1
|
Brewer R, Blum K, Bowirrat A, Modestino EJ, Baron D, Badgaiyan RD, Moran M, Boyett B, Gold MS. Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-Induced Hyperalgesia. CURRENT PSYCHOPHARMACOLOGY 2020; 9:164-184. [PMID: 37361136 PMCID: PMC10288629 DOI: 10.2174/2211556009999200628093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/28/2023]
Abstract
Neuroscientists and psychiatrists working in the areas of "pain and addiction" are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, and relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.
Collapse
Affiliation(s)
- Raymond Brewer
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Kenneth Blum
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
- Western University Health Sciences, Pomona, CA., USA
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | | | - David Baron
- Western University Health Sciences, Pomona, CA., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NYC. & Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Mark Moran
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Bradford Health Services, Madison, AL., USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
2
|
Montes GC, da Silva BNM, Rezende B, Sudo RT, Ferreira VF, de Carvalho da Silva F, da Cunha Pinto A, da Silva BV, Zapata-Sudo G. The Hypnotic, Anxiolytic, and Antinociceptive Profile of a Novel µ-Opioid Agonist. Molecules 2017; 22:molecules22050800. [PMID: 28509855 PMCID: PMC6154531 DOI: 10.3390/molecules22050800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
5'-4-Alkyl/aryl-1H-1,2,3-triazole derivatives PILAB 1-12 were synthesized and a pharmacological screening of these derivatives was performed to identify a possible effect on the Central Nervous System (CNS) and to explore the associated mechanisms of action. The mice received a peritoneal injection (100 µmol/kg) of each of the 12 PILAB derivatives 10 min prior to the injection of pentobarbital and the mean hypnosis times were recorded. The mean hypnosis time increased for the mice treated with PILAB 8, which was prevented when mice were administered CTOP, a µ-opioid antagonist. Locomotor and motor activities were not affected by PILAB 8. The anxiolytic effect of PILAB 8 was evaluated next in an elevated-plus maze apparatus. PILAB 8 and midazolam increased a percentage of entries and spent time in the open arms of the apparatus compared with the control group. Conversely, a decrease in the percentages of entries and time spent in the closed arms were observed. Pretreatment with naloxone, a non-specific opioid antagonist, prior to administration of PILAB 8 exhibited a reverted anxiolytic effect. PILAB 8 exhibited antinociceptive activity in the hot plate test, and reduced reactivity to formalin in the neurogenic and the inflammatory phases. These data suggest that PILAB 8 can activate µ-opioid receptors to provoke antinociceptive and anti-inflammatory effects in mice.
Collapse
Affiliation(s)
- Guilherme Carneiro Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil.
| | | | - Bismarck Rezende
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil.
| | - Roberto Takashi Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Rio de Janeiro RJ 21941-971, Brazil.
| | | | | | - Angelo da Cunha Pinto
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-909, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Rio de Janeiro RJ 21941-971, Brazil.
| | | | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Rio de Janeiro RJ 21941-971, Brazil.
| |
Collapse
|