1
|
Giri S, Kshirod Kumar Dash, Bhagya Raj G, Kovács B, Ayaz Mukarram S. Ultrasound assisted phytochemical extraction of persimmon fruit peel: Integrating ANN modeling and genetic algorithm optimization. ULTRASONICS SONOCHEMISTRY 2024; 102:106759. [PMID: 38211494 PMCID: PMC10825330 DOI: 10.1016/j.ultsonch.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
In the present study, ultrasound assisted extraction (UAE) of phytochemicals from persimmon fruit peel (PFP) was modeled using an artificial neural network (ANN) and optimized by integrating with genetic algorithm (GA). The range of process parameters selected for conducting the experiments was ultrasonication power (XU) 150---350 W, extraction temperatures (XT) 30---70 °C, solid to solvent ratio (XS) 1:15---1:35 g/ml, and ethanol concentration (XC) 40---80 %. The range of responses total phenolic content (YP), antioxidant activity (YA), total beta carotenoid (YB) and total flavonoid content (YF) at various independent variables combinations were found to be 7.72---24.62 mg GAE/g d.w., 51.44---85.58 %DPPH inhibition, 24.78---56.56 µg/g d.w. and 0.29---1.97 mg QE/g d.w. respectively. The modelling utilised an ANN architecture with a configuration of 4-12-4. The training process employed the Levenberg-Marquardt method, whereas the activation function chosen for the layers was the log sigmoid. The optimum condition predicted by the hybrid ANN-GA model for the independent variables, XU, XT, XS and XC was found to be 230.18 W, 50.66 °C, 28.27 g/ml, and 62.75 % respectively. The extraction process was carried out for 25 min, with 5-minute intervals, at various temperatures between 30 and 60 °C, to investigate the kinetic and thermodynamic characteristics of the process, under the optimal conditions of XU, XS and XC. The UAE of phytochemicals from persimmon peel followed pseudo second order kinetic model and the extraction process was endothermic in nature.
Collapse
Affiliation(s)
- Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Gvs Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
2
|
Gavahian M, Bannikoppa AM, Majzoobi M, Hsieh CW, Lin J, Farahnaky A. Fenugreek bioactive compounds: A review of applications and extraction based on emerging technologies. Crit Rev Food Sci Nutr 2023; 64:10187-10203. [PMID: 37303155 DOI: 10.1080/10408398.2023.2221971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is a pharmaceutically significant aromatic crop with health benefits linked to its phytochemicals. This article aims to overview progress in using emerging technologies to extract its bioactive compounds and extraction mechanisms. Also, the trends in the applications of this herb in the food industry and its therapeutical effects were explained. Fenugreek's flavor is the primary reason for its applications in the food industry. At the same time, it has antimicrobial, antibacterial, hepatoprotection, anticancer, lactation, and antidiabetic effects. Phytochemicals responsible for these effects include galactomannans, saponins, alkaloids, and polyphenols. Besides, data showed that emerging technologies boost fenugreek extracts' yield and biological activity. Among these, ultrasound (55.6%) is the most studied technology, followed by microwave (37.0%), cold plasma (3.7%), and combined approaches (3.7%). Processing conditions (e.g., treatment time and intensity) and solvent (type, ratio, and concentration) are significant parameters that affect the performance of these novel extraction technologies. Extracts obtained by sustainable energy-saving emerging technologies can be used to develop value-added health-promoting products.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Asha Mahesh Bannikoppa
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan
| | - Jenshin Lin
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Ultrasound-Assisted Extraction of Phenolic Compounds from Adenaria floribunda Stem: Economic Assessment. Foods 2022; 11:foods11182904. [PMID: 36141034 PMCID: PMC9498893 DOI: 10.3390/foods11182904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Adenaria floribunda is a native species found in tropical regions of South America used as a traditional medicine. Ultrasound-assisted extraction (UAE) is an extraction process known to increase the extraction yield, reduce extraction times, and use low temperatures. This study aims to obtain water-based extracts from A. floribunda stems using UAE, hot water extraction (HWE), and Soxhlet extraction and perform an economic analysis. The global extraction yield (GEY) and total phenolic compounds (TPC) of extracts ranged from 5.24% to 10.48% and from 1.9 ± 0.44 mg GAE g−1 DW to 6.38 ± 0.28 mg GAE g−1, respectively. Gallic acid, catechin, and ferulic acid were identified in the extract using HPLC-UV. Results indicate that Soxhlet extraction has the best performance regarding GEY and TPC. However, after performing an economic assessment, the cost of manufacturing (COM) of Soxhlet extraction (US$ 5.8 flask−1) was higher than the UAE (US$ 3.86 flask−1) and HWE (US$ 3.92 flask−1). The sensitivity results showed that obtaining extracts from A. floribunda by UAE and HWE is economically feasible when the selling price is above US$ 4 flask−1. Soxhlet extraction is a feasible technique when the selling price is above US$ 7 flask−1.
Collapse
|
4
|
Raspe DT, da Silva C, Cláudio da Costa S. Compounds from Stevia rebaudiana Bertoni leaves: An overview of non-conventional extraction methods and challenges. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Rao MV, Sengar AS, C K S, Rawson A. Ultrasonication - A green technology extraction technique for spices: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Arya P, Kumar P. Comparison of ultrasound and microwave assisted extraction of diosgenin from Trigonella foenum graceum seed. ULTRASONICS SONOCHEMISTRY 2021; 74:105572. [PMID: 33933831 PMCID: PMC8105685 DOI: 10.1016/j.ultsonch.2021.105572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 05/08/2023]
Abstract
From the recent market trend, there is a huge demand for the bioactive compounds from various food matrices that could be capable enough to combat the emerging health effects in day-to-day life. Fenugreek is a well-known spice from ancient times for its medicinal and health benefits. In the present study, two methods of green extraction microwave (MAE) and ultrasound (UAE) assisted were studied in regard of extraction of fenugreek diosgenin. In this study, solvent type (acetone, ethanol, hexane and petroleum ether), solvent concentration (40, 60, 80 and 100%) and treatment time (1.5, 3.0, 4.5 and 6.0 min and 30, 40, 50 and 60 min for MAE and UAE method respectively) was varied to observe the effect of these parameters over extract yield and diosgenin content. The results of this study revealed that treatment time, type of solvent and its concentration and method adopted for extraction of diosgenin has significant effect. In relation with better yield extract and diosgenin content, the yield of fenugreek seed extract was 7.83% with MAE and 21.48% with UAE of fenugreek seed powder at 80% ethanol concentration at 6 and 60 min respectively. The content of diosgenin was observed in fenugreek seed powder extract was 35.50 mg/100 g in MAE and 40.37 mg/100 g in UAE with 80% ethanol concentration at 6 and 60 min respectively. The overall range of yield of fenugreek extract was varied from 1.04% to 32.48% and diosgenin content was 15.82 mg/100 g to 40.37 mg/100 g of fenugreek seed powder including both extraction methods. This study revealed that UAE would impose better ways for preparing fenugreek extract and observing diosgenin content from fenugreek seeds.
Collapse
Affiliation(s)
- Prajya Arya
- Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India
| | - Pradyuman Kumar
- Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106, India.
| |
Collapse
|
7
|
Zia S, Khan MR, Shabbir MA, Aslam Maan A, Khan MKI, Nadeem M, Khalil AA, Din A, Aadil RM. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1772283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sania Zia
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
The Effect of Plant-Derived Biostimulants on White Head Cabbage Seedlings Grown under Controlled Conditions. SUSTAINABILITY 2019. [DOI: 10.3390/su11195317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the potential of using natural raw materials that have not been used for the production of biostimulants of plant growth. These products can effectively contribute to overcome the challenge posed by the increasing demand for food. Ultrasound assisted extraction (UAE) was chosen to prepare innovative biostimulants. The expected outcome of this research was to generate products that show beneficial effects on white head cabbage growth, development, and nutritional quality. The results proved that higher plants (mugwort, calendula, purple coneflower, chamomile, basil, giant goldenrod, comfrey, dandelion, and valerian) can be successfully used for the production of biostimulants. For example, products based on common dandelion showed the highest biostimulating activity. In a group treated with 2.5% flower extract, cabbage shoots were 37% longer, whereas in a group treated with 0.5% leaves extract, roots were longer by 76% as compared with a control group treated with water. Biostimulants based on common mugwort (at a dose of 0.5%) and common dandelion (root) (at a dose of 1.0%) increased the mass of cabbage shoots and roots by 106% and 246%, respectively. The majority of biostimulants increased the content of photosynthetic pigments (chlorophyll and carotenoids) and decreased the content of polyphenols. Botanical extracts also showed varied impact on the antioxidant activity of cabbage. Taking into account the benefits for a wide scope of applications, it is expected that the utilization of these types of products should increase in the future. These products can play a key role in sustainable agriculture.
Collapse
|
9
|
|
10
|
Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040766] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With growing consumer demand for natural products, greener extraction techniques are found to be potential alternatives especially for pharmaceutical, nutraceutical, and cosmetic manufacturing industries. Cavitation-based technology has drawn immense attention as a greener extraction method, following its rapid and effective extraction of numerous natural products compared to conventional techniques. The advantages of cavitation-based extraction (CE) are to eliminate the application of toxic solvents, reduction of extraction time and to achieve better extraction yield, as well as purity. The cavitational phenomena enhance the extraction efficiency via increased mass transfer rate between the substrate and solvent, following the cell wall rupture, due to the intense implosion of bubbles. This review includes a detailed overview of the ultrasound-assisted extraction (UAE), negative pressure cavitation (NPC) extraction, hydrodynamic cavitation extraction (HCE) and combined extractions techniques which have been implemented for the extraction of high-value-added compounds. A list of essential parameters necessary for the maximum possible extraction yield has been discussed. The optimization of parameters, such as ultrasonic power density, frequency, inlet pressure of HC, extraction temperature and the reactor configuration denote their significance for better efficiency. Furthermore, the advantages and drawbacks associated with extraction and future research directions have also been pointed out.
Collapse
|
11
|
Solanki KP, Desai MA, Parikh JK. Sono hydrodistillation for isolation of citronella oil: A symbiotic effect of sonication and hydrodistillation towards energy efficiency and environment friendliness. ULTRASONICS SONOCHEMISTRY 2018; 49:145-153. [PMID: 30097258 DOI: 10.1016/j.ultsonch.2018.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/29/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Environmental benign approach for extraction of essential oil was made. An essential oil rich in citronellol, linalool and citronellal was extracted from the leaves of Cymbopogon winterianus using a clean hybrid extraction technique, sono hydrodistillation. Sono hydrodistillation combines ultrasonic waves along with conventional hydrodistillation process to have symbiotic outcomes in terms of process improvement. Significant process parameters such as size of the plant material, extraction time, power, ultrasound amplitude, pulse interval and solid loading were investigated independently to study the effect on yield of oil and composition of oil. The water residue remained after extraction of volatile oil was analyzed using Folin-Ciocalteu method to determine the total phenolic content (TPC) which would help in assessing the residue as a useful by-product. Substantial reduction in time was observed with the inclusion of ultrasound compared to conventional hydrodistillation. Further, to optimize the extraction conditions, observe interactive effects of various parameters and develop mathematical model, response surface methodology was employed. The maximum yield of oil was found to be 4.118% (w/w) at 21 min extraction time, 5 g solid loading, 250 mL water volume, 500 W heating mantle power, 70% ultrasonic amplitude and 10:50 pulse interval. Total phenolic content was 13.84 mg GAE/g DM. The citronella oil was found to be composed of 27.47% of linalool, 11.52% of citronellal, 34.25% citronellol and 11.15% of elemol. Extraction time, solid loading and pulse interval had the significant influence on the yield of oil and total phenolic contents. Microscopic analysis has assisted in envisaging the probable mechanism indicating the role of sonication for rapid extraction. This novel technique was compared with the conventional hydrodistillation to ascertain the impact towards process intensification. Sono hydrodistillation was found to be a greener and cleaner process as energy consumption has been reduced by 40% while carbon footprint has shrunken by 47%.
Collapse
Affiliation(s)
- Krishna P Solanki
- Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Meghal A Desai
- Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | - Jigisha K Parikh
- Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
12
|
Moradi N, Rahimi M. Effect of simultaneous ultrasound/pulsed electric field pretreatments on the oil extraction from sunflower seeds. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1443131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Negin Moradi
- CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran
| | - Masoud Rahimi
- CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, Iran
| |
Collapse
|