1
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2024:S0012-1606(24)00246-X. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female- hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female- gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence RI 02912 USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence RI 02912 USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence RI 02912 USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence RI 02912 USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence RI 02912 USA.
| |
Collapse
|
2
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
3
|
Barone V, Byrne M, Lyons DC. Lineage tracing shows that cell size asymmetries predict the dorsoventral axis in the sea star embryo. BMC Biol 2022; 20:179. [PMID: 35971116 PMCID: PMC9380389 DOI: 10.1186/s12915-022-01359-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cell size asymmetries are often linked to cell fate decisions, due to cell volumes and cell fate determinants being unequally partitioned during asymmetric cell divisions. A clear example is found in the sea urchin embryo, where a characteristic and obvious unequal 4th cleavage generates micromeres, which are necessary for mesendoderm cell fate specification. Unlike sea urchin development, sea star development is generally thought to have only equal cleavage. However, subtle cell size asymmetries can be observed in sea star embryos; whether those cell size asymmetries are consistently produced during sea star development and if they are involved in cell fate decisions remains unknown. RESULTS Using confocal live imaging of early embryos we quantified cell size asymmetries in 16-cell stage embryos of two sea star species, Patiria miniata and Patiriella regularis. Using photoconversion to perform lineage tracing, we find that the position of the smallest cells of P. miniata embryos is biased toward anterior ventral tissues. However, both blastomere dissociation and mechanical removal of one small cell do not prevent dorsoventral (DV) axis formation, suggesting that embryos compensate for the loss of those cells and that asymmetrical partitioning of maternal determinants is not strictly necessary for DV patterning. Finally, we show that manipulating cell size to introduce artificial cell size asymmetries is not sufficient to direct the positioning of the future DV axis in P. miniata embryos. CONCLUSIONS Our results show that although cell size asymmetries are consistently produced during sea star early cleavage and are predictive of the DV axis, they are not necessary to instruct DV axis formation.
Collapse
Affiliation(s)
- Vanessa Barone
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Maria Byrne
- Bosch Institute and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Deirdre C Lyons
- Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Hansen CL, Chamberlain TJ, Trevena RL, Kurek JE, Pelegri F. Conserved germ plasm characteristics across the Danio and Devario lineages. Genesis 2021; 59:e23452. [PMID: 34617657 DOI: 10.1002/dvg.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/06/2022]
Abstract
In many animal species, germ cell specification requires the inheritance of germ plasm, a biomolecular condensate containing maternally derived RNAs and proteins. Most studies of germ plasm composition and function have been performed in widely evolutionarily divergent model organisms, such as Caenorhabditis elegans, Drosophila, Xenopus laevis, and Danio rerio (zebrafish). In zebrafish, 12 RNAs localize to germ plasm at the furrows of the early embryo. Here, we tested for the presence of these RNAs in three additional species within the Danionin clade: Danio kyathit, Danio albolineatus, and Devario aequipinnatus. By visualizing nanos RNA, we find that germ plasm segregation patterns during early embryogenesis are conserved across these species. Ten additional germ plasm RNAs exhibit localization at the furrows of early embryos in all three non-zebrafish Danionin species, consistent with germ plasm localization. One component of zebrafish germ plasm, ca15b, lacked specific localization in embryos of the more distantly related D. aequipinnatus. Our findings show that within a subset of closely related Danionin species, the vast majority of germ plasm RNA components are conserved. At the same time, the lack of ca15b localization in D. aequipinnatus germ plasm highlights the potential for the divergence of germ plasm composition across a restricted phylogenetic space.
Collapse
Affiliation(s)
- Christina L Hansen
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Trevor J Chamberlain
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Ryan L Trevena
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Jacob E Kurek
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Ren F, Miao R, Xiao R, Mei J. m 6A reader Igf2bp3 enables germ plasm assembly by m 6A-dependent regulation of gene expression in zebrafish. Sci Bull (Beijing) 2021; 66:1119-1128. [PMID: 36654345 DOI: 10.1016/j.scib.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023]
Abstract
Bucky ball (Buc) is involved in germ plasm (GP) assembly during early zebrafish development by regulating GP mRNA expression via an unknown mechanism. The present study demonstrates that an m6A reader Igf2bp3 interacts and colocalizes with Buc in the GP. Similar to the loss of Buc, the genetic deletion of maternal igf2bp3 in zebrafish leads to abnormal GP assembly and insufficient germ cell specification, which can be partially restored by the injection of igf2bp3 mRNA. Igf2bp3 binds to m6A-modified GP-organizer and GP mRNAs in an m6A-dependent manner and prevents their degradation. These findings indicate that the functions of Igf2bp3, a direct effector protein of Buc, in GP mRNA expression and GP assembly involve m6A-dependent regulation; these results emphasize a critical role of m6A modification in the process of GP assembly.
Collapse
Affiliation(s)
- Fan Ren
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ran Miao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Stencel A, Suárez J. Do Somatic Cells Really Sacrifice Themselves? Why an Appeal to Coercion May be a Helpful Strategy in Explaining the Evolution of Multicellularity. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s13752-021-00376-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn understanding of the factors behind the evolution of multicellularity is one of today’s frontiers in evolutionary biology. This is because multicellular organisms are made of one subset of cells with the capacity to transmit genes to the next generation (germline cells) and another subset responsible for maintaining the functionality of the organism, but incapable of transmitting genes to the next generation (somatic cells). The question arises: why do somatic cells sacrifice their lives for the sake of germline cells? How is germ/soma separation maintained? One conventional answer refers to inclusive fitness theory, according to which somatic cells sacrifice themselves altruistically, because in so doing they enhance the transmission of their genes by virtue of their genetic relatedness to germline cells. In the present article we will argue that this explanation ignores the key role of policing mechanisms in maintaining the germ/soma divide. Based on the pervasiveness of the latter, we argue that the role of altruistic mechanisms in the evolution of multicellularity is limited and that our understanding of this evolution must be enriched through the consideration of coercion mechanisms.
Collapse
|
8
|
Burian A. Does Shoot Apical Meristem Function as the Germline in Safeguarding Against Excess of Mutations? FRONTIERS IN PLANT SCIENCE 2021; 12:707740. [PMID: 34421954 PMCID: PMC8374955 DOI: 10.3389/fpls.2021.707740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 05/04/2023]
Abstract
A genetic continuity of living organisms relies on the germline which is a specialized cell lineage producing gametes. Essential in the germline functioning is the protection of genetic information that is subjected to spontaneous mutations. Due to indeterminate growth, late specification of the germline, and unique longevity, plants are expected to accumulate somatic mutations during their lifetime that leads to decrease in individual and population fitness. However, protective mechanisms, similar to those in animals, exist in plant shoot apical meristem (SAM) allowing plants to reduce the accumulation and transmission of mutations. This review describes cellular- and tissue-level mechanisms related to spatio-temporal distribution of cell divisions, organization of stem cell lineages, and cell fate specification to argue that the SAM functions analogous to animal germline.
Collapse
|
9
|
Lin CY, Yu JK, Su YH. Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate. Evol Dev 2020; 23:28-45. [PMID: 33283431 DOI: 10.1111/ede.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/08/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
Primordial germ cells (PGCs) are specified during development by either one of two major mechanisms, the preformation mode or the inductive mode. Because the inductive mode is widely employed by many bilaterians and early branching metazoan lineages, it has been postulated as an ancestral mechanism. However, among the deuterostome species that have been studied, invertebrate chordates use the preformation mode, while many vertebrate and echinoderm species are known to utilize an inductive mechanism, thus leaving the evolutionary history of PGC specification in the deuterostome lineage unclear. Hemichordates are the sister phylum of echinoderms, and together they form a clade called Ambulacraria that represents the closest group to the chordates. Thus, research in hemichordates is highly informative for resolving this issue. In this study, we investigate the developmental process of PGCs in an indirect-developing hemichordate, Ptychodera flava. We show that maternal transcripts of the conserved germline markers vasa, nanos, and piwi1 are ubiquitously distributed in early P. flava embryos, and these genes are coexpressed specifically in the dorsal hindgut starting from the gastrula stage. Immunostaining revealed that Vasa protein is concentrated toward the vegetal pole in early P. flava embryos, and it is restricted to cells in the dorsal hindgut of gastrulae and newly hatched larvae. The Vasa-positive cells later contribute to the developing trunk coeloms of the larvae and eventually reside in the adult gonads. We further show that bone morphogenetic protein (BMP) signaling is required to activate expression of the germline determinants in the gastrula hindgut, suggesting that PGC specification is induced by BMP signaling in P. flava. Our data support the hypothesis that the inductive mode is a conserved mechanism in Ambulacraria, which might even trace back to the common ancestor of Deuterostomes.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma 2019; 128:423-441. [DOI: 10.1007/s00412-019-00704-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023]
|
11
|
Milani L, Maurizii MG. Insights into Germline Development and Differentiation in Molluscs and Reptiles: The Use of Molecular Markers in the Study of Non-model Animals. Results Probl Cell Differ 2019; 68:321-353. [PMID: 31598863 DOI: 10.1007/978-3-030-23459-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When shifting research focus from model to non-model species, many differences in the working approach should be taken into account and usually methodological modifications are required because of the lack of genetics/genomics and developmental information for the vast majority of organisms. This lack of data accounts for the largely incomplete understanding of how the two components-genes and developmental programs-are intermingled in the process of evolution. A deeper level of knowledge was reached for a few model animals, making it possible to understand some of the processes that guide developmental changes during evolutionary time. However, it is often difficult to transfer the obtained information to other, even closely related, animals. In this chapter, we present and discuss some examples, such as the choice of molecular markers to be used to characterize differentiation and developmental processes. The chosen examples pertain to the study of germline in molluscs, reptiles, and other non-model animals.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Krishnakumar P, Riemer S, Perera R, Lingner T, Goloborodko A, Khalifa H, Bontems F, Kaufholz F, El-Brolosy MA, Dosch R. Functional equivalence of germ plasm organizers. PLoS Genet 2018; 14:e1007696. [PMID: 30399145 PMCID: PMC6219760 DOI: 10.1371/journal.pgen.1007696] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm. Multicellular organisms use gametes for their propagation. Gametes are formed from germ cells, which are specified during embryogenesis in some animals by the inheritance of RNP granules known as germ plasm. Transplantation of germ plasm induces extra germ cells, whereas germ plasm ablation leads to the loss of gametes and sterility. Therefore, germ plasm is key for germ cell formation and reproduction. However, the molecular mechanisms of germ cell specification by germ plasm in the vertebrate embryo remain an unsolved question. Proteins, which assemble the germ plasm, are known as germ plasm organizers. Here, we show that the two germ plasm organizers Oskar from the fly and Bucky ball from the fish show similar functions by using a cross species approach. Both are intrinsically disordered proteins, which rapidly changed their sequence during evolution. Moreover, both proteins still interact with conserved components of the germ cell specification pathway. These data might provide a first example of two proteins with the same biological role, but distinct sequence.
Collapse
Affiliation(s)
- Pritesh Krishnakumar
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roshan Perera
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Hazem Khalifa
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Franck Bontems
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Switzerland
| | - Felix Kaufholz
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Mohamed A. El-Brolosy
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roland Dosch
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
14
|
Cell-Type Transcriptomes of the Multicellular Green Alga Volvox carteri Yield Insights into the Evolutionary Origins of Germ and Somatic Differentiation Programs. G3-GENES GENOMES GENETICS 2018; 8:531-550. [PMID: 29208647 PMCID: PMC5919742 DOI: 10.1534/g3.117.300253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germ-soma differentiation is a hallmark of complex multicellular organisms, yet its origins are not well understood. Volvox carteri is a simple multicellular green alga that has recently evolved a simple germ-soma dichotomy with only two cell-types: large germ cells called gonidia and small terminally differentiated somatic cells. Here, we provide a comprehensive characterization of the gonidial and somatic transcriptomes of V. carteri to uncover fundamental differences between the molecular and metabolic programming of these cell-types. We found extensive transcriptome differentiation between cell-types, with somatic cells expressing a more specialized program overrepresented in younger, lineage-specific genes, and gonidial cells expressing a more generalist program overrepresented in more ancient genes that shared striking overlap with stem cell-specific genes from animals and land plants. Directed analyses of different pathways revealed a strong dichotomy between cell-types with gonidial cells expressing growth-related genes and somatic cells expressing an altruistic metabolic program geared toward the assembly of flagella, which support organismal motility, and the conversion of storage carbon to sugars, which act as donors for production of extracellular matrix (ECM) glycoproteins whose secretion enables massive organismal expansion. V. carteri orthologs of diurnally controlled genes from C. reinhardtii, a single-celled relative, were analyzed for cell-type distribution and found to be strongly partitioned, with expression of dark-phase genes overrepresented in somatic cells and light-phase genes overrepresented in gonidial cells- a result that is consistent with cell-type programs in V. carteri arising by cooption of temporal regulons in a unicellular ancestor. Together, our findings reveal fundamental molecular, metabolic, and evolutionary mechanisms that underlie the origins of germ-soma differentiation in V. carteri and provide a template for understanding the acquisition of germ-soma differentiation in other multicellular lineages.
Collapse
|
15
|
Luan J, Sun X, Fei Z, Douglas AE. Maternal Inheritance of a Single Somatic Animal Cell Displayed by the Bacteriocyte in the Whitefly Bemisia tabaci. Curr Biol 2018; 28:459-465.e3. [PMID: 29395925 PMCID: PMC5807091 DOI: 10.1016/j.cub.2017.12.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/18/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
Abstract
Bacteriocytes are insect cells harboring symbiotic bacteria that are required by their insect host and are transmitted vertically via the female ovary [1]. In most insect groups, the bacteria are released from the bacteriocytes and transferred to the ovary [2, 3], but in whiteflies, maternal bacteriocytes migrate to each egg [4, 5, 6], where they have been reported to lyse, releasing the symbionts [1]. To investigate bacteriocyte inheritance in whiteflies further, we applied microsatellite genotyping and genomic analysis to a genetically diverse population of Bemisia tabaci, and we observed the fate of the bacteriocyte in embryos. Surprisingly, the microsatellite profile of the bacteriocytes was uniform, and insect cross experiments demonstrated that the bacteriocytes have a stable genotype that differs from the genotype of the insect head (which lacks bacteriocytes). Comparative genomic analysis indicates that genomes of the bacteriocyte and whitefly head are distinct. Interestingly, the bacterioyte genome contains the canonical arthropod telomere repeats TTAGG, and the bacteriocytes express telomere maintenance genes that may underlie cellular immortality in animal cells [7]. Microscopy observations confirmed that a single bacteriocyte transmitted to each egg is retained and divides once just before egg hatch, yielding two bacteriocytes in the neonate insect. These data demonstrate the maternal inheritance of an absolutely required somatic insect cell, violating the developmental separation of germline and soma [8, 9]. Future investigation on the mechanism and phylogenetic distribution of maternally inherited bacteriocytes will shed light on the developmental origins and evolutionary diversification of bacteriocytes [10] and the processes underlying cellular immortality [11]. Whitefly bacteriocytes have different microsatellite alleles from other somatic cells The bacteriocyte genotype is stable over three sexual generations of the insect Bacteriocyte genomes in different insects are genetically very similar The single bacteriocyte transmitted to the sexual egg persists through embryogenesis
Collapse
Affiliation(s)
- Junbo Luan
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Xuepeng Sun
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY 14853, USA; USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
DeHaan H, McCambridge A, Armstrong B, Cruse C, Solanki D, Trinidad JC, Arkov AL, Gao M. An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules. FEBS Lett 2017; 591:3536-3547. [PMID: 28945271 DOI: 10.1002/1873-3468.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
Drosophila Me31B is a conserved protein of germ granules, ribonucleoprotein complexes essential for germ cell development. Me31B post-transcriptionally regulates mRNAs by interacting with other germ granule proteins. However, a Me31B interactome is lacking. Here, we use an in vivo proteomics approach to show that the Me31B interactome contains polypeptides from four functional groups: RNA regulatory proteins, glycolytic enzymes, cytoskeleton/motor proteins, and germ plasm components. We further show that Me31B likely colocalizes with the germ plasm components Tudor (Tud), Vasa, and Aubergine in the nuage and germ plasm and provide evidence that Me31B may directly bind to Tud in a symmetrically dimethylated arginine-dependent manner. Our study supports the role of Me31B in RNA regulation and suggests its novel roles in germ granule assembly and function.
Collapse
Affiliation(s)
- Hunter DeHaan
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | | | - Carlie Cruse
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dhruv Solanki
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
17
|
Zheng J, Gao M, Huynh N, Tindell SJ, Vo HDL, McDonald WH, Arkov AL. In vivo mapping of a dynamic ribonucleoprotein granule interactome in early Drosophila embryos. FEBS Open Bio 2016; 6:1248-1256. [PMID: 28203524 PMCID: PMC5302063 DOI: 10.1002/2211-5463.12144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
Macromolecular complexes and organelles play crucial roles within cells, but their native architectures are often unknown. Here, we use an evolutionarily conserved germline organelle, the germ granule, as a paradigm. In Drosophila embryos, we map one of its interactomes using a novel in vivo crosslinking approach that employs two interacting granule proteins and determines their common neighbor molecules. We identified an in vivo granule assembly of Tudor, Aubergine, motor and metabolic proteins, and RNA helicases, and provide evidence for direct interactions within this assembly using purified components. Our study indicates that germ granules contain efficient biochemical reactors involved in post‐transcriptional gene regulation.
Collapse
Affiliation(s)
- Jimiao Zheng
- Department of Biological Sciences Murray State University USA
| | - Ming Gao
- Biology Department Indiana University Northwest Gary IN USA
| | - Nhan Huynh
- Department of Biological Sciences Murray State University USA; Present address: University of Alberta Edmonton AB Canada
| | | | - Hieu D L Vo
- Department of Biological Sciences Murray State University USA
| | - W Hayes McDonald
- Department of Biochemistry Mass Spectrometry Research Center Vanderbilt University School of Medicine Nashville TN USA
| | - Alexey L Arkov
- Department of Biological Sciences Murray State University USA
| |
Collapse
|
18
|
Bertocchini F, Chuva de Sousa Lopes SM. Germline development in amniotes: A paradigm shift in primordial germ cell specification. Bioessays 2016; 38:791-800. [PMID: 27273724 PMCID: PMC5089639 DOI: 10.1002/bies.201600025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the field of germline development in amniote vertebrates, primordial germ cell (PGC) specification in birds and reptiles remains controversial. Avians are believed to adopt a predetermination or maternal specification mode of PGC formation, contrary to an inductive mode employed by mammals and, supposedly, reptiles. Here, we revisit and review some key aspects of PGC development that channelled the current subdivision, and challenge the position of birds and reptiles as well as the 'binary' evolutionary model of PGC development in vertebrates. We propose an alternative view on PGC specification where germ plasm plays a role in laying the foundation for the formation of PGC precursors (pPGC), but not necessarily of PGCs. Moreover, inductive mechanisms may be necessary for the transition from pPGCs to PGCs. Within this framework, the implementation of data from birds and reptiles could provide new insights on the evolution of PGC specification in amniotes.
Collapse
Affiliation(s)
- Federica Bertocchini
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC)‐CSIC‐University of CantabriaSantanderSpain
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Reproductive MedicineGhent University HospitalGhentBelgium
| |
Collapse
|