1
|
Coppola ME, Petritz A, Irimia CV, Yumusak C, Mayr F, Bednorz M, Matkovic A, Aslam MA, Saller K, Schwarzinger C, Ionita MD, Schiek M, Smeds AI, Salinas Y, Brüggemann O, D'Orsi R, Mattonai M, Ribechini E, Operamolla A, Teichert C, Xu C, Stadlober B, Sariciftci NS, Irimia‐Vladu M. Pinaceae Pine Resins (Black Pine, Shore Pine, Rosin, and Baltic Amber) as Natural Dielectrics for Low Operating Voltage, Hysteresis-Free, Organic Field Effect Transistors. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300062. [PMID: 37745829 PMCID: PMC10517313 DOI: 10.1002/gch2.202300062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Indexed: 09/26/2023]
Abstract
Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.
Collapse
Affiliation(s)
| | - Andreas Petritz
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
| | - Cristian Vlad Irimia
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Cigdem Yumusak
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Felix Mayr
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Mateusz Bednorz
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Aleksandar Matkovic
- Chair of PhysicsDepartment of PhysicsMechanics and Electrical EngineeringMontanuniversität LeobenFranz Josef Str. 18Leoben8700Austria
| | - Muhammad Awais Aslam
- Chair of PhysicsDepartment of PhysicsMechanics and Electrical EngineeringMontanuniversität LeobenFranz Josef Str. 18Leoben8700Austria
| | - Klara Saller
- Institut for Chemical Technologies of Organic MaterialsJohannes Kepler University LinzAltenberger Str. Nr. 69Linz4040Austria
| | - Clemens Schwarzinger
- Institut for Chemical Technologies of Organic MaterialsJohannes Kepler University LinzAltenberger Str. Nr. 69Linz4040Austria
| | - Maria Daniela Ionita
- National Institute for LaserPlasma and Radiation PhysicsPO Box Mg‐36, MagureleBucharest077125Romania
| | - Manuela Schiek
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
- Johannes Kepler University LinzCenter for Surface and Nanoanalytics (ZONA) Altenberger Str. 69Linz4040Austria
| | - Annika I. Smeds
- Laboratory of Natural Materials Technology/Wood and Paper ChemistryÅbo Akademi UniversityPorthansgatan 3‐5, ÅboTurku20500Finland
| | - Yolanda Salinas
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Str. 69Linz4040Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Str. 69Linz4040Austria
| | - Rosarita D'Orsi
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Marco Mattonai
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Erika Ribechini
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Alessandra Operamolla
- Department of Chemistry and Industrial ChemistryUniversity of Pisavia Moruzzi 13Pisa56124Italy
| | - Christian Teichert
- Chair of PhysicsDepartment of PhysicsMechanics and Electrical EngineeringMontanuniversität LeobenFranz Josef Str. 18Leoben8700Austria
| | - Chunlin Xu
- Laboratory of Natural Materials Technology/Wood and Paper ChemistryÅbo Akademi UniversityPorthansgatan 3‐5, ÅboTurku20500Finland
| | - Barbara Stadlober
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
| | - Niyazi Serdar Sariciftci
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
| | - Mihai Irimia‐Vladu
- Joanneum Research ForschungsgesellschaftMaterialsFranz‐Pichler Str. Nr. 30Weiz8169Austria
- Johannes Kepler University LinzDept. Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz4040Austria
- Present address:
Mihai Irimia‐VladuJohannes Kepler University LinzInstitute of Physical ChemistryLinz Institute for Organic Solar Cells (LIOS)Altenberger Str. Nr. 69Linz40040Austria
| |
Collapse
|
2
|
Poghossian A, Geissler H, Schöning MJ. Rapid methods and sensors for milk quality monitoring and spoilage detection. Biosens Bioelectron 2019; 140:111272. [PMID: 31170654 DOI: 10.1016/j.bios.2019.04.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/24/2022]
Abstract
Monitoring of food quality, in particular, milk quality, is critical in order to maintain food safety and human health. To guarantee quality and safety of milk products and at the same time deliver those as soon as possible, rapid analysis methods as well as sensitive, reliable, cost-effective, easy-to-use devices and systems for process control and milk spoilage detection are needed. In this paper, we review different rapid methods, sensors and commercial systems for milk spoilage and microorganism detection. The main focus lies on chemical sensors and biosensors for detection/monitoring of the well-known indicators associated with bacterial growth and milk spoilage such as changes in pH value, conductivity/impedance, adenosine triphosphate level, concentration of dissolved oxygen and produced CO2. These sensors offer several advantages, like high sensitivity, fast response time, minimal sample preparation, miniaturization and ability for real-time monitoring of milk spoilage. In addition, electronic-nose- and electronic-tongue systems for the detection of characteristic volatile and non-volatile compounds related to microbial growth and milk spoilage are described. Finally, wireless sensors and color indicators for intelligent packaging are discussed.
Collapse
Affiliation(s)
- Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Campus Jülich, 52428, Jülich, Germany.
| | | | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Campus Jülich, 52428, Jülich, Germany.
| |
Collapse
|
3
|
Neethirajan S, Weng X, Tah A, Cordero J, Ragavan K. Nano-biosensor platforms for detecting food allergens – New trends. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Bonacchini GE, Bossio C, Greco F, Mattoli V, Kim YH, Lanzani G, Caironi M. Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706091. [PMID: 29460421 DOI: 10.1002/adma.201706091] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/08/2018] [Indexed: 05/23/2023]
Abstract
The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices that can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics can potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can "smart" track goods and monitor their quality along the distribution chain. Temporary tattoo-paper is hereby proposed as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, the fabrication of all-printed organic field-effect transistors on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex nonplanar geometry is demonstrated.
Collapse
Affiliation(s)
- Giorgio E Bonacchini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milano, Italy
| | - Francesco Greco
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Virgilio Mattoli
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Yun-Hi Kim
- Department of Chemistry and Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Guglielmo Lanzani
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milano, Italy
| |
Collapse
|
5
|
Abstract
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.
Collapse
|