1
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
2
|
Li Y, Li C, Sun Q, Liu X, Chen F, Cheung Y, Zhao Y, Xie T, Chazaud B, Sun H, Wang H. Skeletal muscle stem cells modulate niche function in Duchenne muscular dystrophy mouse through YY1-CCL5 axis. Nat Commun 2025; 16:1324. [PMID: 39900599 PMCID: PMC11790879 DOI: 10.1038/s41467-025-56474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are indispensable for muscle regeneration and tightly regulated by macrophages (MPs) and fibro-adipogenic progenitors (FAPs) in their niche. Deregulated MuSC/MP/FAP interactions and the ensuing inflammation and fibrosis are hallmarks of dystrophic muscle. Here we demonstrate intrinsic deletion of transcription factor Yin Yang 1 (YY1) in MuSCs exacerbates dystrophic pathologies by altering composition and heterogeneity of MPs and FAPs. Further analysis reveals YY1 loss induces expression of immune genes in MuSCs, including C-C motif chemokine ligand 5 (Ccl5). Augmented CCL5 secretion promotes MP recruitment via CCL5/C-C chemokine receptor 5 (CCR5) crosstalk, which subsequently hinders FAP clearance through elevated Transforming growth factor-β1 (TGFβ1). Maraviroc-mediated pharmacological blockade of the CCL5/CCR5 axis effectively mitigates muscle dystrophy and improves muscle performance. Lastly, we demonstrate YY1 represses Ccl5 transcription by binding to its enhancer thus facilitating promoter-enhancer looping. Altogether, our study demonstrates the critical role of MuSCs in actively shaping their niche and provides novel insight into the therapeutic intervention of muscle dystrophy.
Collapse
MESH Headings
- Animals
- YY1 Transcription Factor/metabolism
- YY1 Transcription Factor/genetics
- Chemokine CCL5/metabolism
- Chemokine CCL5/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Macrophages/metabolism
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Mice, Inbred mdx
- Stem Cell Niche
- Mice, Knockout
- Maraviroc/pharmacology
- Mice, Inbred C57BL
- Male
- Transforming Growth Factor beta1/metabolism
- Stem Cells/metabolism
- Disease Models, Animal
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 14115319, 14100620, 14106521, 14105823, 14120420, 14103522, 14105123 Research Grants Council, University Grants Committee (RGC, UGC)
- T13-602/21-N Research Grants Council, University Grants Committee (RGC, UGC)
- C6018-19GF Research Grants Council, University Grants Committee (RGC, UGC)
- 10210906, 08190626 Research Grants Council, University Grants Committee (RGC, UGC)
- AoE/M-402/20 Research Grants Council, University Grants Committee (RGC, UGC)
- STG1/E-403/24-N Research Grants Council, University Grants Committee (RGC, UGC)
- National Key R&D Program of China to H.W. (2022YFA0806003) Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China to H.W. (10210906 and 08190626)
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Chuhan Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Xingyuan Liu
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengyuan Chen
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeelo Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Xie
- Center for Tissue Regeneration and Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bénédicte Chazaud
- Unité Physiopathologie et Génétique du Neurone et du Muscle, UMR CNRS 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Hao Sun
- Warshel Institute for Computational Biology, Faculty of Medicine, Chinese University of Hong Kong (Shenzhen), Guangdong, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
3
|
von Maltzahn J. Analyzing Muscle Stem Cell Function Ex Vivo. Methods Mol Biol 2025. [PMID: 39776070 DOI: 10.1007/7651_2024_589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Muscle stem cells (MuSCs) lose a large proportion of their characteristics when removed from their niche, hampering the analysis of muscle stem cell functionality. However, the isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the short-term culture and manipulation of muscle stem cells in conditions as close as possible to the endogenous niche. Here, the isolation, culture and transfection with siRNA of muscle stem cells on their adjacent myofibers from young as well as old mice are described.
Collapse
Affiliation(s)
- Julia von Maltzahn
- Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Health Sciences, Senftenberg, Germany.
- Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Environment and Natural Sciences, Senftenberg, Germany.
- Leibniz Institute on Aging, Fritz Lipman Institute, Jena, Germany.
| |
Collapse
|
4
|
Janssen TA, Lowisz CV, Phillips S. From molecular to physical function: The aging trajectory. Curr Res Physiol 2024; 8:100138. [PMID: 39811024 PMCID: PMC11732118 DOI: 10.1016/j.crphys.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Aging is accompanied by a decline in muscle mass, strength, and physical function, a condition known as sarcopenia. Muscle disuse attributed to decreased physical activity, hospitalization, or illness (e.g. sarcopenia) results in a rapid decline in muscle mass in aging individuals and effectively accelerates sarcopenia. Consuming protein at levels above (at least 50-100% higher) the current recommended intakes of ∼0.8 g protein/kg bodyweight/d, along with participating in both resistance and aerobic exercise, will aid in the preservation of muscle mass. Physiological muscle adaptations often accompany the observable changes in physical independence an older adult undergoes. Muscle fibre adaptations include a reduction in type 2 fibre size and number, a loss of motor units, reduced sensitivity to calcium, reduced elasticity, and weak cross-bridges. Mitochondrial function and structure are impaired in relation to aging and are worsened with inactivity and disease states but could be overcome by engaging in exercise. Intramuscular connective tissue adaptations with age are evident in animal models; however, the adaptations in collagenous tissue within human aging are less clear. We know that the satellite muscle cell pool decreases with age, and there is a reduced capacity for muscle repair/regeneration. Finally, a pro-inflammatory state associated with age has detrimental impacts on the muscle. The purpose of this review is to highlight the physiological adaptations driving muscle aging and their potential mitigation with exercise/physical activity and nutrition.
Collapse
Affiliation(s)
- Tom A.H. Janssen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Caroline V. Lowisz
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Sport and Exercise Science, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
5
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Loreti M, Cecchini A, Kaufman CD, Stamenkovic C, Renero A, Nicoletti C, Kervadec A, Guarnaccia G, Mayer D, Colas A, Lorenzo Puri P, Sacco A. Tenascin-C from the tissue microenvironment promotes muscle stem cell self-renewal through Annexin A2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620732. [PMID: 39554125 PMCID: PMC11565721 DOI: 10.1101/2024.10.29.620732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Skeletal muscle tissue self-repair occurs through the finely timed activation of resident muscle stem cells (MuSC). Following perturbation, MuSC exit quiescence, undergo myogenic commitment, and differentiate to regenerate the injured muscle. This process is coordinated by signals present in the tissue microenvironment, however the precise mechanisms by which the microenvironment regulates MuSC activation are still poorly understood. Here, we identified Tenascin-C (TnC), an extracellular matrix (ECM) glycoprotein, as a key player in promoting of MuSC self-renewal and function. We show that fibro-adipogenic progenitors (FAPs) are the primary cellular source of TnC during muscle repair, and that MuSC sense TnC signaling through cell the surface receptor Annexin A2. We provide in vivo evidence that TnC is required for efficient muscle repair, as mice lacking TnC exhibit a regeneration phenotype of premature aging. We propose that the decline of TnC in physiological aging contributes to inefficient muscle regeneration in aged muscle. Taken together, our results highlight the pivotal role of TnC signaling during muscle repair in healthy and aging skeletal muscle.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: J&J, 3880 Murphy Canyon Rd, San Diego, CA 92123, USA
| | - Alessandra Cecchini
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Collin D. Kaufman
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alma Renero
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anais Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Gabriele Guarnaccia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Daphne Mayer
- Rice University, 6100 Main St, Huston, TX 77005, USA
| | - Alexandre Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
8
|
Sun Y, Xu Z, You W, Zhou Y, Nong Q, Chen W, Shan T. Lipidomics and single-cell RNA sequencing reveal lipid and cell dynamics of porcine glycerol-injured skeletal muscle regeneration model. Life Sci 2024; 350:122742. [PMID: 38797365 DOI: 10.1016/j.lfs.2024.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
AIMS Intramuscular fat (IMF) infiltration and extracellular matrix (ECM) deposition are characteristic features of muscle dysfunction, such as muscular dystrophy and severe muscle injuries. However, the underlying mechanisms of cellular origin, adipocyte formation and fibrosis in skeletal muscle are still unclear. MAIN METHODS Pigs were injected with 50 % glycerol (GLY) to induce skeletal muscle injury and regeneration. The acyl chain composition was analyzed by lipidomics, and the cell atlas and molecular signatures were revealed via single-cell RNA sequencing (scRNA-seq). Adipogenesis analysis was performed on fibroblast/fibro-adipogenic progenitors (FAPs) isolated from pigs. KEY FINDINGS The porcine GLY-injured skeletal muscle regeneration model was characterized by IMF infiltration and ECM deposition. Skeletal muscle stem cells (MuSCs) and FAP clusters were analyzed to explore the potential mechanisms of adipogenesis and fibrosis, and it was found that the TGF-β signaling pathway might be a key switch that regulates differentiation. Consistently, activation of the TGF-β signaling pathway increased SMAD2/3 phosphorylation and inhibited adipogenesis in FAPs, while inhibition of the TGF-β signaling pathway increased the expression of PPARγ and promoted adipogenesis. SIGNIFICANCE GLY-induced muscle injury and regeneration provides comprehensive insights for the development of therapies for human skeletal muscle dysfunction and fatty infiltration-related diseases in which the TGF-β/SMAD signaling pathway might play a primary regulatory role.
Collapse
Affiliation(s)
- Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
9
|
Lin J, Jin M, Yang D, Li Z, Zhang Y, Xiao Q, Wang Y, Yu Y, Zhang X, Shao Z, Shi L, Zhang S, Chen WJ, Wang N, Wu S, Yang H, Xu C, Li G. Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model. Nat Commun 2024; 15:5927. [PMID: 39009678 PMCID: PMC11251194 DOI: 10.1038/s41467-024-50340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) affecting 1 in 3500-5000 live male newborns is the frequently fatal genetic disease resulted from various mutations in DMD gene encoding dystrophin protein. About 70% of DMD-causing mutations are exon deletion leading to frameshift of open reading frame and dystrophin deficiency. To facilitate translating human DMD-targeting CRISPR therapeutics into patients, we herein establish a genetically humanized mouse model of DMD by replacing exon 50 and 51 of mouse Dmd gene with human exon 50 sequence. This humanized mouse model recapitulats patient's DMD phenotypes of dystrophin deficiency and muscle dysfunction. Furthermore, we target splicing sites in human exon 50 with adenine base editor to induce exon skipping and robustly restored dystrophin expression in heart, tibialis anterior and diaphragm muscles. Importantly, systemic delivery of base editor via adeno-associated virus in the humanized male mouse model improves the muscle function of DMD mice to the similar level of wildtype ones, indicating the therapeutic efficacy of base editing strategy in treating most of DMD types with exon deletion or point mutations via exon-skipping induction.
Collapse
Affiliation(s)
- Jiajia Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ming Jin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Yang
- HuidaGene Therapeutics Inc., Shanghai, China
| | | | - Yu Zhang
- HuidaGene Therapeutics Inc., Shanghai, China
| | | | - Yin Wang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yuyang Yu
- HuidaGene Therapeutics Inc., Shanghai, China
| | | | - Zhurui Shao
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Linyu Shi
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Shu Zhang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wan-Jin Chen
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Shiwen Wu
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Hui Yang
- HuidaGene Therapeutics Inc., Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Guoling Li
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- HuidaGene Therapeutics Inc., Shanghai, China.
| |
Collapse
|
10
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
11
|
Ancel S, Michaud J, Sizzano F, Tauzin L, Oliveira M, Migliavacca E, Schüler SC, Raja S, Dammone G, Karaz S, Sánchez-García JL, Metairon S, Jacot G, Bentzinger CF, Feige JN, Stuelsatz P. A dual-color PAX7 and MYF5 in vivo reporter to investigate muscle stem cell heterogeneity in regeneration and aging. Stem Cell Reports 2024; 19:1024-1040. [PMID: 38876109 PMCID: PMC11252486 DOI: 10.1016/j.stemcr.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
Increasing evidence suggests that the muscle stem cell (MuSC) pool is heterogeneous. In particular, a rare subset of PAX7-positive MuSCs that has never expressed the myogenic regulatory factor MYF5 displays unique self-renewal and engraftment characteristics. However, the scarcity and limited availability of protein markers make the characterization of these cells challenging. Here, we describe the generation of StemRep reporter mice enabling the monitoring of PAX7 and MYF5 proteins based on equimolar levels of dual nuclear fluorescence. High levels of PAX7 protein and low levels of MYF5 delineate a deeply quiescent MuSC subpopulation with an increased capacity for asymmetric division and distinct dynamics of activation, proliferation, and commitment. Aging primarily reduces the MYF5Low MuSCs and skews the stem cell pool toward MYF5High cells with lower quiescence and self-renewal potential. Altogether, we establish the StemRep model as a versatile tool to study MuSC heterogeneity and broaden our understanding of mechanisms regulating MuSC quiescence and self-renewal in homeostatic, regenerating, and aged muscles.
Collapse
Affiliation(s)
- Sara Ancel
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Federico Sizzano
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Loic Tauzin
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Manuel Oliveira
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Svenja C Schüler
- Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Sruthi Raja
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Gabriele Dammone
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | | | - Sylviane Metairon
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Guillaume Jacot
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - C Florian Bentzinger
- Département de pharmacologie-physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Jérôme N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Rodríguez C, Timóteo-Ferreira F, Minchiotti G, Brunelli S, Guardiola O. Cellular interactions and microenvironment dynamics in skeletal muscle regeneration and disease. Front Cell Dev Biol 2024; 12:1385399. [PMID: 38840849 PMCID: PMC11150574 DOI: 10.3389/fcell.2024.1385399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
13
|
Kindler U, Zaehres H, Mavrommatis L. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells. Bio Protoc 2024; 14:e4984. [PMID: 38737507 PMCID: PMC11082787 DOI: 10.21769/bioprotoc.4984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Various protocols have been proven effective in the directed differentiation of mouse and human pluripotent stem cells into skeletal muscles and used to study myogenesis. Current 2D myogenic differentiation protocols can mimic muscle development and its alteration under pathological conditions such as muscular dystrophies. 3D skeletal muscle differentiation approaches can, in addition, model the interaction between the various cell types within the developing organoid. Our protocol ensures the differentiation of human embryonic/induced pluripotent stem cells (hESC/hiPSC) into skeletal muscle organoids (SMO) via cells with paraxial mesoderm and neuromesodermal progenitors' identity and further production of organized structures of the neural plate margin and the dermomyotome. Continuous culturing omits neural lineage differentiation and promotes fetal myogenesis, including the maturation of fibroadipogenic progenitors and PAX7-positive myogenic progenitors. The PAX7 progenitors resemble the late fetal stages of human development and, based on single-cell transcriptomic profiling, cluster close to adult satellite cells of primary muscles. To overcome the limited availability of muscle biopsies from patients with muscular dystrophy during disease progression, we propose to use the SMO system, which delivers a stable population of skeletal muscle progenitors from patient-specific iPSCs to investigate human myogenesis in healthy and diseased conditions. Key features • Development of skeletal muscle organoid differentiation from human pluripotent stem cells, which recapitulates myogenesis. • Analysis of early embryonic and fetal myogenesis. • Provision of skeletal muscle progenitors for in vitro and in vivo analysis for up to 14 weeks of organoid culture. • In vitro myogenesis from patient-specific iPSCs allows to overcome the bottleneck of muscle biopsies of patients with pathological conditions.
Collapse
Affiliation(s)
- Urs Kindler
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
| | - Lampros Mavrommatis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular Embryology, Bochum, Germany
- Ruhr University Bochum, Medical Faculty, Department of Neurology with Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
14
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
15
|
Hung M, Lo HF, Beckmann AG, Demircioglu D, Damle G, Hasson D, Radice GL, Krauss RS. Cadherin-dependent adhesion is required for muscle stem cell niche anchorage and maintenance. Development 2024; 151:dev202387. [PMID: 38456551 PMCID: PMC11057819 DOI: 10.1242/dev.202387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs β- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aviva G. Beckmann
- Pathos AI, 600 West Chicago Avenue, Suite 510, Chicago, IL 60654, USA
| | - Deniz Demircioglu
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gargi Damle
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Glenn L. Radice
- Cardiovascular Research Center, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Le Moal E, Liu Y, Collerette-Tremblay J, Dumontier S, Fabre P, Molina T, Dort J, Orfi Z, Denault N, Boutin J, Michaud J, Giguère H, Desroches A, Trân K, Ellezam B, Vézina F, Bedard S, Raynaud C, Balg F, Sarret P, Boudreault PL, Scott MS, Denault JB, Marsault E, Feige JN, Auger-Messier M, Dumont NA, Bentzinger CF. Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice. Sci Transl Med 2024; 16:eabn8529. [PMID: 38507466 DOI: 10.1126/scitranslmed.abn8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nicolas Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Hugo Giguère
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Desroches
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Kien Trân
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Benjamin Ellezam
- CHU Sainte-Justine Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - François Vézina
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sonia Bedard
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Catherine Raynaud
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frederic Balg
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mannix Auger-Messier
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - C Florian Bentzinger
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
17
|
Abstract
Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace E. L. Jones
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Wang X, Zhou L. The multifaceted role of macrophages in homeostatic and injured skeletal muscle. Front Immunol 2023; 14:1274816. [PMID: 37954602 PMCID: PMC10634307 DOI: 10.3389/fimmu.2023.1274816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle is essential for body physical activity, energy metabolism, and temperature maintenance. It has excellent capabilities to maintain homeostasis and to regenerate after injury, which indispensably relies on muscle stem cells, satellite cells (MuSCs). The quiescence, activation, and differentiation of MuSCs are tightly regulated in homeostatic and regenerating muscles. Among the important regulators are intramuscular macrophages, which are functionally heterogeneous with different subtypes present in a spatiotemporal manner to regulate the balance of different MuSC statuses. During chronic injury and aging, intramuscular macrophages often undergo aberrant activation, which in turn disrupts muscle homeostasis and regenerative repair. Growing evidence suggests that the aberrant activation is mainly triggered by altered muscle microenvironment. The trained immunity that affects myeloid progenitors during hematopoiesis may also contribute. Aged immune system may contribute, in part, to the aging-related sarcopenia and compromised skeletal muscle injury repair. As macrophages are actively involved in the progression of many muscle diseases, manipulating their functional activation has become a promising therapeutic approach, which requires comprehensive knowledge of the cellular and molecular mechanisms underlying the diverse activation. To this end, we discuss here the current knowledge of multifaceted role of macrophages in skeletal muscle homeostasis, injury, and repair.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | | |
Collapse
|
19
|
Farahzadi R, Valipour B, Montazersaheb S, Fathi E. Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol 2023; 11:1162136. [PMID: 37274742 PMCID: PMC10235764 DOI: 10.3389/fcell.2023.1162136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Evano B, Sarde L, Tajbakhsh S. Temporal static and dynamic imaging of skeletal muscle in vivo. Exp Cell Res 2023; 424:113484. [PMID: 36693490 DOI: 10.1016/j.yexcr.2023.113484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A major challenge in the study of living systems is understanding how tissues and organs are established, maintained during homeostasis, reconstituted following injury or deteriorated during disease. Most of the studies that interrogate in vivo cell biological properties of cell populations within tissues are obtained through static imaging approaches. However, in vertebrates, little is known about which, when, and how extracellular and intracellular signals are dynamically integrated to regulate cell behaviour and fates, due largely to technical challenges. Intravital imaging of cellular dynamics in mammalian models has exposed surprising properties that have been missed by conventional static imaging approaches. Here we highlight some selected examples of intravital imaging in mouse intestinal stem cells, hematopoietic stem cells, hair follicle stem cells, and neural stem cells in the brain, each of which have distinct features from an anatomical and niche-architecture perspective. Intravital imaging of mouse skeletal muscles is comparatively less advanced due to several technical constraints that will be discussed, yet this approach holds great promise as a complementary investigative method to validate findings obtained by static imaging, as well as a method for discovery.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France
| | - Liza Sarde
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France; Sorbonne Université, Complexité Du Vivant, F-75005, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
22
|
Collao N, Sanders O, Caminiti T, Messeiller L, De Lisio M. Resistance and endurance exercise training improves muscle mass and the inflammatory/fibrotic transcriptome in a rhabdomyosarcoma model. J Cachexia Sarcopenia Muscle 2023; 14:781-793. [PMID: 36797054 PMCID: PMC10067492 DOI: 10.1002/jcsm.13185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma that most often develops in children. Chemoradiation therapy is a standard treatment modality; however, the detrimental long-term skeletal muscle consequences of this therapy in juvenile cancer survivors include muscle atrophy and fibrosis resulting in decreased physical performance. Using a novel model of murine resistance and endurance exercise training, we investigate its role in preventing the long-term effects of juvenile RMS plus therapy. METHODS Four-week-old male (n = 10) and female (n = 10) C57Bl/6J mice were injected with M3-9-M RMS cell into the left gastrocnemius with the right limb serving as an internal control (CON). Mice received a systemic vincristine injection and then five doses of 4.8 Gy of gamma radiation localized to the left hindlimb (RMS + Tx). Mice were then randomly divided into either sedentary (SED) or resistance and endurance exercise training (RET) groups. Changes in exercise performance, body composition, myocellular adaptations and the inflammatory/fibrotic transcriptome were assessed. RESULTS RET improved endurance performance (P < 0.0001) and body composition (P = 0.0004) compared to SED. RMS + Tx resulted in significantly lower muscle weight (P = 0.015) and significantly smaller myofibre cross-sectional area (CSA) (P = 0.014). Conversely, RET resulted in significantly higher muscle weight (P = 0.030) and significantly larger Type IIA (P = 0.014) and IIB (P = 0.015) fibre CSA. RMS + Tx resulted in significantly more muscle fibrosis (P = 0.028), which was not prevented by RET. RMS + Tx resulted in significantly fewer mononuclear cells (P < 0.05) and muscle satellite (stem) cells (MuSCs) (P < 0.05) and significantly more immune cells (P < 0.05) than CON. RET resulted in significantly more fibro-adipogenic progenitors (P < 0.05), a trend for more MuSCs (P = 0.076) than SED and significantly more endothelial cells specifically in the RMS + Tx limb. Transcriptomic changes revealed significantly higher expression of inflammatory and fibrotic genes in RMS + Tx, which was prevented by RET. In the RMS + Tx model, RET also significantly altered expression of genes involved in extracellular matrix turnover. CONCLUSIONS Our study suggests that RET preserves muscle mass and performance in a model of juvenile RMS survivorship while partially restoring cellular dynamics and the inflammatory and fibrotic transcriptome.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Olivia Sanders
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Taylor Caminiti
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Laura Messeiller
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Regenerative Medicine Program, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Lazure F, Farouni R, Sahinyan K, Blackburn DM, Hernández-Corchado A, Perron G, Lu T, Osakwe A, Ragoussis J, Crist C, Perkins TJ, Jahani-Asl A, Najafabadi HS, Soleimani VD. Transcriptional reprogramming of skeletal muscle stem cells by the niche environment. Nat Commun 2023; 14:535. [PMID: 36726011 PMCID: PMC9892560 DOI: 10.1038/s41467-023-36265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Adult stem cells are indispensable for tissue regeneration, but their function declines with age. The niche environment in which the stem cells reside plays a critical role in their function. However, quantification of the niche effect on stem cell function is lacking. Using muscle stem cells (MuSC) as a model, we show that aging leads to a significant transcriptomic shift in their subpopulations accompanied by locus-specific gain and loss of chromatin accessibility and DNA methylation. By combining in vivo MuSC transplantation and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs from aged male mice can be restored by exposure to a young niche environment. While there is a correlation between gene reversibility and epigenetic alterations, restoration of gene expression occurs primarily at the level of transcription. The stem cell niche environment therefore represents an important therapeutic target to enhance tissue regeneration in aging.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Rick Farouni
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.,Quantitative Life Sciences, McGill University, Montreal, Canada
| | - Adrien Osakwe
- Quantitative Life Sciences, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada. .,McGill Genome Centre, Victor Phillip Dahdaleh Institute of Genomic Medicine, 740 Dr Penfield Avenue, Montreal, QC, H3A 0G1, Canada. .,Quantitative Life Sciences, McGill University, Montreal, Canada.
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC, H3A 0C7, Canada. .,Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
24
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opin Drug Discov 2023; 18:47-63. [PMID: 36535280 DOI: 10.1080/17460441.2023.2160438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the advances in skeletal muscle tissue engineering, new platforms have arisen with important applications in biology studies, disease modeling, and drug testing. Current developments highlight the quest for engineering skeletal muscle tissues with higher complexity . These new human skeletal muscle tissue models will be powerful tools for drug discovery and development and disease modeling. AREAS COVERED The authors review the latest advances in in vitro models of engineered skeletal muscle tissues used for testing drugs with a focus on the use of four main cell culture techniques: Cell cultures in well plates, in microfluidics, in organoids, and in bioprinted constructs. Additional information is provided on the satellite cell niche. EXPERT OPINION In recent years, more sophisticated in vitro models of skeletal muscle tissues have been fabricated. Important developments have been made in stem cell research and in the engineering of human skeletal muscle tissue. Some platforms have already started to be used for drug testing, notably those based on the parameters of hypertrophy/atrophy and the contractibility of myotubes. More developments are expected through the use of multicellular types and multi-materials as matrices . The validation and use of these models in drug testing should now increase.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, Republic of Korea.,School of Basic Medical Science, Chengdu University, Chengdu, Sichuan, China.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea.,Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
25
|
Karthikeyan S, Kim K, Asakura Y, Verma M, Asakura A. Three-Dimensional Imaging Analysis for Skeletal Muscle. Methods Mol Biol 2023; 2640:463-477. [PMID: 36995614 DOI: 10.1007/978-1-0716-3036-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Skeletal muscle is a highly ordered tissue composed of a complex network of a diverse variety of cells. The dynamic spatial and temporal interaction between these cells during homeostasis and during times of injury gives the skeletal muscle its regenerative capacity. In order to properly understand the process of regeneration, a three-dimensional (3-D) imaging process must be conducted. While there have been several protocols studying 3-D imaging, it has primarily been focused on the nervous system. This protocol aims to outline the workflow for rendering a 3-D image of the skeletal muscle using spatial data from confocal microscope images. This protocol uses the ImageJ, Ilastik, and Imaris software for 3-D rendering and computational image analysis as both are relatively easy to use and have powerful segmentation capabilities.
Collapse
Affiliation(s)
- Smrithi Karthikeyan
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyutae Kim
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mayank Verma
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Karthikeyan S, Asakura Y, Verma M, Asakura A. Tissue Clearing and Confocal Microscopic Imaging for Skeletal Muscle. Methods Mol Biol 2023; 2640:453-462. [PMID: 36995613 DOI: 10.1007/978-1-0716-3036-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Skeletal muscle is a highly ordered tissue composed of a complex network of a diverse variety of cells. The dynamic spatial and temporal interaction between these cells during homeostasis and during times of injury gives the skeletal muscle its regenerative capacity. To properly understand the process of regeneration, a three-dimensional (3-D) imaging process must be conducted. With the advancement of imaging and computing technology, it has become powerful to analyze spatial data from confocal microscope images. In order to prepare whole tissue skeletal muscle samples for confocal imaging, the muscle must be subjected to tissue clearing. With the use of an ideal optical clearing protocol - one that minimizes light scattering via refractive index mismatching - a more accurate 3-D image of the muscle can be produced as it does not involve the physical sectioning of the muscle. While there have been several protocols relating to the study of 3-D biology in whole tissue, these protocols have primarily been focused on the nervous system. In this chapter, we present a new method for skeletal muscle tissue clearing. In addition, this protocol aims to outline the specific parameters required for taking 3-D images of immunofluorescence-stained skeletal muscle samples using a confocal microscope.
Collapse
Affiliation(s)
- Smrithi Karthikeyan
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mayank Verma
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
27
|
Li P, Zhao Y, Liu Y, Zhao Y, Yan Y, Li S, Li S, Tong H. Cyanocobalamin promotes muscle development through the TGF-β signaling pathway. Food Funct 2022; 13:12721-12732. [PMID: 36408829 DOI: 10.1039/d2fo00315e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyanocobalamin (CNCbl, the compound name of Vitamin B12) is the only mineral vitamin that is essential for growth and development and cannot be produced by animals. Some studies have found that CNCbl can promote the proliferation and migration of C2C12 cells, but the mechanism by which it affects muscle development is still unknown. In this study, we elucidated the effect of CNCbl on muscle development and studied its underlying mechanism. CNCbl could promote the differentiation of C2C12 cells and upregulate Acvr1, p-Smad2 and p-Smad3 in the TGF-β signaling pathway in vitro. CD320 (the receptor in cell surface for binding with CNCbl transporter transcobalamin II) inhibition could reduce the uptake of CNCbl and significantly downregulate the expression of differentiation marker proteins MyoG and MYH2. Furthermore, the levels of p-Smad2 and p-Smad3 were also reduced with the inhibition of CD320, even though CNCbl was added to the C2C12 culture medium. In addition, the injection of CNCbl could accelerate the process of mouse muscle injury repair, enlarge the diameter of newly formed myofibers and upregulate the expression of MYH2, PAX7, CD320, Acvr1, p-Smad2 and p-Smad3 in vivo. These results suggest that CNCbl can promote muscle development and may play its role by regulating the expression of Acvr1, p-Smad2 and p-Smad3 related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Yahao Zhao
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Yongze Liu
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Yuelei Zhao
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Yunqin Yan
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Shuang Li
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Shufeng Li
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| | - Huili Tong
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
29
|
Jones FK, Phillips A, Jones AR, Pisconti A. The INSR/AKT/mTOR pathway regulates the pace of myogenesis in a syndecan-3-dependent manner. Matrix Biol 2022; 113:61-82. [PMID: 36152781 DOI: 10.1016/j.matbio.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Muscle stem cells (MuSCs) are indispensable for muscle regeneration. A multitude of extracellular stimuli direct MuSC fate decisions from quiescent progenitors to differentiated myocytes. The activity of these signals is modulated by coreceptors such as syndecan-3 (SDC3). We investigated the global landscape of SDC3-mediated regulation of myogenesis using a phosphoproteomics approach which revealed, with the precision level of individual phosphosites, the large-scale extent of SDC3-mediated regulation of signal transduction in MuSCs. We then focused on INSR/AKT/mTOR as a key pathway regulated by SDC3 during myogenesis and mechanistically dissected SDC3-mediated inhibition of insulin receptor signaling in MuSCs. SDC3 interacts with INSR ultimately limiting signal transduction via AKT/mTOR. Both knockdown of INSR and inhibition of AKT rescue Sdc3-/- MuSC differentiation to wild type levels. Since SDC3 is rapidly downregulated at the onset of differentiation, our study suggests that SDC3 acts a timekeeper to restrain proliferating MuSC response and prevent premature differentiation.
Collapse
Affiliation(s)
- Fiona K Jones
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Phillips
- School of Electrical Engineering, Electronics and Computer Science, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
30
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
31
|
Lee U, Stuelsatz P, Karaz S, McKellar DW, Russeil J, Deak M, De Vlaminck I, Lepper C, Deplancke B, Cosgrove BD, Feige JN. A Tead1-Apelin axis directs paracrine communication from myogenic to endothelial cells in skeletal muscle. iScience 2022; 25:104589. [PMID: 35789856 PMCID: PMC9250016 DOI: 10.1016/j.isci.2022.104589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Apelin (Apln) is a myokine that regulates skeletal muscle plasticity and metabolism and declines during aging. Through a yeast one-hybrid transcription factor binding screen, we identified the TEA domain transcription factor 1 (Tead1) as a novel regulator of the Apln promoter. Single-cell analysis of regenerating muscle revealed that the apelin receptor (Aplnr) is enriched in endothelial cells, whereas Tead1 is enriched in myogenic cells. Knock-down of Tead1 stimulates Apln secretion from muscle cells in vitro and myofiber-specific overexpression of Tead1 suppresses Apln secretion in vivo. Apln secretion via Tead1 knock-down in muscle cells stimulates endothelial cell expansion via endothelial Aplnr. In vivo, Apln peptide supplementation enhances endothelial cell expansion while Tead1 muscle overexpression delays endothelial remodeling following muscle injury. Our work describes a novel paracrine crosstalk in which Apln secretion is controlled by Tead1 in myogenic cells and influences endothelial remodeling during muscle repair.
Collapse
Affiliation(s)
- Umji Lee
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pascal Stuelsatz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - David W. McKellar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Julie Russeil
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria Deak
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Bart Deplancke
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Jerome N. Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
32
|
Efficient Isolation of Lymphocytes and Myogenic Cells from the Tissue of Muscle Regeneration. Cells 2022; 11:cells11111754. [PMID: 35681449 PMCID: PMC9179359 DOI: 10.3390/cells11111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Isolation of both lymphocytes and myogenic cells from muscle tissue is required for elucidating the cellular and molecular mechanisms of muscle regeneration. Here, we aimed to establish an optimal method obtaining a high yield of lymphocytes during muscle regeneration. After the muscle injury, we observed higher infiltration of lymphocytic cells in the muscle on day 3 after injury. Then, we compared two different white blood cell isolation methods, the Percoll gradient and CD45-magnetic bead methods, to assess the percentage and number of T and B cells. Flow cytometry analysis showed that the CD45-magnetic bead method has a better efficiency in isolating CD4+, CD8+ T cells, and B cells from injured muscle tissues of wild-type and mdx mice than that by the Percoll gradient method. Moreover, we found that the CD45-negative fraction from wild-type and mdx mice includes myogenic cells. In conclusion, we report that the CD45-magnetic bead method is suitable to isolate T and B cells during muscle regeneration with higher purity and yield and can also isolate myogenic cells within the same sample. This method provides a technical basis for further studies on muscle regeneration, involving lymphocytes and muscle cells, with a wide range of clinical applications.
Collapse
|
33
|
Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022; 7:16. [PMID: 35177651 PMCID: PMC8854427 DOI: 10.1038/s41536-022-00204-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
35
|
Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2022; 9:785712. [PMID: 35004684 PMCID: PMC8740192 DOI: 10.3389/fcell.2021.785712] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi-Ping Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
McMillin SL, Minchew EC, Lowe DA, Spangenburg EE. Skeletal muscle wasting: the estrogen side of sexual dimorphism. Am J Physiol Cell Physiol 2022; 322:C24-C37. [PMID: 34788147 PMCID: PMC8721895 DOI: 10.1152/ajpcell.00333.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of defining sex differences across various biological and physiological mechanisms is more pervasive now than it has been over the past 15-20 years. As the muscle biology field pushes to identify small molecules and interventions to prevent, attenuate, or even reverse muscle wasting, we must consider the effect of sex as a biological variable. It should not be assumed that a therapeutic will affect males and females with equal efficacy or equivalent target affinities under conditions where muscle wasting is observed. With that said, it is not surprising to find that we have an unclear or even a poor understanding of the effects of sex or sex hormones on muscle wasting conditions. Although recent investigations are beginning to establish experimental approaches that will allow investigators to assess the impact of sex-specific hormones on muscle wasting, the field still needs rigorous scientific tools that will allow the community to address critical hypotheses centered around sex hormones. The focus of this review is on female sex hormones, specifically estrogens, and the roles that these hormones and their receptors play in skeletal muscle wasting conditions. With the overall review goal of assembling the current knowledge in the area of sexual dimorphism driven by estrogens with an effort to provide insights to interested physiologists on necessary considerations when trying to assess models for potential sex differences in cellular and molecular mechanisms of muscle wasting.
Collapse
Affiliation(s)
- Shawna L. McMillin
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Everett C. Minchew
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Dawn A. Lowe
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Espen E. Spangenburg
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
37
|
RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. iScience 2022; 25:103616. [PMID: 35106464 PMCID: PMC8786647 DOI: 10.1016/j.isci.2021.103616] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Adult skeletal muscle is a plastic tissue that can adapt its size to workload. Here, we show that RhoA within myofibers is needed for overload-induced hypertrophy by controlling satellite cell (SC) fusion to the growing myofibers without affecting protein synthesis. At the molecular level, we demonstrate that RhoA controls in a cell autonomous manner Erk1/2 activation and the expressions of extracellular matrix (ECM) regulators such as Mmp9/Mmp13/Adam8 and macrophage chemo-attractants such as Ccl3/Cx3cl1. Their decreased expression in RhoA mutants is associated with ECM and fibrillar collagen disorganization and lower macrophage infiltration. Moreover, matrix metalloproteinases inhibition and macrophage depletion in controls phenocopied the altered growth of RhoA mutants while having no effect in mutants showing that their action is RhoA-dependent. These findings unravel the implication of RhoA within myofibers, in the building of a permissive microenvironment for muscle hypertrophic growth and for SC accretion through ECM remodeling and inflammatory cell recruitment. RhoA within myofibers controls SC fusion and muscle hypertrophic growth RhoA controls the expression of Mmps and of macrophage chemoattractants (Ccl3/Cx3cl1) RhoA controls ECM remodeling and macrophage recruitment upon hypertrophy Mmp inhibition and macrophage depletion phenocopy the blunted growth of RhoA mutant muscles
Collapse
|
38
|
Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021; 10:cells10123267. [PMID: 34943775 PMCID: PMC8699096 DOI: 10.3390/cells10123267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
Collapse
|
39
|
Zhou M, Li B, Liu C, Hu M, Tang J, Min J, Cheng J, Hong L. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol 2021; 101:108223. [PMID: 34634686 DOI: 10.1016/j.intimp.2021.108223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
Pubococcygeal muscle injury can lead to stress urinary incontinence (SUI). M2 macrophages play a crucial role in myoblast differentiation during injured muscle regeneration. However, the underlying mechanism remains unclear. Recently, exosomes have attracted increasing attention due to their mediation of cell-to-cell communication. In this study, we found that M2 macrophages extensively infiltrated the pubococcygeal muscle on day 5 after injury (VD5) in vivo. Then, C2C12 myoblasts were treated with M2 macrophage-derived exosomes (M2-EXO) and the results revealed that these exosomes could promote myotube formation. MiR-501 was identified as one of the abundant microRNAs (miRNAs) selectively loaded in M2-EXO, and subsequently confirmed to promote C2C12 myoblast differentiation by targeting YY1. Moreover, in vivo experiments showed that M2-EXO improves the inflammatory cell infiltration and have a therapeutic effect on damaged pubococcygeal muscle in SUI models. Collectively, our present results provide new insights into the promyogenic mechanism of M2 macrophages and prove that M2 macrophage exosomal miR-501 may represent a potential therapeutic to promote recovery from diseases caused by muscle injury, including SUI.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jianhong Cheng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
40
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
41
|
Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules 2021; 11:biom11081171. [PMID: 34439837 PMCID: PMC8392554 DOI: 10.3390/biom11081171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022] Open
Abstract
Repeated mechanical stress causes injuries in the adult skeletal muscle that need to be repaired. Although muscle regeneration is a highly efficient process, it fails in some pathological conditions, compromising tissue functionality. This may be caused by aberrant cell-cell communication, resulting in the deposition of fibrotic and adipose infiltrates. Here, we investigate in vivo changes in the profile of skeletal muscle secretome during the regeneration process to suggest new targetable regulatory circuits whose failure may lead to tissue degeneration in pathological conditions. We describe the kinetic variation of expression levels of 76 secreted proteins during the regeneration process. In addition, we profile the gene expression of immune cells, endothelial cells, satellite cells, and fibro-adipogenic progenitors. This analysis allowed us to annotate each cell-type with the cytokines and receptors they have the potential to synthetize, thus making it possible to draw a cell-cell interaction map. We next selected 12 cytokines whose receptors are expressed in FAPs and tested their ability to modulate FAP adipogenesis and proliferation. We observed that IL1α and IL1β potently inhibit FAP adipogenesis, while EGF and BTC notably promote FAP proliferation. In addition, we characterized the cross-talk mediated by extracellular vesicles (EVs). We first monitored the modulation of muscle EV cargo during tissue regeneration. Using a single-vesicle flow cytometry approach, we observed that EVs differentially affect the uptake of RNA and proteins into their lumen. We also investigated the EV capability to interact with SCs and FAPs and to modulate their proliferation and differentiation. We conclude that both cytokines and EVs secreted during muscle regeneration have the potential to modulate adipogenic differentiation of FAPs. The results of our approach provide a system-wide picture of mechanisms that control cell fate during the regeneration process in the muscle niche.
Collapse
|
42
|
Schüler SC, Kirkpatrick JM, Schmidt M, Santinha D, Koch P, Di Sanzo S, Cirri E, Hemberg M, Ori A, von Maltzahn J. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality. Cell Rep 2021; 35:109223. [PMID: 34107247 DOI: 10.1016/j.celrep.2021.109223] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
During aging, the regenerative capacity of skeletal muscle decreases due to intrinsic changes in muscle stem cells (MuSCs) and alterations in their niche. Here, we use quantitative mass spectrometry to characterize intrinsic changes in the MuSC proteome and remodeling of the MuSC niche during aging. We generate a network connecting age-affected ligands located in the niche and cell surface receptors on MuSCs. Thereby, we reveal signaling by integrins, Lrp1, Egfr, and Cd44 as the major cell communication axes perturbed through aging. We investigate the effect of Smoc2, a secreted protein that accumulates with aging, primarily originating from fibro-adipogenic progenitors. Increased levels of Smoc2 contribute to the aberrant Integrin beta-1 (Itgb1)/mitogen-activated protein kinase (MAPK) signaling observed during aging, thereby causing impaired MuSC functionality and muscle regeneration. By connecting changes in the proteome of MuSCs to alterations of their niche, our work will enable a better understanding of how MuSCs are affected during aging.
Collapse
Affiliation(s)
- Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Joanna M Kirkpatrick
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Manuel Schmidt
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Deolinda Santinha
- Faculty of Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Philipp Koch
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Simone Di Sanzo
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | - Julia von Maltzahn
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| |
Collapse
|
43
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
44
|
Chen M, Zhang L, Guo Y, Liu X, Song Y, Li X, Ding X, Guo H. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1. J Cell Mol Med 2021; 25:5988-6005. [PMID: 33942976 PMCID: PMC8256363 DOI: 10.1111/jcmm.16427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.
Collapse
Affiliation(s)
- Mingming Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xinfeng Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Yingshen Song
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy HusbandryCollege of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina
| |
Collapse
|
45
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
46
|
de Miguel-Gómez L, López-Martínez S, Francés-Herrero E, Rodríguez-Eguren A, Pellicer A, Cervelló I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021; 10:cells10030595. [PMID: 33800355 PMCID: PMC7998473 DOI: 10.3390/cells10030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques. In humans, functional methods (clonogenicity, long-term culture, and multi-lineage differentiation assays) and stem cell markers (CD146, SUSD2/W5C5, LGR5, NTPDase2, SSEA-1, or N-cadherin) facilitated the identification of three main types of endogenous endometrial ASCs: stromal, epithelial progenitor, and endothelial stem cells. Further, exogenous populations of stem cells derived from bone marrow may act as key effectors of the endometrial ASC niche. These findings are promoting the development of stem cell therapies for endometrial pathologies, with an evolution towards paracrine approaches. At the same time, promising therapeutic alternatives based on bioengineering have been proposed.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Sara López-Martínez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- IVIRMA Rome Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Correspondence: ; Tel.: +34-963-903-305
| |
Collapse
|
47
|
Gudagudi KB, Myburgh KH. Methods to Mimic In Vivo Muscle Cell Biology in Primary Human Myoblasts Using Quiescence as a Guidepost in Regenerative Medicine Research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:176-189. [PMID: 33635139 DOI: 10.1089/omi.2020.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regenerative medicine research and testing of new therapeutics for muscle-related human diseases call for a deeper understanding of how human myoblasts gain and maintain quiescence in vitro versus in vivo. The more closely we can experimentally simulate the in vivo environment, the more relevance in vitro research on myoblasts will have. In this context, isolation of satellite cells from muscle tissue causes activation while myoblasts remain activated in culture, thus not simulating quiescence as in their in vivo niche. Cells synchronized for cell cycle present a good starting point for experimental intervention. In the past, myoblast quiescence has been induced using suspension culture (SuCu) and, recently, by knockout serum replacement (KOSR)-supplemented culture media. We assessed the proportion of cells in G0 and molecular regulators after combining the two quiescence-inducing approaches. Quiescence was induced in primary human myoblasts (PHMs) in vitro using KOSR-treatment for 10 days or suspension in viscous media for 2 days (SuCu), or suspension combined with KOSR-treatment for 2 days (blended method, SuCu-KOSR). Quiescence and synchronization were achieved with all three protocols (G0/G1 cell cycle arrest >90% cells). Fold-change of cell cycle controller p21 mRNA for KOSR and SuCu was 3.23 ± 0.30 and 2.86 ± 0.15, respectively. Since this was already a significant change (p < 0.05), no further change was gained with the blended method. But SuCu-KOSR significantly decreased Ki67 (p = 0.0019). Myogenic regulatory factors, Myf5 and MyoD gene expression in PHMs were much more suppressed (p = 0.0004 and p = 0.0034, respectively) in SuCu-KOSR, compared to SuCu alone. In conclusion, a homogenous pool of quiescent primary myoblasts synchronized in the G0 cell cycle phase was achieved with cells from three different donors regardless of the experimental protocol. Myogenic dedifferentiation at the level of Myogenic Regulatory Factors was greater when exposed to the blend of suspension and serum-free culture. We suggest that this blended new protocol can be considered in future biomedical research if differentiation is detected too early during myoblast expansion. This shall also inform new ways to bridge the in vitro and in vivo divides in regenerative medicine research.
Collapse
Affiliation(s)
- Kirankumar B Gudagudi
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
48
|
Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti. Perspectives on skeletal muscle stem cells. Nat Commun 2021; 12:692. [PMID: 33514709 PMCID: PMC7846784 DOI: 10.1038/s41467-020-20760-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- F. Relaix
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France ,grid.50550.350000 0001 2175 4109AP-HP, Hopital Mondor, Service d’histologie, 94010 Creteil, France
| | - M. Bencze
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - M. J. Borok
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Der Vartanian
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - F. Gattazzo
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France
| | - D. Mademtzoglou
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - S. Perez-Diaz
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Prola
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France
| | - P. C. Reyes-Fernandez
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Rotini
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - Taglietti
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| |
Collapse
|
49
|
Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. J Physiol Biochem 2021; 77:63-73. [PMID: 33495890 DOI: 10.1007/s13105-021-00787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in human oncogenesis and the pathway's influence on myogenesis and satellite cell functions, on supporting cells such as fibroblasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles. Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results. Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer potential new strategies for the prevention or treatment of ageing.
Collapse
|
50
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Mdfi Promotes C2C12 Cell Differentiation and Positively Modulates Fast-to-Slow-Twitch Muscle Fiber Transformation. Front Cell Dev Biol 2021; 9:605875. [PMID: 33553177 PMCID: PMC7862576 DOI: 10.3389/fcell.2021.605875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Muscle development requires myoblast differentiation and muscle fiber formation. Myod family inhibitor (Mdfi) inhibits myogenic regulatory factors in NIH3T3 cells, but how Mdfi regulates myoblast myogenic development is still unclear. In the present study, we constructed an Mdfi-overexpression (Mdfi-OE) C2C12 cell line by the CRISPR/Cas9 system and performed RNA-seq on Mdfi-OE and wild-type (WT) C2C12 cells. The RNA-seq results showed that the calcium signaling pathway was the most significant. We also established the regulatory networks of Mdfi-OE on C2C12 cell differentiation and muscle fiber type transformation and identified hub genes. Further, both RNA-seq and experimental verification demonstrated that Mdfi promoted C2C12 cell differentiation by upregulating the expression of Myod, Myog, and Myosin. We also found that the positive regulation of Mdfi on fast-to-slow-twitch muscle fiber transformation is mediated by Myod, Camk2b, and its downstream genes, such as Pgc1a, Pdk4, Cs, Cox4, Acadm, Acox1, Cycs, and Atp5a1. In conclusion, our results demonstrated that Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation. These findings further our understanding of the regulatory mechanisms of Mdfi in myogenic development and muscle fiber type transformation. Our results suggest potential therapeutic targets for muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|