1
|
Luo H, Wang Y, Huang J, Miao B, Zhang H, Luo X, You W, Lu Y, Cai M, Ke C. Intraspecific variation and functional study of VERL polymorphism in Pacific abalone (Haliotis discus hannai Ino) and giant abalone (H. gigantea Gmelin). Int J Biol Macromol 2025:139677. [PMID: 39793801 DOI: 10.1016/j.ijbiomac.2025.139677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Sperm and eggs have interacting proteins on their surfaces that affect their compatibility during fertilization. These gamete recognition proteins (GRPs) are typically polymorphic within species, resulting in variations in gamete affinity. This study presents the full-length sequence of VERL, an egg vitelline envelope receptor for sperm lysin, in Pacific abalone (Haliotis discus hannai Ino) and giant abalone (Haliotis gigantea Gmelin). The full-length VERL cDNA sequence in Pacific abalone (11,373 bp) encodes 3790 amino acids, most of which are organized into 21 tandem repeats. In giant abalone, the VERL spans 9405 bp and encodes 3134 amino acids, including 17 tandem repeats. By resolving the nucleotide polymorphisms from resequencing data into haplotypes, high allelic diversity was found in VERL domain repeats 1-2 in both species. Further analysis of intraspecific variation in this region revealed that the alleles of VERL repeats 1-2 in Pacific abalone clustered into two clades, yet no significant divergence was observed among the three Pacific abalone geographic populations. In contrast, alleles in giant abalone were subdivided into two distinct branches, separated by a maximum of 12 amino acid substitutions. Notably, this study provides the first evidence of assortative mating between male and female gametes based on VERL genotypes in giant abalone. Overall, this study revealed the amino acid polymorphism of VERL in two abalone species and its functional effects on fertilization potential. These findings provide a foundation for future research on gamete recognition mechanisms and support selective breeding strategies to enhance abalone reproductive efficiency.
Collapse
Affiliation(s)
- Hanjiao Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yi Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Benben Miao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haichen Zhang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Lu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, Fujian, China.
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Balastegui-Alarcón M, Moros-Nicolás C, Ballesta J, Izquierdo-Rico MJ, Chevret P, Avilés M. Molecular Evolution of the Ovgp1 Gene in the Subfamily Murinae. Animals (Basel) 2024; 15:55. [PMID: 39794998 DOI: 10.3390/ani15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
OGP, encoded by the Ovgp1 gene, is the major non-serum oviductal protein in most mammals. In the genome of Rattus norvegicus, Ovgp1 has been identified as a pseudogene. However, Mus musculus presents a functional gene. As the rat and the mouse belong to the subfamily Murinae, Ovgp1 has probably been lost after their divergence. This study aims to determine when the pseudogenization event occurred and which proteins could replace its function. To attain that, the potential expression of members belonging to the GH18 family is investigated in the rat oviduct by means of molecular and proteomic analyses. Specific Ovgp1 regions are sequenced in different murine rodent species. The analysis reveals the presence of stop codons only in some species of the Rattini tribe, suggesting that the majority of the murine species present a functional gene. Thus, the pseudogenization of Ovgp1 could be dated back to around 10 Mya, after the divergence of the Rattini tribe. The expression of several genes and proteins of the GH18 family, such as Chia, Chit1, Chi3l1, and Chid1, are detected in the rat oviduct. This study opens the door for further research on GH18 family proteins that mimic the OGP functions in species where Ovgp1 is pseudogenized.
Collapse
Affiliation(s)
- Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Carla Moros-Nicolás
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - José Ballesta
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| |
Collapse
|
3
|
Almeida DA, Twomey E, Vargas-Salinas F, Meyer C, Schulte LM. Sexy fingers: Pheromones in the glands of male dendrobatid frogs. Mol Ecol 2024; 33:e17476. [PMID: 39034599 DOI: 10.1111/mec.17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Many animals exchange chemicals during courtship and mating. In some amphibians, sexual chemical communication is mediated by pheromones produced in male breeding glands that are transferred to the female's nostrils during mating. This has been mostly studied in salamanders, despite frogs having similar glands and courtship behaviours suggestive of chemical communication. In Neotropical poison frogs (Dendrobatidae and Aromobatidae), males of many species develop breeding glands in their fingers, causing certain fingers to visibly swell. Many also engage in cephalic amplexus, whereby the male's swollen fingers are placed in close contact with the female's nares during courtship. Here, we investigate the possible roles of swollen fingers in pheromone production using whole-transcriptome sequencing (RNAseq). We examined differential gene expression in the swollen versus non-swollen fingers and toes of two dendrobatid species, Leucostethus brachistriatus and Epipedobates anthonyi, both of which have specialised mucous glands in finger IV, the latter of which has cephalic amplexus. The overwhelming pattern of gene expression in both species was strong upregulation of sodefrin precursor-like factors (SPFs) in swollen fingers, a well-known pheromone system in salamanders. The differentially expressed SPF transcripts in each species were very high (>40), suggesting a high abundance of putative protein pheromones in both species. Overall, the high expression of SPFs in the swollen fingers in both species, combined with cephalic amplexus, supports the hypothesis that these traits, widespread across members of the subfamilies Colostethinae and Hyloxalinae (ca. 141 species), are involved in chemical signalling during courtship.
Collapse
Affiliation(s)
- Diana Abondano Almeida
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evan Twomey
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fernando Vargas-Salinas
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Programa de Biología, Universidad del Quindío, Armenia, Colombia
| | - Carmen Meyer
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa M Schulte
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Birk DS, Onose S, Kinoshita M, Murata K. Medaka, Oryzias latipes, egg envelopes are created by ovarian-expressed ZP proteins and liver-expressed choriogenins. ZOOLOGICAL LETTERS 2022; 8:11. [PMID: 35902919 PMCID: PMC9330664 DOI: 10.1186/s40851-022-00194-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The medaka (Oryzias latipes) egg envelope (chorion) is composed of three major glycoproteins, Zona Interna (ZI)-1, -2, and -3, that originate in the spawning female liver as the precursor proteins Choriogenin (Chg.)H, Chg.Hm, and Chg.L, respectively. These ZI and Chg. proteins contain a structural ZP protein domain that is conserved among the egg envelope proteins of all animals. While ovarian expression of ZP proteins (e.g., ZPCs and ZPB) has been reported in medakas, the functions of these proteins remain unknown. Thus, the present study aimed to determine whether the ovary-expressed medaka ZP protein, mZPC5, is involved in forming the chorion matrix.The mZPC5 gene (mzpc5) was expressed in the ovaries but not the livers of mature female medakas, as shown by reverse transcription-polymerase chain reaction assays with mzpc5-specific primers. In situ hybridization analysis revealed that ovarian mzpc5 expression was restricted to the ooplasm of early (stage I-III) previtellogenic oocytes, and its expression signal weakened with oocyte growth. Following sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis with anti-mZPC5 antibodies, two immunoreactive proteins were detected in the ovary and chorion extracts. These proteins were approximately 50 and 74 kDa in size, like ZI-3 and ZI-2, respectively.Immunohistochemical assays using anti-mZPC5 and anti-Chg.H antibodies localized the mZPC5 protein in the ooplasm of early previtellogenic oocytes. With oocyte growth, mZPC5 tended to accumulate in the chorion, co-localizing with Chg.H.We previously showed that ovary-expressed ZP proteins could not compensate for Chg.L function loss in gene knock-out (chg.l -/-) medakas. As in our previous study, the chg.l-/- females produced oocytes with thin chorions, resulting in infertile soft eggs. However, in the present study, mZPC5 and Chg.H were co-localized in the chg.l-/- chorions. These results suggested that in the medaka previtellogenic oocyte, 1) mZPC5 is secreted from the ooplasm and deposited on the outer surface of its plasma membrane, creating the thin chorion layer; and 2) following the accumulation of liver-derived Chgs., the 3D structure of the chorion matrix is formed cooperatively with mZPC5 and Chgs. during oogenesis. More research is needed to confirm the functions of mZPC5 in chorion structure and physiology.
Collapse
Affiliation(s)
- Devun S. Birk
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
| | - Shinji Onose
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
- Fordays Co., Ltd, Tokyo, 103-0016 Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Kenji Murata
- University of California, Davis. Center for Health and the Environment, Davis, CA 95616 USA
| |
Collapse
|
5
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
6
|
Carlisle JA, Glenski MA, Swanson WJ. Recurrent Duplication and Diversification of Acrosomal Fertilization Proteins in Abalone. Front Cell Dev Biol 2022; 10:795273. [PMID: 35465314 PMCID: PMC9022041 DOI: 10.3389/fcell.2022.795273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Reproductive proteins mediating fertilization commonly exhibit rapid sequence diversification driven by positive selection. This pattern has been observed among nearly all taxonomic groups, including mammals, invertebrates, and plants, and is remarkable given the essential nature of the molecular interactions mediating fertilization. Gene duplication is another important mechanism that facilitates the generation of molecular novelty through functional divergence. Following duplication, paralogs may partition ancestral gene function (subfunctionalization) or acquire new roles (neofunctionalization). However, the contributions of duplication followed by sequence diversification to the molecular diversity of gamete recognition genes has been understudied in many models of fertilization. The marine gastropod mollusk abalone is a classic model for fertilization. Its two acrosomal proteins (lysin and sp18) are ancient gene duplicates with unique gamete recognition functions. Through detailed genomic and bioinformatic analyses we show how duplication events followed by sequence diversification has played an ongoing role in the evolution of abalone acrosomal proteins. The common ancestor of abalone had four members of its acrosomal protein family in a tandem gene array that repeatedly experienced positive selection. We find that both sp18 paralogs contain positively selected sites located in different regions of the paralogs, suggestive of functional divergence where selection acted upon distinct binding interfaces in each paralog. Further, a more recent species-specific duplication of both lysin and sp18 in the European abalone H. tuberculata is described. Despite clade-specific acrosomal protein paralogs, there are no concomitant duplications of egg coat proteins in H. tuberculata, indicating that duplication of egg proteins per se is not responsible for retention of duplicated acrosomal proteins. We hypothesize that, in a manner analogous to host/pathogen evolution, sperm proteins are selected for increased diversity through extensive sequence divergence and recurrent duplication driven by conflict mechanisms.
Collapse
Affiliation(s)
- J. A. Carlisle
- Genome Sciences Department, University of Washington Medical School, Seattle, WA, United States
- *Correspondence: J. A. Carlisle,
| | - M. A. Glenski
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - W. J. Swanson
- Genome Sciences Department, University of Washington Medical School, Seattle, WA, United States
| |
Collapse
|
7
|
Rivera AM, Swanson WJ. The Importance of Gene Duplication and Domain Repeat Expansion for the Function and Evolution of Fertilization Proteins. Front Cell Dev Biol 2022; 10:827454. [PMID: 35155436 PMCID: PMC8830517 DOI: 10.3389/fcell.2022.827454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The process of gene duplication followed by gene loss or evolution of new functions has been studied extensively, yet the role gene duplication plays in the function and evolution of fertilization proteins is underappreciated. Gene duplication is observed in many fertilization protein families including Izumo, DCST, ZP, and the TFP superfamily. Molecules mediating fertilization are part of larger gene families expressed in a variety of tissues, but gene duplication followed by structural modifications has often facilitated their cooption into a fertilization function. Repeat expansions of functional domains within a gene also provide opportunities for the evolution of novel fertilization protein. ZP proteins with domain repeat expansions are linked to species-specificity in fertilization and TFP proteins that experienced domain duplications were coopted into a novel sperm function. This review outlines the importance of gene duplications and repeat domain expansions in the evolution of fertilization proteins.
Collapse
Affiliation(s)
- Alberto M. Rivera
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
8
|
Zona Pellucida Genes and Proteins: Essential Players in Mammalian Oogenesis and Fertility. Genes (Basel) 2021; 12:genes12081266. [PMID: 34440440 PMCID: PMC8391237 DOI: 10.3390/genes12081266] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
All mammalian oocytes and eggs are surrounded by a relatively thick extracellular matrix (ECM), the zona pellucida (ZP), that plays vital roles during oogenesis, fertilization, and preimplantation development. Unlike ECM surrounding somatic cells, the ZP is composed of only a few glycosylated proteins, ZP1–4, that are unique to oocytes and eggs. ZP1–4 have a large region of polypeptide, the ZP domain (ZPD), consisting of two subdomains, ZP-N and ZP-C, separated by a short linker region, that plays an essential role in polymerization of nascent ZP proteins into crosslinked fibrils. Both subdomains adopt immunoglobulin (Ig)-like folds for their 3-dimensional structure. Mouse and human ZP genes are encoded by single-copy genes located on different chromosomes and are highly expressed in the ovary by growing oocytes during late stages of oogenesis. Genes encoding ZP proteins are conserved among mammals, and their expression is regulated by cis-acting sequences located close to the transcription start-site and by the same/similar trans-acting factors. Nascent ZP proteins are synthesized, packaged into vesicles, secreted into the extracellular space, and assembled into long, crosslinked fibrils that have a structural repeat, a ZP2-ZP3 dimer, and constitute the ZP matrix. Fibrils are oriented differently with respect to the oolemma in the inner and outer layers of the ZP. Sequence elements in the ZPD and the carboxy-terminal propeptide of ZP1–4 regulate secretion and assembly of nascent ZP proteins. The presence of both ZP2 and ZP3 is required to assemble ZP fibrils and ZP1 and ZP4 are used to crosslink the fibrils. Inactivation of mouse ZP genes by gene targeting has a detrimental effect on ZP formation around growing oocytes and female fertility. Gene sequence variations in human ZP genes due to point, missense, or frameshift mutations also have a detrimental effect on ZP formation and female fertility. The latter mutations provide additional support for the role of ZPD subdomains and other regions of ZP polypeptide in polymerization of human ZP proteins into fibrils and matrix.
Collapse
|
9
|
Weadick CJ. Molecular Evolutionary Analysis of Nematode Zona Pellucida (ZP) Modules Reveals Disulfide-Bond Reshuffling and Standalone ZP-C Domains. Genome Biol Evol 2021; 12:1240-1255. [PMID: 32426804 PMCID: PMC7456536 DOI: 10.1093/gbe/evaa095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Zona pellucida (ZP) modules mediate extracellular protein-protein interactions and contribute to important biological processes including syngamy and cellular morphogenesis. Although some biomedically relevant ZP modules are well studied, little is known about the protein family's broad-scale diversity and evolution. The increasing availability of sequenced genomes from "nonmodel" systems provides a valuable opportunity to address this issue and to use comparative approaches to gain new insights into ZP module biology. Here, through phylogenetic and structural exploration of ZP module diversity across the nematode phylum, I report evidence that speaks to two important aspects of ZP module biology. First, I show that ZP-C domains-which in some modules act as regulators of ZP-N domain-mediated polymerization activity, and which have never before been found in isolation-can indeed be found as standalone domains. These standalone ZP-C domain proteins originated in independent (paralogous) lineages prior to the diversification of extant nematodes, after which they evolved under strong stabilizing selection, suggesting the presence of ZP-N domain-independent functionality. Second, I provide a much-needed phylogenetic perspective on disulfide bond variability, uncovering evidence for both convergent evolution and disulfide-bond reshuffling. This result has implications for our evolutionary understanding and classification of ZP module structural diversity and highlights the usefulness of phylogenetics and diverse sampling for protein structural biology. All told, these findings set the stage for broad-scale (cross-phyla) evolutionary analysis of ZP modules and position Caenorhabditis elegans and other nematodes as important experimental systems for exploring the evolution of ZP modules and their constituent domains.
Collapse
|
10
|
Killingbeck EE, Wilburn DB, Merrihew GE, MacCoss MJ, Swanson WJ. Proteomics support the threespine stickleback egg coat as a protective oocyte envelope. Mol Reprod Dev 2021; 88:500-515. [PMID: 34148267 PMCID: PMC8362008 DOI: 10.1002/mrd.23517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Ecological and behavioral factors have been suggested to underlie stickleback reproductive isolation and incipient speciation, but reproductive proteins mediating gamete recognition during fertilization have so far remained unexplored. To begin to investigate the contribution of reproductive proteins to stickleback reproductive isolation, we have characterized the stickleback egg coat proteome. We find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3, as in other teleost fish. Our molecular evolutionary analyses indicate that across teleosts, ZP3 but not ZP1 has experienced positive Darwinian selection. Mammalian ZP3 is also rapidly evolving, and surprisingly some residues under selection in stickleback and mammalian ZP3 directly align. Despite broad homology, however, we find differences between mammalian and stickleback ZP proteins with respect to glycosylation, disulfide bonding, and sites of synthesis. Taken together, the changes we observe in stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Izquierdo-Rico MJ, Moros-Nicolás C, Pérez-Crespo M, Laguna-Barraza R, Gutiérrez-Adán A, Veyrunes F, Ballesta J, Laudet V, Chevret P, Avilés M. ZP4 Is Present in Murine Zona Pellucida and Is Not Responsible for the Specific Gamete Interaction. Front Cell Dev Biol 2021; 8:626679. [PMID: 33537315 PMCID: PMC7848090 DOI: 10.3389/fcell.2020.626679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian eggs are surrounded by an extracellular matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding, protection of the oviductal embryo, and may be involved in speciation. In eutherian mammals, this coat is formed of three or four glycoproteins (ZP1-ZP4). While Mus musculus has been used as a model to study the ZP for more than 35 years, surprisingly, it is the only eutherian species in which the ZP is formed of three glycoproteins Zp1, Zp2, and Zp3, Zp4 being a pseudogene. Zp4 was lost in the Mus lineage after it diverged from Rattus, although it is not known when precisely this loss occurred. In this work, the status of Zp4 in several murine rodents was tested by phylogenetic, molecular, and proteomic analyses. Additionally, assays of cross in vitro fertilization between three and four ZP rodents were performed to test the effect of the presence of Zp4 in murine ZP and its possible involvement in reproductive isolation. Our results showed that Zp4 pseudogenization is restricted to the subgenus Mus, which diverged around 6 MYA. Heterologous in vitro fertilization assays demonstrate that a ZP formed of four glycoproteins is not a barrier for the spermatozoa of species with a ZP formed of three glycoproteins. This study identifies the existence of several mouse species with four ZPs that can be considered suitable for use as an experimental animal model to understand the structural and functional roles of the four ZP proteins in other species, including human.
Collapse
Affiliation(s)
- Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Carla Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Míriam Pérez-Crespo
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution, UMR5554 CNRS/Université Montpellier/IRD/EPHE, Montpellier, France
| | - José Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| |
Collapse
|
12
|
Ma CP, Guo ZM, Zhang FL, Su JY. Molecular identification, expression and function analysis of peroxidasin in Chilo suppressalis. INSECT SCIENCE 2020; 27:1173-1185. [PMID: 31829500 DOI: 10.1111/1744-7917.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Peroxidasin plays a unique role in the formation and stability of extracellular matrix (ECM) in the animal kingdom; however, it was only characterized in Diptera, not in other insect orders. In this study peroxidasin (CsPxd) was first identified and characterized from Chilo suppressalis, a lepidopteran pest. CsPxd complementary DNA with a 4080 bp open reading frame encodes a peptide of 1359 amino acids; the derived amino acid sequence of CsPxd harbors the typical structural characteristics of peroxidasin family in heme-peroxidase superfamily, including the signal peptide at N-terminal, leucine-rich repeat domain, Ig-loop motifs and peroxidase domain, signifying the extracellular location of protein and the involvement in ECM formation. Eukaryotic expression reveals CsPxd protein displays peroxidase activity on H2 O2 , justifying the membership of peroxidase. Phyletic analysis shows the monophyletic evolution pattern of peroxidasin in insect phyle, and moreover only one peroxidasin is present in each species of insects, suggesting its evolutionary conservation on function. Peroxidasin messenger RNA is mainly expressed in egg and the final instar larvae stage. Injection of peroxidasin double-stranded RNA into the final instar larvae impacts the cuticle sclerotization during the metamorphosis from larvae to pupa, and eventually lead to lethality of larvae and pupa. These results suggest the presence of collagen crosslink in chorion and cuticle of insects, and indicate peroxidasin plays a role in the development of chorion and cuticle; furthermore peroxidasin might be the one of potential target genes for pest control using RNA interference.
Collapse
Affiliation(s)
- Chun-Ping Ma
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Mu Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Li Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Ya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Nixon B, Cafe SL, Eamens AL, De Iuliis GN, Bromfield EG, Martin JH, Skerrett-Byrne DA, Dun MD. Molecular insights into the divergence and diversity of post-testicular maturation strategies. Mol Cell Endocrinol 2020; 517:110955. [PMID: 32783903 DOI: 10.1016/j.mce.2020.110955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Competition to achieve paternity has coerced the development of a multitude of male reproductive strategies. In one of the most well-studied examples, the spermatozoa of all mammalian species must undergo a series of physiological changes as they transit the male (epididymal maturation) and female (capacitation) reproductive tracts prior to realizing their potential to fertilize an ovum. However, the origin and adaptive advantage afforded by these intricate processes of post-testicular sperm maturation remain to be fully elucidated. Here, we review literature pertaining to the nature and the physiological role of epididymal maturation and subsequent capacitation in comparative vertebrate taxa including representative species from the avian, reptilian, and mammalian lineages. Such insights are discussed in terms of the framework they provide for helping to understand the evolutionary significance of post-testicular sperm maturation.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia.
| | - Shenae L Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, NSW, 2305, Australia
| |
Collapse
|
14
|
Carlisle JA, Swanson WJ. Molecular mechanisms and evolution of fertilization proteins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:652-665. [PMID: 33015976 DOI: 10.1002/jez.b.23004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Sexual reproduction involves a cascade of molecular interactions between the sperm and the egg culminating in cell-cell fusion. Vital steps mediating fertilization include chemoattraction of the sperm to the egg, induction of the sperm acrosome reaction, dissolution of the egg coat, and sperm-egg plasma membrane binding and fusion. Despite decades of research, only a handful of interacting gamete recognition proteins (GRPs) have been identified across taxa mediating each of these steps, most notably in abalone, sea urchins, and mammals. This review outlines and compares notable GRP pairs mediating sperm-egg recognition in these three significant model systems and discusses the molecular basis of species-specific fertilization driven by GRP function. In addition, we explore the evolutionary theory behind the rapid diversification of GRPs between species. In particular, we focus on how the coevolution between interacting sperm and egg proteins may contribute to the formation of boundaries to hybridization. Finally, we discuss how pairing structural information with evolutionary insights can improve our understanding of mechanisms of fertilization and their origins.
Collapse
Affiliation(s)
- Jolie A Carlisle
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| |
Collapse
|
15
|
Litscher ES, Wassarman PM. Zona pellucida genes and proteins and human fertility. TRENDS IN DEVELOPMENTAL BIOLOGY 2020; 13:21-33. [PMID: 33335361 PMCID: PMC7743998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The zona pellucida (ZP) is an extracellular matrix (ECM) that surrounds all mammalian oocytes, eggs, and embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The mouse and human ZP is composed of three or four unique proteins, respectively, called ZP1-4, that are synthesized, processed, and secreted by oocytes during their growth phase. All ZP proteins have a zona pellucida domain (ZPD) that consists of ≈270 amino acids and has 8 conserved Cys residues present as four intramolecular disulfides. Secreted ZP proteins assemble into long fibrils around growing oocytes with ZP2-ZP3 dimers located periodically along the fibrils. The fibrils are cross-linked by ZP1 to form a thick, transparent ECM to which sperm must first bind and then penetrate during fertilization of eggs. Inactivation of mouse ZP1, ZP2, or ZP3 by gene targeting affects both ZP formation around oocytes and fertility. Female mice with eggs that lack a ZP due to inactivation of either ZP2 or ZP3 are completely infertile, whereas inactivation of ZP1 results in construction of an abnormal ZP and reduced fertility. Results of a large number of studies of infertile female patients strongly suggest that gene sequence variations (GSV) in human ZP1, ZP2, or ZP3 due to point, missense, or frameshift mutations have similar deleterious effects on ZP formation and female fertility. These findings are discussed in light of our current knowledge of ZP protein synthesis, processing, secretion, and assembly.
Collapse
|