1
|
Kim H, Shim WS, Oh U. Anoctamin 1, a multi-modal player in pain and itch. Cell Calcium 2024; 123:102924. [PMID: 38964236 DOI: 10.1016/j.ceca.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.
Collapse
Affiliation(s)
- Hyungsup Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Luna-Gutiérrez M, Hernández-Ramírez R, Soto-Abundiz A, García-Pérez O, Ancira-Cortez A, López-Buenrostro S, Gibbens-Bandala B, Soldevilla-Gallardo I, Lara-Almazán N, Rojas-Pérez M, Ocampo-García B, Azorín-Vega E, Santos-Cuevas C, Ferro-Flores G. Improving Overall Survival and Quality of Life in Patients with Prostate Cancer and Neuroendocrine Tumors Using 177Lu-iPSMA and 177Lu-DOTATOC: Experience after 905 Treatment Doses. Pharmaceutics 2023; 15:1988. [PMID: 37514174 PMCID: PMC10386094 DOI: 10.3390/pharmaceutics15071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
177Lu-iPSMA is a novel radioligand developed at ININ-Mexico with a high affinity for the PSMA protein heavily expressed in cancer cells of approximately 95% of patients with metastatic castration-resistant prostate cancer (mCRPC). 177Lu-DOTATOC is a patent-free radioligand, molecularly recognized by somatostatin receptors (SSTR-2) overexpressed in cancer cells of about 80% of patients with metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NET). This translational research aimed to determine the efficacy and safety of 177Lu-iPSMA and 177Lu-DOTATOC developed as GMP pharmaceutical formulations for treating progressive and advanced mCRPC and NET. One hundred and forty-five patients with mCRPC and one hundred and eighty-seven subjects with progressive NET (83% GEP-NET and 17% other NET), treated with 177Lu-iPSMA and 177Lu-DOTATOC, respectively, were evaluated. Patients received a mean dose of 7.4 GBq per administration of 177Lu-iPSMA (range 1-5 administrations; 394 treatment doses) or 177Lu-DOTATOC (range 2-8 administrations; 511 treatment doses) at intervals of 1.5-2.5 months. Efficacy was assessed by SPECT/CT or PET/CT. Results were stratified by primary tumor origin and number of doses administered. Patients with mCRPC showed overall survival (OS) of 21.7 months with decreased radiotracer tumor uptake (SUV) and PSA level in 80% and 73% of patients, respectively. In addition, a significant reduction in pain (numerical scale from 10-7 to 3-1) was observed in 88% of patients with bone metastases between one and two weeks after the second injection. In the GEP-NET population, the median progression-free survival was 34.7 months, with an OS of >44.2 months. The treatments were well tolerated. Only ten patients experienced grade ≥ 3 myelosuppression (3% of all patients). The observed safety profiles and favorable therapeutic responses demonstrated the potential of 177Lu-iPSMA and 177Lu-DOTATOC to improve overall survival and quality of life in patients with progressive and advanced mCRPC and NET.
Collapse
Affiliation(s)
- Myrna Luna-Gutiérrez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | | | - Airam Soto-Abundiz
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Osvaldo García-Pérez
- Department of Nuclear Medicine, Instituto Nacional de Cancerología, Mexico City 14000, Mexico
| | - Alejandra Ancira-Cortez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | | | - Brenda Gibbens-Bandala
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Irma Soldevilla-Gallardo
- Department of Nuclear Medicine, Centro Médico ABC Campus Observatorio, Mexico City 01120, Mexico
| | - Nancy Lara-Almazán
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Melissa Rojas-Pérez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Erika Azorín-Vega
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Clara Santos-Cuevas
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| | - Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac 52750, Mexico
| |
Collapse
|
5
|
Masuelli S, Real S, McMillen P, Oudin M, Levin M, Roqué M. The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left-Right Functional Differences. Int J Mol Sci 2023; 24:11121. [PMID: 37446299 PMCID: PMC10342022 DOI: 10.3390/ijms241311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease that displays diverse molecular subtypes and clinical outcomes. Although it is known that the location of tumors can affect their biological behavior, the underlying mechanisms are not fully understood. In our previous study, we found a differential methylation profile and membrane potential between left (L)- and right (R)-sided breast tumors. In this current study, we aimed to identify the ion channels responsible for this phenomenon and determine any associated phenotypic features. To achieve this, experiments were conducted in mammary tumors in mice, human patient samples, and with data from public datasets. The results revealed that L-sided tumors have a more depolarized state than R-sided. We identified a 6-ion channel-gene signature (CACNA1C, CACNA2D2, CACNB2, KCNJ11, SCN3A, and SCN3B) associated with the side: L-tumors exhibit lower expression levels than R-tumors. Additionally, in silico analyses show that the signature correlates inversely with DNA methylation writers and with key biological processes involved in cancer progression, such as proliferation and stemness. The signature also correlates inversely with patient survival rates. In an in vivo mouse model, we confirmed that KI67 and CD44 markers were increased in L-sided tumors and a similar tendency for KI67 was found in patient L-tumors. Overall, this study provides new insights into the potential impact of anatomical location on breast cancer biology and highlights the need for further investigation into possible differential treatment options.
Collapse
Affiliation(s)
- Sofía Masuelli
- Institute of Histology and Embryology, National Council of Scientific and Technological Research (CONICET), Parque General San Martin, Mendoza 5500, Argentina; (S.M.)
- Faculty of Medical Science, National University of Cuyo, Parque General San Martin, Mendoza 5500, Argentina
| | - Sebastián Real
- Institute of Histology and Embryology, National Council of Scientific and Technological Research (CONICET), Parque General San Martin, Mendoza 5500, Argentina; (S.M.)
- Faculty of Medical Science, National University of Cuyo, Parque General San Martin, Mendoza 5500, Argentina
| | - Patrick McMillen
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Madeleine Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - María Roqué
- Institute of Histology and Embryology, National Council of Scientific and Technological Research (CONICET), Parque General San Martin, Mendoza 5500, Argentina; (S.M.)
- Faculty of Exact and Natural Sciences, National University of Cuyo, Parque General San Martin, Mendoza 5500, Argentina
| |
Collapse
|
6
|
Goyal S, Goyal S, Goins AE, Alles SR. Plant-derived natural products targeting ion channels for pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100128. [PMID: 37151956 PMCID: PMC10160805 DOI: 10.1016/j.ynpai.2023.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Chronic pain affects approximately one-fifth of people worldwide and reduces quality of life and in some cases, working ability. Ion channels expressed along nociceptive pathways affect neuronal excitability and as a result modulate pain experience. Several ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including chronic pain. Voltage-gated channels Na+ and Ca2+ channels, K+ channels, transient receptor potential channels (TRP), purinergic (P2X) channels and acid-sensing ion channels (ASICs) are some examples of ion channels exhibiting altered function or expression in different chronic pain states. Pharmacological approaches are being developed to mitigate dysregulation of these channels as potential treatment options. Since natural compounds of plant origin exert promising biological and pharmacological properties and are believed to possess less adverse effects compared to synthetic drugs, they have been widely studied as treatments for chronic pain for their ability to alter the functional activity of ion channels. A literature review was conducted using Medline, Google Scholar and PubMed, resulted in listing 79 natural compounds/extracts that are reported to interact with ion channels as part of their analgesic mechanism of action. Most in vitro studies utilized electrophysiological techniques to study the effect of natural compounds on ion channels using primary cultures of dorsal root ganglia (DRG) neurons. In vivo studies concentrated on different pain models and were conducted mainly in mice and rats. Proceeding into clinical trials will require further study to develop new, potent and specific ion channel modulators of plant origin.
Collapse
Affiliation(s)
- Sachin Goyal
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Shivali Goyal
- School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP 175045, India
| | - Aleyah E. Goins
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Sascha R.A. Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
- Corresponding author.
| |
Collapse
|
7
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
8
|
Pharmacological Dissection of the Crosstalk between Na V and Ca V Channels in GH3b6 Cells. Int J Mol Sci 2022; 23:ijms23020827. [PMID: 35055012 PMCID: PMC8775721 DOI: 10.3390/ijms23020827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.
Collapse
|
9
|
Kwon M, Jung IY, Cha M, Lee BH. Inhibition of the Nav1.7 Channel in the Trigeminal Ganglion Relieves Pulpitis Inflammatory Pain. Front Pharmacol 2021; 12:759730. [PMID: 34955831 PMCID: PMC8694709 DOI: 10.3389/fphar.2021.759730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Pulpitis causes significant changes in the peripheral nervous system, which induce hyperalgesia. However, the relationship between neuronal activity and Nav1.7 expression following pulpal noxious pain has not yet been investigated in the trigeminal ganglion (TG). The aim of our study was to verify whether experimentally induced pulpitis activates the expression of Nav1.7 peripherally and the neuronal activities of the TGs can be affected by Nav1.7 channel inhibition. Acute pulpitis was induced through allyl isothiocyanate (AITC) application to the rat maxillary molar tooth pulp. Three days after AITC application, abnormal pain behaviors were recorded, and the rats were euthanized to allow for immunohistochemical, optical imaging, and western blot analyses of the Nav1.7 expression in the TG. A significant increase in AITC-induced pain-like behaviors and histological evidence of pulpitis were observed. In addition, histological and western blot data showed that Nav1.7 expressions in the TGs were significantly higher in the AITC group than in the naive and saline group rats. Optical imaging showed that the AITC group showed higher neuronal activity after electrical stimulation of the TGs. Additionally, treatment of ProTxII, selective Nav1.7 blocker, on to the TGs in the AITC group effectively suppressed the hyperpolarized activity after electrical stimulation. These findings indicate that the inhibition of the Nav1.7 channel could modulate nociceptive signal processing in the TG following pulp inflammation.
Collapse
Affiliation(s)
- Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Il Young Jung
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Williams A, Villamor L, Fussell J, Loveless R, Smeyne D, Philp J, Shaikh A, Sittaramane V. Discovery of Quinoline-Derived Trifluoromethyl Alcohols as Antiepileptic and Analgesic Agents That Block Sodium Channels. ChemMedChem 2021; 17:e202100547. [PMID: 34632703 DOI: 10.1002/cmdc.202100547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Indexed: 11/08/2022]
Abstract
The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ashley Williams
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Laurie Villamor
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Jake Fussell
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Reid Loveless
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Dylan Smeyne
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Jack Philp
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Abid Shaikh
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA30460, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| |
Collapse
|
11
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
12
|
Liu C, Yu M, Li Y, Wang H, Xu C, Zhang X, Li M, Guo H, Ma D, Guo X. Lidocaine inhibits the metastatic potential of ovarian cancer by blocking Na V 1.5-mediated EMT and FAK/Paxillin signaling pathway. Cancer Med 2021; 10:337-349. [PMID: 33280262 PMCID: PMC7826465 DOI: 10.1002/cam4.3621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Lidocaine, one of the most commonly used local anesthetics during surgery, has been reported to suppress cancer cell growth via blocking voltage-gated sodium channels (VGSCs). VGSC 1.5 (NaV 1.5) is highly expressed in invasive cancers including ovarian cancer. This study aims to investigate whether lidocaine inhibits the malignancy of ovarian cancer through NaV 1.5 blockage. Human ovarian cancer, its metastatic cancer and normal ovarian tissues were probed with anti-NaV 1.5 antibody in situ. Human ovarian cancer A2780 and SKOV3 cells were cultured and their growth, epithelial-mesenchymal transition (EMT), migration, and invasion in the presence or absence of lidocaine together with underlying molecular mechanisms were assessed. Murine syngeneic ovarian cancer (ID8) model was also used to determine the chemotherapeutic efficiency of cisplatin in combination with lidocaine. The high level of NaV 1.5 expression was found in human ovarian cancer and even higher in its metastatic cancer but not in normal ovarian tissues. Lidocaine decreased the growth, EMT, migration, and invasion of human ovarian cancer A2780 and SKOV3 cells. Lidocaine enhanced the chemotherapeutic efficiency of cisplatin in both ovarian cancer cell cultures and a murine ovarian metastatic model. Furthermore, a downregulation of NaV 1.5 by siRNA transfection, or FAK inhibitor application, inhibited the malignant properties of SKOV3 cells through inactivating FAK/Paxillin signaling pathway. Our data may indicate that lidocaine suppresses the metastasis of ovarian cancer and sensitizes cisplatin through blocking NaV 1.5-mediated EMT and FAK/paxillin signaling pathway. The translational value of lidocaine local application as an ovarian cancer adjuvant treatment warrants further study.
Collapse
Affiliation(s)
- Chang Liu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ming Yu
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Yi Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hao Wang
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Chuanya Xu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Xiaoqing Zhang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Min Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hongyan Guo
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea and Westminster HospitalLondonUnited Kingdom
| | - Xiangyang Guo
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
13
|
The Somatosensory World of the African Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:197-220. [PMID: 34424517 DOI: 10.1007/978-3-030-65943-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
|
14
|
Kong YF, Sha WL, Wu XB, Zhao LX, Ma LJ, Gao YJ. CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice. Neurosci Bull 2020; 37:339-352. [PMID: 33196963 DOI: 10.1007/s12264-020-00608-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chemokines and receptors have been implicated in the pathogenesis of chronic pain. Here, we report that spinal nerve ligation (SNL) increased CXCR3 expression in dorsal root ganglion (DRG) neurons, and intra-DRG injection of Cxcr3 shRNA attenuated the SNL-induced mechanical allodynia and heat hyperalgesia. SNL also increased the mRNA levels of CXCL9, CXCL10, and CXCL11, whereas only CXCL10 increased the number of action potentials (APs) in DRG neurons. Furthermore, in Cxcr3-/- mice, CXCL10 did not increase the number of APs, and the SNL-induced increase of the numbers of APs in DRG neurons was reduced. Finally, CXCL10 induced the activation of p38 and ERK in ND7-23 neuronal cells and DRG neurons. Pretreatment of DRG neurons with the P38 inhibitor SB203580 decreased the number of APs induced by CXCL10. Our data indicate that CXCR3, activated by CXCL10, mediates p38 and ERK activation in DRG neurons and enhances neuronal excitability, which contributes to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Yan-Fang Kong
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Lin-Xia Zhao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Ling-Jie Ma
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
15
|
Neosaxitoxin Inhibits the Expression of Inflammation Markers of the M1 Phenotype in Macrophages. Mar Drugs 2020; 18:md18060283. [PMID: 32471037 PMCID: PMC7345530 DOI: 10.3390/md18060283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Neosaxitoxin (NeoSTX) has been used as a local anesthetic, but its anti-inflammatory effects have not been well defined. In the present study, we investigate the effects of NeoSTX on lipopolysaccharide (LPS)-activated macrophages. (2) Methods: Raw 264.7 and equine PBMC cells were incubated with or without 100 ng/mL LPS in the presence or absence of NeoSTX (1µM). The expression of inflammatory mediators was assessed: nitric oxide (NO) content using the Griess assay, TNF-α content using the ELISA assay, and mRNA of inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) using a real-time polymerase chain reaction. (3) Results: NeoSTX (1 μM) significantly inhibited the release of NO, TNF-α, and expression of iNOS, IL-1β, and TNF-α in LPS-activated macrophages of both species studied. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by NeoSTX. Additionally, NeoSTX deactivated polarized macrophages to M1 by LPS without compromising its polarization towards M2. (4) Conclusions: NeoSTX inhibits LPS-induced release of inflammatory mediators from macrophages, and these effects may be mediated by the blockade of voltage-gated sodium channels (VGSC).
Collapse
|
16
|
Xu X, Dai Y, Feng L, Zhang H, Hu Y, Xu L, Zhu X, Jiang Y. Knockdown of Nav1.5 inhibits cell proliferation, migration and invasion via Wnt/β-catenin signaling pathway in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:527-535. [PMID: 32400862 DOI: 10.1093/abbs/gmaa021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of malignant oral cancer that has a high recurrence rate. Voltage-gated sodium channel Nav1.5 was reported to be highly up-regulated in various types of cancers. However, the regulatory mechanism of Nav1.5 in cancers including OSCC still remains elusive. In this study, Nav1.5 was found to be highly expressed in OSCC tissues and cells. Through the analysis of clinical characteristics of patients, we found that the expression level of Nav1.5 was closely related to neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, tumor-node-metastasis stage, and lymph node metastasis. Moreover, we found that Nav1.5 mainly located on the cell membrane as well as cytoplasm and knockdown of Nav1.5 promoted cell apoptosis and decreased proliferation in OSCC. Transwell assay results showed that knockdown of Nav1.5 effectively suppressed the migration and invasion in OSCC. In addition, knockdown of Nav1.5 was found to inhibit the protein and mRNA expression levels of β-catenin, cyclin D1, and c-Myc in the Wnt/β-catenin signaling pathway. In summary, these results indicated that Nav1.5 may be involved in the progression of OSCC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Xu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yongzheng Dai
- Hefei School of Stomatology, Anhui Medical University, Hefei 230001, China
- Department of General Dentistry, Hefei Stomatological Hospital, Hefei 230001, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongli Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yukun Hu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Le Xu
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xinwei Zhu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Binhu Clinical Division, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei 230601, China
| | - Yong Jiang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
17
|
Smith ESJ, Park TJ, Lewin GR. Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:313-325. [PMID: 32206859 PMCID: PMC7192887 DOI: 10.1007/s00359-020-01414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| |
Collapse
|
18
|
Johnson SR, Rikli HG. Aspartic Acid Isomerization Characterized by High Definition Mass Spectrometry Significantly Alters the Bioactivity of a Novel Toxin from Poecilotheria. Toxins (Basel) 2020; 12:E207. [PMID: 32218140 PMCID: PMC7232244 DOI: 10.3390/toxins12040207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of "tiger" spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product's diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.
Collapse
Affiliation(s)
- Stephen R. Johnson
- Carbon Dynamics Institute LLC, Sherman, IL 62684, USA
- Chemistry Department, University of Illinois Springfield, Springfield, IL 62703, USA
| | - Hillary G. Rikli
- College of Liberal Arts & Sciences, University of Illinois Springfield, Springfield, IL 62703, USA;
| |
Collapse
|
19
|
Li ZM, Chen LX, Li H. Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go? Curr Med Sci 2019; 39:863-873. [PMID: 31845216 DOI: 10.1007/s11596-019-2117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/02/2019] [Indexed: 11/27/2022]
Abstract
Voltage-gated sodium (Nav) channels are critical players in the generation and propagation of action potentials by triggering membrane depolarization. Mutations in Nav channels are associated with a variety of channelopathies, which makes them relevant targets for pharmaceutical intervention. So far, the cryoelectron microscopic structure of the human Nav1.2, Nav1.4, and Nav1.7 has been reported, which sheds light on the molecular basis of functional mechanism of Nav channels and provides a path toward structure-based drug discovery. In this review, we focus on the recent advances in the structure, molecular mechanism and modulation of Nav channels, and state updated sodium channel blockers for the treatment of pathophysiology disorders and briefly discuss where the blockers may be developed in the future.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Altered expression and functional role of ion channels in leukemia: bench to bedside. Clin Transl Oncol 2019; 22:283-293. [PMID: 31280433 DOI: 10.1007/s12094-019-02147-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022]
Abstract
Leukemic cells' (LCs) survival, proliferation, activation, differentiation, and invasiveness/migration can be mediated through the function of cation and anion channels that are involved in volume regulation, polarization, cytoskeleton, and extracellular matrix reorganization. This study will review the expression of ion channels in LCs and their possible function in leukemia progression. We searched relevant literature by a PubMed (2002-2019) of English-language literature using the terms "ion channels", "leukemia", "proliferation", "differentiation", "apoptosis", and "migration". Altered expression and dysfunction of ion channels can have a strong impact on hematopoietic cell and LCs physiology and signaling, which contributes to the vital processes such as proliferation, differentiation, and apoptosis. Indeed, it can be stated that changing expression of ion channels can affect the onset and progression as well as clinical features and therapeutic responses of leukemia via inducing the maintenance of LCs. Since ion channels are membrane proteins, they can be easily accessible in LCs for understanding their influence on leukemia progression. On the other hand, ion channels can be new potential targets for chemotherapeutic agents, which may open a novel clinical and pharmaceutical field in leukemia therapy.
Collapse
|
21
|
Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol 2019; 10:366. [PMID: 31031623 PMCID: PMC6470632 DOI: 10.3389/fphar.2019.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Spider venom-derived cysteine knot peptides are a mega-diverse class of molecules that exhibit unique pharmacological properties to modulate key membrane protein targets. Voltage-gated sodium channels (NaV) are often targeted by these peptides to allosterically promote opening or closing of the channel by binding to structural domains outside the channel pore. These effects can result in modified pain responses, muscle paralysis, cardiac arrest, priapism, and numbness. Although such effects are often deleterious, subtype selective spider venom peptides are showing potential to treat a range of neurological disorders, including chronic pain and epilepsy. This review examines the structure–activity relationships of cysteine knot peptides from spider venoms that modulate NaV and discusses their potential as leads to novel therapies for neurological disorders.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
22
|
Chen B, Zhang C, Wang Z, Chen Y, Xie H, Li S, Liu X, Liu Z, Chen P. Mechanistic insights into Nav1.7-dependent regulation of rat prostate cancer cell invasiveness revealed by toxin probes and proteomic analysis. FEBS J 2019; 286:2549-2561. [PMID: 30927332 DOI: 10.1111/febs.14823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channels are involved in tumor metastasis, as potentiating or attenuating their activities affects the migration and invasion process of tumor cells. In the present study, we tested the effect of two peptide toxins, JZTX-I and HNTX-III which function as Nav1.7 activator and inhibitor, respectively, on the migration and invasion ability of prostate cancer (PCa) cell line Mat-LyLu. These two peptides showed opposite effects, and subsequently a comparative proteomic analysis characterized 64 differentially expressed membrane proteins from the JZTX-I- and HNTX-III-treated groups. Among these, 15 proteins were down-regulated and 49 proteins were up-regulated in the HNTX-III group. Bioinformatic analysis showed eight proteins are cytoskeleton proteins or related regulators, which might play important roles in the metastasis of Mat-LyLu cells. The altered expressions of four of these proteins, fascin, muskelin, annexin A2, and cofilin-1, were validated by western blot analysis. Further function network analysis of these proteins revealed that the Rho family GTPases RhoA and Rac1 might be of particular importance for the rat PCa cell invasion. Pharmacological data revealed that JZTX-I and HNTX-III could modulate the Rho signaling pathway in a Nav1.7-dependent manner. In summary, this study suggests that the Nav1.7-dependent regulation of Rho GTPase activity plays a vital role in Mat-LyLu cell migration and invasion and provides new insights into the treatment of PCa.
Collapse
Affiliation(s)
- Bo Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Changxin Zhang
- The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zijun Wang
- The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huali Xie
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Sha Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqian Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,The Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
23
|
Liu M, Zhong J, Xia L, Dou N, Li S. The expression of voltage-gated sodium channels in trigeminal nerve following chronic constriction injury in rats. Int J Neurosci 2019; 129:955-962. [PMID: 30889362 DOI: 10.1080/00207454.2019.1595616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Despite the etiology of trigeminal neuralgia has been verified by microvascular decompression as vascular compression of the trigeminal root, very few researches concerning its underlying pathogenesis has been reported in the literature. The present study focused on those voltage-gated sodium channels, which are the structural basis for generation of ectopic action potentials. Methods: The trigeminal neuralgia modeling was obtained with infraorbital nerve chronic constriction injury (ION-CCI) in rats. Two weeks postoperatively, the infraorbital nerve (TN), the trigeminal ganglion (TG), and the brain stem (BS) were removed and analyzed with a series of molecular biological techniques. Results: Western blot depicted a significant up-regulation of Nav1.3 in TN and TG but not in BS, while none of the other isoforms (Nav1.6, Nav1.7, Nav1.8, or Nav1.9) presented a statistical change. The Nav1.3 from ION-CCI group was quantified as 2.5-fold and 1.7-fold than that from sham group in TN and TG, respectively (p < .05). Immunocytochemistry showed the Nav1.3-IR from ION-CCI group accounted for 21.2 ± 2.3% versus 6.1 ± 1.2% from sham group in TN, while the Nav1.3-positive neurons from ION-CCI group accounted for 34.1 ± 3.5% versus 11.2 ± 1.8% from sham group in TG. Immunohistochemical labeling showed the Nav1.3 was co-localized with CGRP and IB4 but not with GFAP or NF-200 in TG. Conclusion: ION-CCI may give rise to an up-regulation of Nav1.3 in trigeminal nerve as well as in C-type neurons at the trigeminal ganglion. It implied that the ectopic action potential may generate from both the compressed site of the trigeminal nerve and the ganglion rather than from the trigeminal nuclei.
Collapse
Affiliation(s)
- Mingxing Liu
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Jun Zhong
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ningning Dou
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| |
Collapse
|
24
|
Cai S, Bellampalli SS, Yu J, Li W, Ji Y, Wijeratne EMK, Dorame A, Luo S, Shan Z, Khanna M, Moutal A, Streicher JM, Gunatilaka AAL, Khanna R. (-)-Hardwickiic Acid and Hautriwaic Acid Induce Antinociception via Blockade of Tetrodotoxin-Sensitive Voltage-Dependent Sodium Channels. ACS Chem Neurosci 2019; 10:1716-1728. [PMID: 30525440 DOI: 10.1021/acschemneuro.8b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.
Collapse
Affiliation(s)
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | | | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | - May Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | | | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
25
|
Meredith FL, Rennie KJ. Regional and Developmental Differences in Na + Currents in Vestibular Primary Afferent Neurons. Front Cell Neurosci 2018; 12:423. [PMID: 30487736 PMCID: PMC6246661 DOI: 10.3389/fncel.2018.00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200–300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5–11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 μM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5–9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5–14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
26
|
Sun W, Ma M, Yu H, Yu H. Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Na v 1.7. J Cell Biochem 2018; 119:9888-9898. [PMID: 30129228 DOI: 10.1002/jcb.27310] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (lncRNA) has been validated to participate in nociception in inflammatory pain, presenting as a potential target against anesthesia. Previous research work confirmed the correlation between lncRNA X inactivate-specific transcript (XIST) and inflammation. However, its role in inflammatory pain is undefined. In animal pain models, voltage-gated sodium channels (VGSCs) reportedly participate in neural excitation. In this study, we observed the high expression of XIST and VGSC 1.7 (Nav 1.7) in the dorsal root ganglion (DRG) of the complete Freund's adjuvant (CFA)-induced rat inflammatory pain model. Furthermore, XIST inhibition alleviated pain behavior and the activation of DRG satellite glial cells by suppressing glial fibrillary acidic protein (GFAP) expression, as well as inflammatory cytokine levels of interleukin-6 and tumor necrosis factor-α. XIST downregulation increased the mechanical pain threshold in an inflammatory pain model. Moreover, the expression of miR-146a was decreased in CFA rats. In vitro, XIST acted as a sponge of miR-146a, which targeted Nav 1.7 via bioinformatic prediction, luciferase reporter, and pull-down assay. More importantly, activation of the Nav 1.7 pathway or miR-146 depression both reversed XIST knockdown-inhibited satellite glial cell activation and inflammatory pain in CFA rats. These results suggest that cessation of XIST may ameliorate inflammatory pain by acting as a sponge of miR-146a to inhibit Nav1.7, implying a promising strategy against inflammatory pain.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Anesthesia, Cangzhou Central Hospital, CangZhou, China
| | - Meina Ma
- Department of Anesthesia, Cangzhou Central Hospital, CangZhou, China
| | - Hongmei Yu
- Department of Anesthesia, Cangzhou Central Hospital, CangZhou, China
| | - Hong Yu
- Department of Anesthesia, Cangzhou Central Hospital, CangZhou, China
| |
Collapse
|
27
|
Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology 2018; 140:43-61. [PMID: 30056126 DOI: 10.1016/j.neuropharm.2018.07.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Neurotoxicity remains the most common adverse effect of oxaliplatin, limiting its clinical use. In the present study, we developed a mouse model of chronic oxaliplatin-induced neuropathy, which mimics both sensory and motor deficits observed in patients, in a clinically relevant time course. Repeated oxaliplatin administration in mice induced both cephalic and extracephalic long lasting mechanical and cold hypersensitivity after the first injection as well as delayed sensorimotor deficits and a depression-like phenotype. Using this model, we report that riluzole prevents both sensory and motor deficits induced by oxaliplatin as well as the depression-like phenotype induced by cumulative chemotherapeutic drug doses. All the beneficial effects are due to riluzole action on the TREK-1 potassium channel, which plays a central role in its therapeutic action. Riluzole has no negative effect on oxaliplatin antiproliferative capacity in human colorectal cancer cells and on its anticancer effect in a mouse model of colorectal cancer. Moreover, riluzole decreases human colorectal cancer cell line viability in vitro and inhibits polyp development in vivo. The present data in mice may support the need to clinically test riluzole in oxaliplatin-treated cancer patients and state for the important role of the TREK-1 channel in pain perception.
Collapse
|
28
|
Sun Y, Schaar A, Sukumaran P, Dhasarathy A, Singh BB. TGFβ-induced epithelial-to-mesenchymal transition in prostate cancer cells is mediated via TRPM7 expression. Mol Carcinog 2018; 57:752-761. [PMID: 29500887 PMCID: PMC5947546 DOI: 10.1002/mc.22797] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Growth factors, such as the transforming growth factor beta (TGFβ), play an important role in promoting metastasis of prostate cancer, thus understanding how TGFβ could induce prostate cancer cell migration may enable us to develop targeted strategies for treatment of advanced metastatic prostate cancer. To more clearly define the mechanism(s) involved in prostate cancer cell migration, we undertook a series of studies utilizing non‐malignant prostate epithelial cells RWPE1 and prostate cancer DU145 and PC3 cells. Our studies show that increased cell migration was observed in prostate cancer cells, which was mediated through epithelial‐to‐mesenchymal transition (EMT). Importantly, addition of Mg2+, but not Ca2+, increased cell migration. Furthermore, TRPM7 expression, which functions as an Mg2+ influx channel, was also increased in prostate cancer cells. Inhibition of TRPM7 currents by 2‐APB, significantly blocked cell migration in both DU145 and PC3 cells. Addition of growth factor TGFβ showed a further increase in cell migration, which was again blocked by the addition of 2‐APB. Importantly, TGFβ addition also significantly increased TRPM7 expression and function, and silencing of TRPM7 negated TGFβ‐induced cell migration along with a decrease in EMT markers showing loss of cell adhesion. Furthermore, resveratrol, which decreases prostate cancer cell migration, inhibited TRPM7 expression and function including TGFβ‐induced cell migration and activation of TRPM7 function. Together, these results suggest that Mg2+ influx via TRPM7 promotes cell migration by inducing EMT in prostate cancer cells and resveratrol negatively modulates TRPM7 function thereby inhibiting prostate cancer metastasis.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Anne Schaar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Pramod Sukumaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
29
|
Yang F, Liu S, Zhang Y, Qin C, Xu L, Li W, Cao Z, Li W, Wu Y. Expression of recombinant α-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels. Peptides 2018; 99:153-160. [PMID: 28986244 DOI: 10.1016/j.peptides.2017.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022]
Abstract
Scorpion toxins are invaluable pharmacological tools for studying ion channels and potential drugs for channelopathies. The long-chain toxins from scorpion venom with four disulfide bridges exhibit their unusual bioactivity or biotoxicity by acting on the sodium channels. However, the functional properties of most toxins are still unclear due to their tiny amounts in crude venom and their challenging production by chemical and gene engineering techniques. Here, we expressed one of the long-chain α-toxins, BmKM9, found in the venom of the scorpion Buthus martensii Karsch and characterized its pharmacological properties on sodium channels. Unlike previous toxin production, the recombinant BmKM9 (rBmKM9) possessed no additional amino acid residues such as the His-tag and thrombin cleavage site. The refolded toxin could inhibit the inactivation of rNav1.4, hNav1.5 and hNav1.7 sodium channels. Dose-response experiments were further conducted on these channels. The calculated EC50 values were 131.7±6.6nM for rNav1.4, 454.2±50.1nM for hNav1.5 and 30.9±10.3μM for hNav1.7. The channel activation experiments indicated that the rBmKM9 toxin could shift the activation curves of rNav1.4 and hNav1.5 channels toward a more negative direction and present the typical features of a β-toxin. However, instead of the same activation property on sodium channels, the rBmKM9 toxin could result in different inactivation shift capabilities on rNav1.4 and hNav1.5 channels. The V1/2 values of the steady-state inactivation were altered to be more positive for rNav1.4 and more negative for hNav1.5. Moreover, the recovery of the hNav1.5 channel from inactivation was more significantly delayed than that of the rNav1.4 channel by exposure to rBmKM9. Together, these findings highlighted that the rBmKM9 toxin presents the pharmacological properties of both α- and β-toxins, which would increase the challenge to the classical classification of scorpion toxins. Furthermore, the expression method and functional information on sodium channels would promote the potential application of toxins and contribute to further channel structural and functional studies.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaoyun Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenhu Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingna Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhua Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
30
|
Yan YY, Li CY, Zhou L, Ao LY, Fang WR, Li YM. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci 2017; 190:68-77. [PMID: 28964813 DOI: 10.1016/j.lfs.2017.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/09/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is maladaptive pain caused by injury or dysfunction in peripheral and central nervous system, and remains a worldwide thorny problem leading to decreases in physical and mental quality of people's life. Currently, drug therapy is the main treatment regimen for resolving pain, while effective drugs are still unmet in medical need, and commonly used drugs such as anticonvulsants and antidepressants often make patients experience adverse drug reactions like dizziness, somnolence, severe headache, and high blood pressure. Thus, in this review we overview the anatomical physiology, underlying mechanisms of neuropathic pain to provide a better understanding in the initiation, development, maintenance, and modulation of this pervasive disease, and inspire research in the unclear mechanisms as well as potential targets. Furthermore, we summarized the existing drug therapies and new compounds that have shown antalgic effects in laboratory studies to be helpful for rational regimens in clinical treatment and promotion in novel drug discovery.
Collapse
Affiliation(s)
- Yun-Yi Yan
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lu-Yao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Tosti E, Boni R, Gallo A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar Drugs 2017; 15:E295. [PMID: 28937587 PMCID: PMC5666403 DOI: 10.3390/md15100295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022] Open
Abstract
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions.
Collapse
Affiliation(s)
- Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 75100 Potenza, Italy.
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
32
|
Sun J, Duan G, Li N, Guo S, Zhang Y, Ying Y, Zhang M, Wang Q, Liu JY, Zhang X. SCN11A variants may influence postoperative pain sensitivity after gynecological surgery in Chinese Han female patients. Medicine (Baltimore) 2017; 96:e8149. [PMID: 28953656 PMCID: PMC5626299 DOI: 10.1097/md.0000000000008149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nav1.9, encoded by sodium voltage-gated channel alpha subunit 11 (SCN11A), is one of the main sodium channels involved in pain transmission. Dysfunction of Nav1.9 alters pain sensitivity, resulting in insensitivity to pain or familial episodic pain. Our purpose was to explore the effects of SCN11A single-nucleotide polymorphisms (SNPs) on postoperative pain sensitivity in Chinese Han female patients after gynecological surgery.Here, we combined the methods of tag SNPs and candidate SNPs. The associations between eleven SCN11A SNPs and basic pain sensitivity in female healthy volunteers were analyzed using the Plink software. The SNPs associated with basic pain sensitivity were termed positive SCN11A SNPs. The effect of these positive SNPs on postoperative pain sensitivity was explored in patients undergoing elective gynecological laparoscopic surgery and receiving postoperative patient-controlled analgesia (PCA). We assessed pain intensity using the numeric pain rating scale (NRS) and recorded PCA consumption.Our results suggested that 5 SNPs (rs33985936, rs13080116, rs11720988, rs11709492, and rs11720013) in 11 tag and candidate SNPs were associated with basic pain sensitivity (P < .05). No evident association was found between the 5 positive SNPs and NRS (P > .05). However, among these positive SNPs, the minor alleles of rs33985936 and rs13080116 were significantly associated with increased PCA consumption (P < .01).To our knowledge, this is the first study to report that SCN11A SNPs affect postoperative pain sensitivity in Chinese Han women after gynecological surgery. The SNP rs33985936 and rs13080116 may serve as novel predictors for postoperative pain.
Collapse
Affiliation(s)
- Jiaoli Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Guangyou Duan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Shanna Guo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Yuhao Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Anesthesiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Ying Ying
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Qingli Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Anesthesiology, Wuhan General Hospital of Guangzhou Military
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
33
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|