1
|
Ding S, Feng S, Zhou S, Zhao Z, Liang X, Wang J, Fu R, Deng R, Zhang T, Shao S, Yu J, Foyer CH, Shi K. A novel LRR receptor-like kinase BRAK reciprocally phosphorylates PSKR1 to enhance growth and defense in tomato. EMBO J 2024; 43:6104-6123. [PMID: 39448885 PMCID: PMC11612273 DOI: 10.1038/s44318-024-00278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Plants face constant threats from pathogens, leading to growth retardation and crop failure. Cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) are crucial for plant growth and defense, but their specific functions, especially to necrotrophic fungal pathogens, are largely unknown. Here, we identified an LRR-RLK (Solyc06g069650) in tomato (Solanum lycopersicum) induced by the economically important necrotrophic pathogen Botrytis cinerea. Knocking out this LRR-RLK reduced plant growth and increased sensitivity to B. cinerea, while its overexpression led to enhanced growth, yield, and resistance. We named this LRR-RLK as BRAK (B. cinerea resistance-associated kinase). Yeast two-hybrid screen revealed BRAK interacted with phytosulfokine (PSK) receptor PSKR1. PSK-induced growth and defense responses were impaired in pskr1, brak single and double mutants, as well as in PSKR1-overexpressing plants with silenced BRAK. Moreover, BRAK and PSKR1 phosphorylated each other, promoting their interaction as detected by microscale thermophoresis. This reciprocal phosphorylation was crucial for growth and resistance. In summary, we identified BRAK as a novel regulator of seedling growth, fruit yield and defense, offering new possibilities for developing fungal disease-tolerant plants without compromising yield.
Collapse
Affiliation(s)
- Shuting Ding
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China
| | - Shuxian Feng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Shibo Zhou
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Zhengran Zhao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Ruishuang Fu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Rui Deng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, 572025, Sanya, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, 310058, Hangzhou, China.
| |
Collapse
|
2
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Pang Y, Liu C, Lin M, Ni F, Li W, Cai J, Zhang Z, Zhu H, Liu J, Wu J, Bai G, Liu S. Mapping QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Landrace. Int J Mol Sci 2022; 23:ijms23179662. [PMID: 36077059 PMCID: PMC9456275 DOI: 10.3390/ijms23179662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usually controlled by multiple genes with partial resistance. In this study, a recombinant inbred line population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experiments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe rust, and explained 8.0–21.2%, 10.1–22.7%, and 11.6–18.0% of the phenotypic variation, respectively. QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related genes were differently expressed between the two parents, and therefore were considered as the putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes.
Collapse
Affiliation(s)
- Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Chunxia Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Wenhui Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jin Cai
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ziliang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Huaqiang Zhu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jingxian Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
4
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Chaube MA, Trattnig N, Lee D, Belkhadir Y, Pfrengle F. Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses. European J Org Chem 2022; 2022:e202200313. [PMID: 36035813 PMCID: PMC9401017 DOI: 10.1002/ejoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and β-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) β-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.
Collapse
Affiliation(s)
- Manishkumar A. Chaube
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nino Trattnig
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| | - Du‐Hwa Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
6
|
Sillo F, Brunetti C, Marroni F, Vita F, Dos Santos Nascimento LB, Vizzini A, Mello A, Balestrini R. Systemic effects of Tuber melanosporum inoculation in two Corylus avellana genotypes. TREE PHYSIOLOGY 2022; 42:1463-1480. [PMID: 35137225 DOI: 10.1093/treephys/tpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| | - Cecilia Brunetti
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Firenze, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Antonietta Mello
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| |
Collapse
|
7
|
Zhang Q, Dai X, Wang H, Wang F, Tang D, Jiang C, Zhang X, Guo W, Lei Y, Ma C, Zhang H, Li P, Zhao Y, Wang Z. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:866063. [PMID: 35463436 PMCID: PMC9019583 DOI: 10.3389/fpls.2022.866063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
Salt stress is an important environmental factor limiting plant growth and crop production. Plant adaptation to salt stress can be improved by chemical pretreatment. This study aims to identify whether hydrogen peroxide (H2O2) pretreatment of seedlings affects the stress tolerance of Arabidopsis thaliana seedlings. The results show that pretreatment with H2O2 at appropriate concentrations enhances the salt tolerance ability of Arabidopsis seedlings, as revealed by lower Na+ levels, greater K+ levels, and improved K+/Na+ ratios in leaves. Furthermore, H2O2 pretreatment improves the membrane properties by reducing the relative membrane permeability (RMP) and malonaldehyde (MDA) content in addition to improving the activities of antioxidant enzymes, including superoxide dismutase, and glutathione peroxidase. Our transcription data show that exogenous H2O2 pretreatment leads to the induced expression of cell cycle, redox regulation, and cell wall organization-related genes in Arabidopsis, which may accelerate cell proliferation, enhance tolerance to osmotic stress, maintain the redox balance, and remodel the cell walls of plants in subsequent high-salt environments.
Collapse
Affiliation(s)
- Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Huanpeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongxue Tang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chunyun Jiang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Xiaoyan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenjing Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Lei
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Kumawat TK, Kumawat V, Sharma S, Sharma V, Pandit A, Kandwani N, Biyani M. Sustainable Green Methods for the Extraction of Biopolymers. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
García YH, Zamora OR, Troncoso-Rojas R, Tiznado-Hernández ME, Báez-Flores ME, Carvajal-Millan E, Rascón-Chu A. Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules 2021; 26:molecules26216513. [PMID: 34770922 PMCID: PMC8587247 DOI: 10.3390/molecules26216513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Large volumes of fruit and vegetable production are lost during postharvest handling due to attacks by necrotrophic fungi. One of the promising alternatives proposed for the control of postharvest diseases is the induction of natural defense responses, which can be activated by recognizing molecules present in pathogens, such as chitin. Chitin is one of the most important components of the fungal cell wall and is recognized through plant membrane receptors. These receptors belong to the receptor-like kinase (RLK) family, which possesses a transmembrane domain and/or receptor-like protein (RLP) that requires binding to another RLK receptor to recognize chitin. In addition, these receptors have extracellular LysM motifs that participate in the perception of chitin oligosaccharides. These receptors have been widely studied in Arabidopsis thaliana (A. thaliana) and Oryza sativa (O. sativa); however, it is not clear how the molecular recognition and plant defense mechanisms of chitin oligosaccharides occur in other plant species or fruits. This review includes recent findings on the molecular recognition of chitin oligosaccharides and how they activate defense mechanisms in plants. In addition, we highlight some of the current advances in chitin perception in horticultural crops.
Collapse
Affiliation(s)
- Yaima Henry García
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Orlando Reyes Zamora
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
- Correspondence:
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| | - María Elena Báez-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. Calle de las Américas y Josefa Ortiz de Domínguez, Culiacán C.P. 80013, Mexico;
| | - Elizabeth Carvajal-Millan
- Coordinación de Tecnología en Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico;
| | - Agustín Rascón-Chu
- Coordinación de Tecnología en Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo C.P. 83304, Mexico; (Y.H.G.); (O.R.Z.); (M.E.T.-H.); (A.R.-C.)
| |
Collapse
|
10
|
Chiusano ML, Incerti G, Colantuono C, Termolino P, Palomba E, Monticolo F, Benvenuto G, Foscari A, Esposito A, Marti L, de Lorenzo G, Vega-Muñoz I, Heil M, Carteni F, Bonanomi G, Mazzoleni S. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081744. [PMID: 34451789 PMCID: PMC8400022 DOI: 10.3390/plants10081744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.
Collapse
Affiliation(s)
- Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
- Correspondence: (M.L.C.); (S.M.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy;
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine, via campi Flegrei, 34 Pozzuoli, 80078 Napoli, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giovanna Benvenuto
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Alessandro Foscari
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Giulia de Lorenzo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Isaac Vega-Muñoz
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Martin Heil
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Correspondence: (M.L.C.); (S.M.)
| |
Collapse
|
11
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
12
|
Abstract
Plants utilize a two-tiered immune system consisting of pattern recognition receptor (PRR)-triggered immunity (PTI) and effector-triggered immunity (ETI) to defend themselves against pathogenic microbes. The receptor protein kinase BAK1 plays a central role in multiple PTI signaling pathways in Arabidopsis However, double mutants made by BAK1 and its closest paralog BKK1 exhibit autoimmune phenotypes, including cell death resembling a typical nucleotide-binding leucine-rich repeat protein (NLR)-mediated ETI response. The molecular mechanisms of the cell death caused by the depletion of BAK1 and BKK1 are poorly understood. Here, we show that the cell-death phenotype of bak1 bkk1 is suppressed when a group of NLRs, ADR1s, are mutated, indicating the cell-death of bak1 bkk1 is the consequence of NLR activation. Furthermore, introduction of a Pseudomonas syringae effector HopB1, which proteolytically cleaves activated BAK1 and its paralogs via either gene transformation or bacterium-delivery, results in a cell-death phenotype in an ADR1s-dependent manner. Our study thus pinpoints that BAK1 and its paralogs are likely guarded by NLRs.
Collapse
|
13
|
Sun Y, Qiao Z, Muchero W, Chen JG. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. FRONTIERS IN PLANT SCIENCE 2020; 11:596301. [PMID: 33362827 PMCID: PMC7758398 DOI: 10.3389/fpls.2020.596301] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.
Collapse
|