 279).
Collapse
Affiliation(s)
- Ruijing Zhang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China; Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Jason Saredy
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tian Yao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Lu Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fatma Saaoud
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Yu Sun
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Charles Drummer
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yifan Lu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keman Xu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ming Liu
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jirong Wang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Elizabeth Cutler
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030012, China
| | - Lihua Wang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Eric T Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
Bowman PRT, Smith GL, Gould GW. Cardiac SNARE Expression in Health and Disease. Front Endocrinol (Lausanne) 2019; 10:881. [PMID: 31920989 PMCID: PMC6930865 DOI: 10.3389/fendo.2019.00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
SNARE proteins are integral to intracellular vesicular trafficking, which in turn is the process underlying the regulated expression of substrate transporters such as the glucose transporter GLUT4 at the cell surface of insulin target tissues. Impaired insulin stimulated GLUT4 trafficking is associated with reduced cardiac function in many disease states, most notably diabetes. Despite this, our understanding of the expression and regulation of SNARE proteins in cardiac tissue and how these may change in diabetes is limited. Here we characterize the array of SNARE proteins expressed in cardiac tissue, and quantify the levels of expression of VAMP2, SNAP23, and Syntaxin4-key proteins involved in insulin-stimulated GLUT4 translocation. We examined SNARE protein levels in cardiac tissue from two rodent models of insulin resistance, db/db mice and high-fat fed mice, and show alterations in patterns of expression are evident. Such changes may have implications for cardiac function.
Collapse
Affiliation(s)
- Peter R. T. Bowman
- Henry Wellcome Laboratory of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L. Smith
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Henry Wellcome Laboratory of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Gwyn W. Gould
| |
Collapse
|
19
|
Suassuna PGDA, de Paula RB, Sanders-Pinheiro H, Moe OW, Hu MC. Fibroblast growth factor 21 in chronic kidney disease. J Nephrol 2018; 32:365-377. [DOI: 10.1007/s40620-018-0550-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023]
|
20
|
Wu YS, Zhu B, Luo AL, Yang L, Yang C. The Role of Cardiokines in Heart Diseases: Beneficial or Detrimental? BIOMED RESEARCH INTERNATIONAL 2018; 2018:8207058. [PMID: 29744364 PMCID: PMC5878913 DOI: 10.1155/2018/8207058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality, imposing a major disease burden worldwide. Therefore, there is an urgent need to identify new therapeutic targets. Recently, the concept that the heart acts as a secretory organ has attracted increasing attention. Proteins secreted by the heart are called cardiokines, and they play a critical physiological role in maintaining heart homeostasis or responding to myocardial damage and thereby influence the development of heart diseases. Given the critical role of cardiokines in heart disease, they might represent a promising therapeutic target. This review will focus on several cardiokines and discuss their roles in the pathogenesis of heart diseases and as potential therapeutics.
Collapse
Affiliation(s)
- Ye-Shun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|