1
|
Pot MT, Visser ME, Helm B, von Rönn JAC, van der Jeugd HP. Revisiting Perdeck's massive avian migration experiments debunks alternative social interpretations. Biol Lett 2024; 20:20240217. [PMID: 38955225 DOI: 10.1098/rsbl.2024.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Whether avian migrants can adapt to their changing world depends on the relative importance of genetic and environmental variation for the timing and direction of migration. In the classic series of field experiments on avian migration, A. C. Perdeck discovered that translocated juveniles failed to reach goal areas, whereas translocated adults performed 'true-goal navigation'. His translocations of > 14 000 common starlings (Sturnus vulgaris) suggested that genetic mechanisms guide juveniles into a population-specific direction, i.e. 'vector navigation'. However, alternative explanations involving social learning after release in juveniles could not be excluded. By adding historical data from translocation sites, data that was unavailable in Perdeck's days, and by integrated analyses including the original data, we could not explain juvenile migrations from possible social information upon release. Despite their highly social behaviour, our findings are consistent with the idea that juvenile starlings follow inherited information and independently reach their winter quarters. Similar to more solitarily migrating songbirds, starlings would require genetic change to adjust the migration route in response to global change.
Collapse
Affiliation(s)
- Morrison T Pot
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Barbara Helm
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Swiss Ornithological Institute, Sempach, Lucerne, Switzerland
| | | | - Henk P van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
2
|
Hagstrum JT. Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate "map" plus a brief discussion of the alternative infrasound direction-finding hypothesis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:295-313. [PMID: 37071206 DOI: 10.1007/s00359-023-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
The geomagnetic field (GMF) is a worldwide source of compass cues used by animals and humans alike. The inclination of GMF flux lines also provides information on geomagnetic latitude. A long-disputed question, however, is whether horizontal gradients in GMF intensity, in combination with changes in inclination, provide bicoordinate "map" information. Multiple sources contribute to the total GMF, the largest of which is the core field. The ubiquitous crustal field is much less intense, but in both land and marine settings is strong enough at low altitudes (< 700 m; sea level) to mask the core field's weak N-S intensity gradient (~ 3-5 nT/km) over 10 s to 100 s of km. Non-orthogonal geomagnetic gradients, the lack of consistent E-W gradients, and the local masking of core-field intensity gradients by the crustal field, therefore, are grounds for rejection of the bicoordinate geomagnetic "map" hypothesis. In addition, the alternative infrasound direction-finding hypothesis is briefly reviewed. The GMF's diurnal variation has long been suggested as a possible Zeitgeber (timekeeper) for circadian rhythms and could explain the GMF's non-compass role in the avian navigational system. Requirements for detection of this weaker diurnal signal (~ 20-50 nT) might explain the magnetic alignment of resting and grazing animals.
Collapse
|
3
|
McLaren JD, Schmaljohann H, Blasius B. Gauge-and-compass migration: inherited magnetic headings and signposts can adapt to changing geomagnetic landscapes. MOVEMENT ECOLOGY 2023; 11:37. [PMID: 37408064 DOI: 10.1186/s40462-023-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited magnetic-based migration has not yet been assessed as a population-level process, particularly across strong geomagnetic gradients or where long-term geomagnetic shifts (hereafter, secular variation) could create mismatches with magnetic headings. Therefore, it remains unclear whether inherited magnetic headings and signposts could potentially adapt to secular variation under natural selection. METHODS To address these unknowns, we modelled migratory orientation programs using an evolutionary algorithm incorporating global geomagnetic data (1900-2023). Modelled population mixing incorporated both natal dispersal and trans-generational inheritance of magnetic headings and signposts, including intrinsic (stochastic) variability in inheritance. Using the model, we assessed robustness of trans-hemispheric migration of a migratory songbird whose Nearctic breeding grounds have undergone rapid secular variation (mean 34° clockwise drift in declination, 1900-2023), and which travels across strong geomagnetic gradients via Europe to Africa. RESULTS Model-evolved magnetic-signposted migration was overall successful throughout the 124-year period, with 60-90% mean successful arrival across a broad range in plausible precision in compass headings and gauging signposts. Signposted migration reduced trans-Atlantic flight distances and was up to twice as successful compared with non-signposted migration. Magnetic headings shifted plastically in response to the secular variation (mean 16°-17° among orientation programs), whereas signpost latitudes were more constrained (3°-5° mean shifts). This plasticity required intrinsic variability in inheritance (model-evolved σ ≈ 2.6° standard error), preventing clockwise secular drift from causing unsustainable open-ocean flights. CONCLUSIONS Our study supports the potential long-term viability of inherited magnetic migratory headings and signposts, and illustrates more generally how inherited migratory orientation programs can both mediate and constrain evolution of routes, in response to global environmental change.
Collapse
Affiliation(s)
- James D McLaren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl Von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
- Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
4
|
Sensitivity threshold of avian magnetic compass to oscillating magnetic field is species-specific. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Zein B, Long JA, Safi K, Kölzsch A, Benitez-Paez F, Wikelski M, Kruckenberg H, Demšar U. Simulating geomagnetic bird navigation using novel high-resolution geomagnetic data. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Magnetic maps in animal navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:41-67. [PMID: 34999936 PMCID: PMC8918461 DOI: 10.1007/s00359-021-01529-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022]
Abstract
In addition to providing animals with a source of directional or ‘compass’ information, Earth’s magnetic field also provides a potential source of positional or ‘map’ information that animals might exploit to assess location. In less than a generation, the idea that animals use Earth’s magnetic field as a kind of map has gone from a contentious hypothesis to a well-established tenet of animal navigation. Diverse animals ranging from lobsters to birds are now known to use magnetic positional information for a variety of purposes, including staying on track along migratory pathways, adjusting food intake at appropriate points in a migration, remaining within a suitable oceanic region, and navigating toward specific goals. Recent findings also indicate that sea turtles, salmon, and at least some birds imprint on the magnetic field of their natal area when young and use this information to facilitate return as adults, a process that may underlie long-distance natal homing (a.k.a. natal philopatry) in many species. Despite recent progress, much remains to be learned about the organization of magnetic maps, how they develop, and how animals use them in navigation.
Collapse
|
7
|
Wiltschko R, Wiltschko W. The discovery of the use of magnetic navigational information. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:9-18. [PMID: 34476571 PMCID: PMC8918449 DOI: 10.1007/s00359-021-01507-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022]
Abstract
The magnetic field of the Earth provides animals with various kinds of information. Its use as a compass was discovered in the mid-1960s in birds, when it was first met with considerable skepticism, because it initially proved difficult to obtain evidence for magnetic sensitivity by conditioning experiments. Meanwhile, a magnetic compass was found to be widespread. It has now been demonstrated in members of all vertebrate classes, in mollusks and several arthropod species, in crustaceans as well as in insects. The use of the geomagnetic field as a 'map' for determining position, although already considered in the nineteenth century, was demonstrated by magnetically simulating displacements only after 2000, namely when animals, tested in the magnetic field of a distant site, responded as if they were physically displaced to that site and compensated for the displacement. Another use of the magnetic field is that as a 'sign post' or trigger: specific magnetic conditions elicit spontaneous responses that are helpful when animals reach the regions where these magnetic characteristics occur. Altogether, the geomagnetic field is a widely used valuable source of navigational information for mobile animals.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| | - Wolfgang Wiltschko
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Zolotareva AD, Chernetsov NS. Celestial Orientation in Birds. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
10
|
Zein B, Long JA, Safi K, Kölzsch A, Wikelski M, Kruckenberg H, Demšar U. Simulation experiment to test strategies of geomagnetic navigation during long-distance bird migration. MOVEMENT ECOLOGY 2021; 9:46. [PMID: 34526152 PMCID: PMC8442449 DOI: 10.1186/s40462-021-00283-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Different theories suggest birds may use compass or map navigational systems associated with Earth's magnetic intensity or inclination, especially during migratory flights. These theories have only been tested by considering properties of the Earth's magnetic field at coarse temporal scales, typically ignoring the temporal dynamics of geomagnetic values that may affect migratory navigational capacity. METHODS We designed a simulation experiment to study if and how birds use the geomagnetic field during migration by using both high resolution GPS tracking data and geomagnetic data at relatively fine spatial and temporal resolutions in comparison to previous studies. Our simulations use correlated random walks (CRW) and correlated random bridge (CRB) models to model different navigational strategies based on underlying dynamic geomagnetic data. We translated navigational strategies associated with geomagnetic cues into probability surfaces that are included in the random walk models. Simulated trajectories from these models were compared to the actual GPS trajectories of migratory birds using 3 different similarity measurements to evaluate which of the strategies was most likely to have occurred. RESULTS AND CONCLUSION We designed a simulation experiment which can be applied to different wildlife species under varying conditions worldwide. In the case of our example species, we found that a compass-type strategy based on taxis, defined as movement towards an extreme value, produced the closest and most similar trajectories when compared to original GPS tracking data in CRW models. Our results indicate less evidence for map navigation (constant heading and bi-gradient taxis navigation). Additionally, our results indicate a multifactorial navigational mechanism necessitating more than one cue for successful navigation to the target. This is apparent from our simulations because the modelled endpoints of the trajectories of the CRW models do not reach close proximity to the target location of the GPS trajectory when simulated with geomagnetic navigational strategies alone. Additionally, the magnitude of the effect of the geomagnetic cues during navigation in our models was low in our CRB models. More research on the scale effects of the geomagnetic field on navigation, along with temporally varying geomagnetic data could be useful for further improving future models.
Collapse
Affiliation(s)
- Beate Zein
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, KY16 9AL, St Andrews, Scotland, UK.
| | - Jed A Long
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, KY16 9AL, St Andrews, Scotland, UK
- Department of Geography & Environment, Western University, London, ON, Canada
| | - Kamran Safi
- Department of Migration, MPI of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andrea Kölzsch
- Department of Migration, MPI of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Institute for Wetlands and Waterbird Research E.V, Verden (Aller), Germany
| | - Martin Wikelski
- Department of Migration, MPI of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457, Konstanz, Germany
| | - Helmut Kruckenberg
- Institute for Wetlands and Waterbird Research E.V, Verden (Aller), Germany
| | - Urška Demšar
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, KY16 9AL, St Andrews, Scotland, UK
| |
Collapse
|
11
|
Alyan SH. Short-range homing in camels: displacement experiments. Biol Open 2021; 10:271143. [PMID: 34357390 PMCID: PMC8353260 DOI: 10.1242/bio.058850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Camels (Camelus dromedarius) are known to have good navigational abilities and can find their home after displacement to far places; however, there are no studies available on the navigational strategies employed by the camels in homing behavior. Thus, the aim of this study was to investigate these strategies by displacing female camels equipped with GPS trackers 6 km away from home to totally unfamiliar locations. The experiments comprised displacing nursing or non-nursing female camels 6 km from their living pens to an unfamiliar release site. Some camels were taken to the release site on foot, others were hauled on a truck, both during daytime and nighttime. Displacements journeys were either in a straight direction to the release points, or they consisted of a convoluted path. As a result, camels that had straight outward journeys were able to return home efficiently and rather directly, but camels that had convoluted trips to the release point failed to do so. Moreover, impairing olfactory, visual, and auditory inputs by using mouth/nose muzzles, eye covers and headphones did not affect homing ability. Based on these experiments the most likely hypothesis is that during their small-scale round trips the camels relied on path integration, and that this strategy is disrupted when the camels were subjected to disorientation procedures before release. Summary: The study reports a series of experiments aimed at understanding the orientation mechanisms of Arabian camels in the Rub' al Khali desert in the UAE. Camels were taken either on foot or inside trucks to unfamiliar release points, some 6 km from their living pens. Camels homed successfully after simple displacements but seemed lost after a looping journey. It is inferred that camels use path integration, dead reckoning, after short simple displacements.
Collapse
Affiliation(s)
- Sofyan H Alyan
- Department of Biology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Benitez-Paez F, Brum-Bastos VDS, Beggan CD, Long JA, Demšar U. Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration. MOVEMENT ECOLOGY 2021; 9:31. [PMID: 34116722 PMCID: PMC8196450 DOI: 10.1186/s40462-021-00268-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Migratory animals use information from the Earth's magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. METHODS We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency's Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. RESULTS We find that the average absolute error of intensity is - 21.6 nT (95% CI [- 22.26555, - 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured. CONCLUSIONS By using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.
Collapse
Affiliation(s)
- Fernando Benitez-Paez
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- The Alan Turing Institute British Library, England, London, UK
| | - Vanessa da Silva Brum-Bastos
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
| | - Ciarán D Beggan
- British Geological Survey, Research Ave South, Riccarton, Edinburgh, Scotland, UK
| | - Jed A Long
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- Department of Geography and Environment, Western University, London, Ontario, Canada
| | - Urška Demšar
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK.
| |
Collapse
|
13
|
Tyagi T, Bhardwaj SK. Magnetic Compass Orientation in a Palaearctic-Indian Night Migrant, the Red-Headed Bunting. Animals (Basel) 2021; 11:ani11061541. [PMID: 34070376 PMCID: PMC8227375 DOI: 10.3390/ani11061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The earth’s magnetic field, celestial cues, and retention of geographical cues en route provide birds with compass knowledge during migration. The magnetic compass works on the direction of the magnetic field, specifically, the course of the field lines. We tested Red-headed Buntings in orientation cages in the evening during spring migration. Simulated overcast testing resulted in a northerly mean direction, while in clear skies, birds oriented in an NNW (north–northwest) direction. Buntings were exposed to 120° anticlockwise shifted magnetic fields under simulated overcast skies and responded by shifting their orientation accordingly. The results showed that this Palaearctic night migrant possesses a magnetic compass, as well as the fact that magnetic cues act as primary directional messengers. When birds were exposed to different environmental conditions at 22 °C and 38 °C temperatures under simulated overcast conditions, they showed a delay in Zugunruhe (migratory restlessness) at 22 °C, while an advance migratory restlessness was observed under 38 °C conditions. Hot and cold weather clearly influenced the timing of migrations in Red-headed Buntings, but not the direction. Abstract Red-headed Buntings (Emberiza bruniceps) perform long-distance migrations within their southerly overwintering grounds and breeding areas in the northern hemisphere. Long-distance migration demands essential orientation mechanisms. The earth’s magnetic field, celestial cues, and memorization of geographical cues en route provide birds with compass knowledge during migration. Birds were tested during spring migration for orientation under natural clear skies, simulated overcast skies at natural day length and temperature, simulated overcast at 22 °C and 38 °C temperatures, and in the deflected (−120°) magnetic field. Under clear skies, the Red-headed Buntings were oriented NNW (north–northwest); simulated overcast testing resulted in a northerly mean direction at local temperatures as well as at 22 °C and 38 °C. The Buntings reacted strongly in favor of the rotated magnetic field under the simulated overcast sky, demonstrating the use of a magnetic compass for migrating in a specific direction.
Collapse
|
14
|
Bojarinova J, Kavokin K, Pakhomov A, Cherbunin R, Anashina A, Erokhina M, Ershova M, Chernetsov N. Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes. Sci Rep 2020; 10:3473. [PMID: 32103061 PMCID: PMC7044251 DOI: 10.1038/s41598-020-60383-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
The magnetic compass is an important element of the avian navigation system, which allows migratory birds to solve complex tasks of moving between distant breeding and wintering locations. The photochemical magnetoreception in the eye is believed to be the primary biophysical mechanism behind the magnetic sense of birds. It was shown previously that birds were disoriented in presence of weak oscillating magnetic fields (OMF) with frequencies in the megahertz range. The OMF effect was considered to be a fingerprint of the photochemical magnetoreception in the eye. In this work, we used miniaturized portable magnetic coils attached to the bird’s head to specifically target the compass receptor. We performed behavioural experiments on orientation of long-distance migrants, garden warblers (Sylvia borin), in round arenas. The OMF with the amplitude of about 5 nT was applied locally to the birds’ eyes. Surprisingly, the birds were not disoriented and showed the seasonally appropriate migratory direction. On the contrary, the same birds placed in a homogeneous 5 nT OMF generated by large stationary coils showed clear disorientation. On the basis of these findings, we suggest that the disruption of magnetic orientation of birds by oscillating magnetic fields is not related to photochemical magnetoreceptors in their eyes.
Collapse
Affiliation(s)
- Julia Bojarinova
- Department Vertebrate Zoology, St. Petersburg State University, 199034, St. Petersburg, Russia. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.
| | - Kirill Kavokin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.,Spin Optics Lab., St. Petersburg State University, 198504, St. Petersburg, Russia
| | - Alexander Pakhomov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.,Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535, Rybachy, Kaliningrad Region, Russia
| | - Roman Cherbunin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.,Spin Optics Lab., St. Petersburg State University, 198504, St. Petersburg, Russia
| | - Anna Anashina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.,Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535, Rybachy, Kaliningrad Region, Russia
| | - Maria Erokhina
- Department Natural Science and Geography, Ilya Ulyanov State Pedagogical University, 432700, Ulyanovsk, Russia
| | - Maria Ershova
- Department Vertebrate Zoology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Nikita Chernetsov
- Department Vertebrate Zoology, St. Petersburg State University, 199034, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, St. Petersburg, Russia.,Biological Station Rybachy, Zoological Institute of the Russian Academy of Sciences, 238535, Rybachy, Kaliningrad Region, Russia
| |
Collapse
|
15
|
Painter K, Plochocka A. Efficiency of island homing by sea turtles under multimodal navigating strategies. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Chang H, Guo JL, Fu XW, Wang ML, Hou YM, Wu KM. Molecular Characterization and Expression Profiles of Cryptochrome Genes in a Long-Distance Migrant, Agrotis segetum (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5299137. [PMID: 30690535 PMCID: PMC6342827 DOI: 10.1093/jisesa/iey127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Cryptochromes act as photoreceptors or integral components of the circadian clock that involved in the regulation of circadian clock and regulation of migratory activity in many animals, and they may also act as magnetoreceptors that sensed the direction of the Earth's magnetic field for the purpose of navigation during animals' migration. Light is a major environmental signal for insect circadian rhythms, and it is also necessary for magnetic orientation. We identified the full-length cDNA encoding As-CRY1 and As-CRY2 in Agrotis segetum Denis and Schiffermaller (turnip moth (Lepidoptera: Noctuidae)). The DNA photolyase domain and flavin adenine dinucleotide-binding domain were found in both cry genes, and multiple alignments showed that those domains that are important for the circadian clock and magnetosensing were highly conserved among different animals. Quantitative polymerase chain reaction showed that cry genes were expressed in all examined body parts, with higher expression in adults during the developmental stages of the moths. Under a 14:10 (L:D) h cycle, the expression of cry genes showed a daily biological rhythm, and light can affect the expression levels of As-cry genes. The expression levels of cry genes were higher in the migratory population than in the reared population and higher in the emigration population than in the immigration population. These findings suggest that the two cryptochrome genes characterized in the turnip moth might be associated with the circadian clock and magnetosensing. Their functions deserve further study, especially for potential control of the turnip moth.
Collapse
Affiliation(s)
- Hong Chang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang-Long Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Wei Fu
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng-Lun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kong-Ming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Yoda K. Advances in bio-logging techniques and their application to study navigation in wild seabirds. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1553686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Hagstrum JT. A reinterpretation of “Homing pigeons’ flight over and under low stratus” based on atmospheric propagation modeling of infrasonic navigational cues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 205:67-78. [DOI: 10.1007/s00359-018-1304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
19
|
Sokolovskis K, Bianco G, Willemoes M, Solovyeva D, Bensch S, Åkesson S. Ten grams and 13,000 km on the wing - route choice in willow warblers Phylloscopus trochilus yakutensis migrating from Far East Russia to East Africa. MOVEMENT ECOLOGY 2018; 6:20. [PMID: 30349724 PMCID: PMC6191995 DOI: 10.1186/s40462-018-0138-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND High-latitude bird migration has evolved after the last glaciation, in less than 10,000-15,000 years. Migrating songbirds rely on an endogenous migratory program, encoding timing, fueling, and routes, but it is still unknown which compass mechanism they use on migration. We used geolocators to track the migration of willow warblers (Phylloscopus trochilus yakutensis) from their eastern part of the range in Russia to wintering areas in sub-Saharan Africa. Our aim was to investigate if the autumn migration route can be explained by a simple compass mechanism, based on celestial or geomagnetic information, or whether migration is undertaken as a sequence of differential migratory paths possibly involving a map sense. We compared the recorded migratory routes for our tracked birds with simulated routes obtained from different compass mechanisms. RESULTS The three tracked males were very similar in the routes they took to their final wintering sites in southern Tanzania or northern Mozambique, in their use of stopover sites and in the overall timing of migration. None of the tested compass mechanisms could explain the birds' routes to the first stopover area in southwest Asia or to the destination in Southeast Africa without modifications. Our compass mechanism simulations suggest that the simplest scenarios congruent with the observed routes are based on either an inclination or a sun compass, assuming two sequential steps. CONCLUSIONS The birds may follow a magnetoclinic route coinciding closely with the tracks by first moving west, i.e. closer to the goal, and thereafter follow a constant apparent angle of inclination to the stopover site. An alternative would be to use the sun compass, but with time-adjustments along the initial part of the migration to the first stopover, and thereafter depart along a new course to the winter destination. A combination of the two mechanisms cannot be ruled out, but needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Kristaps Sokolovskis
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Giuseppe Bianco
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Mikkel Willemoes
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Diana Solovyeva
- Institute of Biological Problems in the North, Magadan, Russia
| | - Staffan Bensch
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Susanne Åkesson
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| |
Collapse
|
20
|
Magnetic map navigation in a migratory songbird requires trigeminal input. Sci Rep 2018; 8:11975. [PMID: 30097604 PMCID: PMC6086908 DOI: 10.1038/s41598-018-30477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 11/25/2022] Open
Abstract
Recently, virtual magnetic displacement experiments have shown that magnetic cues are indeed important for determining position in migratory birds; but which sensory system(s) do they use to detect the magnetic map cues? Here, we show that Eurasian reed warblers need trigeminal input to detect that they have been virtually magnetically displaced. Birds with bilaterally ablated ophthalmic branches of the trigeminal nerves were not able to re-orient towards their conspecific breeding grounds after a virtual magnetic displacement, exactly like they were not able to compensate for a real physical displacement. In contrast, sham-operated reed warblers re-oriented after the virtual displacement, like intact controls did in the past. Our results show that trigeminally mediated sensory information is necessary for the correct function of the reed warblers’ magnetic positioning system.
Collapse
|
21
|
Meyburg BU, Bergmanis U, Langgemach T, Graszynski K, Hinz A, Börner I, Meyburg C, Vansteelant WMG. Orientation of native versus translocated juvenile lesser spotted eagles ( Clanga pomarina) on the first autumn migration. ACTA ACUST UNITED AC 2018; 220:2765-2776. [PMID: 28768749 PMCID: PMC5558239 DOI: 10.1242/jeb.148932] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/09/2017] [Indexed: 11/20/2022]
Abstract
The ontogeny of migration routines used by wild birds remains unresolved. Here we investigated the migratory orientation of juvenile lesser spotted eagles (LSE; Clanga pomarina) based on translocation and satellite tracking. Between 2004 and 2016, 85 second-hatched juveniles (Abels) were reared in captivity for release into the declining German population, including 50 birds that were translocated 940 km from Latvia. In 2009, we tracked 12 translocated juveniles, as well as eight native juveniles and nine native adults, to determine how inexperienced birds come to use strategic migration routes. Native juveniles departed around the same time as the adults and six of eight used the eastern flyway around the Mediterranean, which was used by all adults. In contrast, translocated juveniles departed on average 6 days before native LSEs, and five travelled southward and died in the central Mediterranean region. Consequently, fewer translocated juveniles (4/12) than native juveniles (7/8) reached Africa. We conclude that juvenile LSEs have a much better chance of learning the strategic southeastern flyway if they leave at an appropriate time to connect with experienced elders upon departure. It is not clear why translocated juveniles departed so early. Regardless, by the end of the year, most juveniles had perished, whether they were translocated (10/12) or not (6/8). The small number of surviving translocated juveniles thus still represents a significant increase in the annual productivity of the German LSE population in 2009.
Collapse
Affiliation(s)
- Bernd-U Meyburg
- BirdLife Germany (NABU), PO Box 330451, Berlin 14199, Germany
| | - Ugis Bergmanis
- Latvijas valsts meži, Vaiņodes iela 1, Rīga LV -1004, Latvia
| | - Torsten Langgemach
- Brandenburg State Bird Conservation Centre, Dorfstr. 34, Buckow, Nennhausen 14715, Germany
| | - Kai Graszynski
- Department of Biology, Free University Berlin, Schreberstr. 8 A, Berlin 14167, Germany
| | - Arno Hinz
- Agency of Forestry, Vietmannsdorfer Str. 39, Templin 17269, Germany
| | - Ingo Börner
- Veterinarian practice, Neuer Weg 5, Templin 17268, Germany
| | - Christiane Meyburg
- World Working Group on Birds of Prey, 31, Avenue du Maine, Paris 75015, France
| | - Wouter M G Vansteelant
- Theoretical and Computational Ecology, Inst. for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Vansteelant Eco Research, Dijkgraaf 35, Bennekom 6721NJ, The Netherlands
| |
Collapse
|
22
|
Čapek F, Průcha J, Socha V, Hart V, Burda H. Directional orientation of pheasant chicks at the drinking dish and its potential for research on avian magnetoreception. FOLIA ZOOLOGICA 2017. [DOI: 10.25225/fozo.v66.i3.a5.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- František Čapek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Jaroslav Průcha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vladimír Socha
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 166 36 Praha 6, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 165 21 Praha 6, Czech Republic
- Department of General Zoology, Faculty of Biology, University Duisburg-Essen, 451 17 Essen, Germany
| |
Collapse
|
23
|
Komolkin AV, Kupriyanov P, Chudin A, Bojarinova J, Kavokin K, Chernetsov N. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J R Soc Interface 2017; 14:rsif.2016.1002. [PMID: 28330984 DOI: 10.1098/rsif.2016.1002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 11/12/2022] Open
Abstract
Many migrating animals, belonging to different taxa, annually move across the globe and cover hundreds and thousands of kilometres. Many of them are able to show site fidelity, i.e. to return to relatively small migratory targets, from distant areas located beyond the possible range of direct sensory perception. One widely debated possibility of how they do it is the use of a magnetic map, based on the dependence of parameters of the geomagnetic field (total field intensity and inclination) on geographical coordinates. We analysed temporal fluctuations of the geomagnetic field intensity as recorded by three geomagnetic observatories located in Europe within the route of many avian migrants, to study the highest theoretically possible spatial resolution of the putative map. If migratory birds measure total field intensity perfectly and take the time of day into account, in northern Europe 81% of them may return to a strip of land of 43 km in width along one of coordinates, whereas in more southern areas such a strip may be narrower than 10 km. However, if measurements are performed with an error of 0.1%, the strip width is increased by approximately 40 km, so that in spring migrating birds are able to return to within 90 km of their intended goal. In this case, migrating birds would probably need another navigation system, e.g. an olfactory map, intermediate between the large-scale geomagnetic map and the local landscape cues, to locate their goal to within several kilometres.
Collapse
Affiliation(s)
- Andrei V Komolkin
- Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Pavel Kupriyanov
- Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Andrei Chudin
- Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Julia Bojarinova
- Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Kirill Kavokin
- Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Nikita Chernetsov
- Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia.,Biological Station Rybachy, Zoological Institute RAS, Rybachy 238535, Kaliningrad Region, Russia
| |
Collapse
|
24
|
Vansteelant WMG, Kekkonen J, Byholm P. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa. Proc Biol Sci 2017; 284:20170387. [PMID: 28539514 PMCID: PMC5454264 DOI: 10.1098/rspb.2017.0387] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
Contemporary tracking studies reveal that low migratory connectivity between breeding and non-breeding ranges is common in migrant landbirds. It is unclear, however, how internal factors and early-life experiences of individual migrants shape the development of their migration routes and concomitant population-level non-breeding distributions. Stochastic wind conditions and geography may determine whether and where migrants end up by the end of their journey. We tested this hypothesis by satellite-tagging 31 fledgling honey buzzards Pernis apivorus from southern Finland and used a global atmospheric reanalysis model to estimate the wind conditions they encountered on their first outbound migration. Migration routes diverged rapidly upon departure and the birds eventually spread out across 3340 km of longitude. Using linear regression models, we show that the birds' longitudinal speeds were strongly affected by zonal wind speed, and negatively affected by latitudinal wind, with significant but minor differences between individuals. Eventually, 49% of variability in the birds' total longitudinal displacements was accounted for by wind conditions on migration. Some birds circumvented the Baltic Sea via Scandinavia or engaged in unusual downwind movements over the Mediterranean, which also affected the longitude at which these individuals arrived in sub-Saharan Africa. To understand why adult migrants use the migration routes and non-breeding sites they use, we must take into account the way in which wind conditions moulded their very first journeys. Our results present some of the first evidence into the mechanisms through which low migratory connectivity emerges.
Collapse
Affiliation(s)
- W M G Vansteelant
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
- Vansteelant Eco Research, Dijkgraaf 35, 6721 NJ Bennekom, The Netherlands
| | - J Kekkonen
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - P Byholm
- Bioeconomy Research Team, Novia University of Applied Sciences, 10600 Ekenäs, Finland
| |
Collapse
|
25
|
Navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:455-463. [DOI: 10.1007/s00359-017-1160-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
26
|
|
27
|
Compass systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:447-453. [DOI: 10.1007/s00359-016-1140-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022]
|
28
|
Schiffner I, Denzau S, Gehring D, Wiltschko R. Mathematical analysis of the homing flights of pigeons based on GPS tracks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:869-877. [PMID: 27766380 DOI: 10.1007/s00359-016-1127-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/13/2016] [Accepted: 10/08/2016] [Indexed: 12/20/2022]
Abstract
To analyse the effect of magnetic and olfactory deprivation on the homing flight of pigeons, we released birds from a familiar site with either their upper beak or their nostrils anaesthetized. The tracks were analysed by time lag embedding to calculate the short-term correlation dimension, a variable that reflects the degrees of freedom and thus the number of factors involved in a system. We found that higher natural fluctuations in the earth's magnetic field characterized by A P-indices of 8 and above caused a reduction of the correlation dimension of the control birds. We thus separated the data into two groups according to whether they were recorded on magnetically quiet days or on days with higher magnetic fluctuations. Anaesthetizing the upper beak had no significant effect. Making pigeons anosmic reduced the correlation dimension on magnetically quiet days, but did not cause any reduction on days with higher fluctuations. Altogether, our data suggest an involvement of magnetic cues and olfactory factors during the homing flight and point to a robust, multi-factorial map.
Collapse
Affiliation(s)
- Ingo Schiffner
- Queensland Brain Institute, University of Queensland, Building #79, St. Lucia, QLD, 4072, Australia. .,Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max von Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Susanne Denzau
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max von Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Dennis Gehring
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max von Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Roswitha Wiltschko
- Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Max von Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Jorge PE, Marques PAM, Pinto BV, Phillips JB. Asymmetrical Processing of Olfactory Input in the Piriform Cortex Mediates "Activation" of the Avian Navigation Circuitry. Chem Senses 2016; 41:745-754. [PMID: 27516210 DOI: 10.1093/chemse/bjw084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of odors in the long-distance navigation of birds has elicited intense debate for more than half a century. Failure to resolve many of the issues fueling this debate is due at least in part to the absence of controls for a variety of non-specific effects that odors have on the navigational process. The present experiments were carried out to investigate whether the olfactory inputs are involved only in "activation" of neuronal circuitry involved in navigation or are also playing a role in providing directional information. Experienced adult pigeons were exposed to controlled olfactory stimuli during different segments of the journey (release site vs. displacement + release site). Protein levels of IEGs (immediate early genes used to mark synaptic activity) were analyzed in areas within the olfactory/navigation avian circuitry. The results indicate that 1) exposure to natural odors at the release site (and not before) elicit greater activation across brain regions than exposure to filtered air, artificial odors, and natural odors along the entire outward journey (from home to the release site, inclusive); 2) activation of the piriform cortex in terms of odor discrimination is lateralized; 3) activation of the navigation circuitry is achieved by means of lateralized activation of piriform cortex neurons. Altogether, the findings provide the first direct evidence that activation of the avian navigation circuitry is mediated by asymmetrical processing of olfactory input occurring in the right piriform cortex.
Collapse
Affiliation(s)
- Paulo E Jorge
- MARE - Marine and Environmental Sciences Centre , ISPA - Instituto Universitário , Rua Jardim do Tabaco 34, 1149-041 Lisboa , Portugal
| | - Paulo A M Marques
- MARE - Marine and Environmental Sciences Centre , ISPA - Instituto Universitário , Rua Jardim do Tabaco 34, 1149-041 Lisboa , Portugal
| | - Belmiro V Pinto
- SIM , Faculdade de Ciências da Universidade de Lisboa , Campo Grande,1749-016 Lisboa , Portugal
| | - John B Phillips
- Department of Biological Sciences , Virginia Tech , Blacksburg , 24061-0406 VA , USA
| |
Collapse
|
30
|
Beason RC, Wiltschko W. Cues indicating location in pigeon navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:961-7. [PMID: 26149606 DOI: 10.1007/s00359-015-1027-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/06/2015] [Accepted: 06/19/2015] [Indexed: 11/24/2022]
Abstract
Domesticated Rock Pigeons (Columba livia f. domestica) have been selected for returning home after being displaced. They appear to use many of the physical cue sources available in the natural environment for Map-and-Compass navigation. Two compass mechanisms that have been well documented in pigeons are a time-compensated sun compass and a magnetic inclination compass. Location-finding, or map, mechanisms have been more elusive. Visual landmarks, magnetic fields, odors, gravity and now also infrasound have been proposed as sources of information on location. Even in highly familiar locations, pigeons appear to neither use nor need landmarks and can even return to the loft while wearing frosted lenses. Direct and indirect evidence indicates magnetic field information influences pigeon navigation in ways that are consistent with magnetic map components. The role of odors is unclear; it might be motivational in nature rather than navigational. The influence of gravity must be further analyzed. Experiments with infrasound have been interpreted in the sense that they provide information on the home direction, but this hypothesis is inconsistent with the Map-and-Compass Model. All these factors appear to be components of a multifactorial system, with the pigeons being opportunistic, preferring those cues that prove most suitable in their home region. This has made understanding the roles of individual cues challenging.
Collapse
Affiliation(s)
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 113, 60438, Frankfurt am Main, Germany.
| |
Collapse
|