1
|
Białas N, Rosenkranz N, Weber DG, Kostka K, Johnen G, Winter A, Brik A, Loza K, Szafranski K, Brüning T, Bünger J, Westphal G, Epple M. Synthetic silica fibers of different length, diameter and shape: synthesis and interaction with rat (NR8383) and human (THP-1) macrophages in vitro, including chemotaxis and gene expression profile. Part Fibre Toxicol 2024; 21:23. [PMID: 38734694 PMCID: PMC11088073 DOI: 10.1186/s12989-024-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Inhalation of biopersistent fibers like asbestos can cause strong chronic inflammatory effects, often resulting in fibrosis or even cancer. The interplay between fiber shape, fiber size and the resulting biological effects is still poorly understood due to the lack of reference materials. RESULTS We investigated how length, diameter, aspect ratio, and shape of synthetic silica fibers influence inflammatory effects at doses up to 250 µg cm-2. Silica nanofibers were prepared with different diameter and shape. Straight (length ca. 6 to 8 µm, thickness ca. 0.25 to 0.35 µm, aspect ratio ca. 17:1 to 32:1) and curly fibers (length ca. 9 µm, thickness ca. 0.13 µm, radius of curvature ca. 0.5 µm, aspect ratio ca. 70:1) were dispersed in water with no apparent change in the fiber shape during up to 28 days. Upon immersion in aqueous saline (DPBS), the fibers released about 5 wt% silica after 7 days irrespectively of their shape. The uptake of the fibers by macrophages (human THP-1 and rat NR8383) was studied by scanning electron microscopy and confocal laser scanning microscopy. Some fibers were completely taken up whereas others were only partially internalized, leading to visual damage of the cell wall. The biological effects were assessed by determining cell toxicity, particle-induced chemotaxis, and the induction of gene expression of inflammatory mediators. CONCLUSIONS Straight fibers were only slightly cytotoxic and caused weak cell migration, regardless of their thickness, while the curly fibers were more toxic and caused significantly stronger chemotaxis. Curly fibers also had the strongest effect on the expression of cytokines and chemokines. This may be due to the different aspect ratio or its twisted shape.
Collapse
Affiliation(s)
- Nataniel Białas
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Nina Rosenkranz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Daniel Gilbert Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Aileen Winter
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Katja Szafranski
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany
| | - Götz Westphal
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789, Bochum, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany.
| |
Collapse
|
2
|
Chung SJ, Hadrick K, Nafiujjaman M, Apu EH, Hill ML, Nurunnabi M, Contag CH, Kim T. Targeted Biodegradable Near-Infrared Fluorescent Nanoparticles for Colorectal Cancer Imaging. ACS APPLIED BIO MATERIALS 2024. [PMID: 38574012 DOI: 10.1021/acsabm.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the U.S., and early detection and diagnosis are essential for effective treatment. Current methods are inadequate for rapid detection of early disease, revealing flat lesions, and delineating tumor margins with accuracy and molecular specificity. Fluorescence endoscopy can generate wide field-of-view images enabling detection of CRC lesions and margins; increased signal intensity and improved signal-to-noise ratios can increase both speed and sensitivity of cancer detection. For this purpose, we developed targeted near-infrared (NIR) fluorescent silica nanoparticles (FSNs). We tuned their size to 50-200 nm and conjugated their surface with an antibody to carcinoembryonic antigen (CEA) to prepare CEA-FSNs. The physicochemical properties and biodegradable profiles of CEA-FSN were characterized, and molecular targeting was verified in culture using HT29 (CEA positive) and HCT116 (CEA negative) cells. CEA-FSNs bound to the HT29 cells to a greater extent than to the HCT116 cells, and smaller CEA-FSNs were internalized into HT29 cells more efficiently than larger CEA-FSNs. After intravenous administration of CEA-FSNs, a significantly greater signal was observed from the CEA-positive HT29 than the CEA-negative HCT116 tumors in xenografted mice. In F344-PIRC rats, polyps in the intestine were detected by white-light endoscopy, and NIR fluorescent signals were found in the excised intestinal tissue after topical application of CEA-FSNs. Immunofluorescence imaging of excised tissue sections demonstrated that the particle signals coregistered with signals for both CRC and CEA. These results indicate that CEA-FSNs have potential as a molecular imaging marker for early diagnosis of CRC.
Collapse
Affiliation(s)
- Seock-Jin Chung
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kay Hadrick
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Meghan L Hill
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Christopher H Contag
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Abdelwahab WM, Auclair S, Borgogna T, Siram K, Riffey A, Bazin HG, Cottam HB, Hayashi T, Evans JT, Burkhart DJ. Co-Delivery of a Novel Lipidated TLR7/8 Agonist and Hemagglutinin-Based Influenza Antigen Using Silica Nanoparticles Promotes Enhanced Immune Responses. Pharmaceutics 2024; 16:107. [PMID: 38258117 PMCID: PMC10819884 DOI: 10.3390/pharmaceutics16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.
Collapse
Affiliation(s)
- Walid M. Abdelwahab
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sarah Auclair
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Timothy Borgogna
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Karthik Siram
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Alexander Riffey
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hélène G. Bazin
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| | - Howard B. Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA (T.H.)
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA (T.H.)
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| | - David J. Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| |
Collapse
|
4
|
Zhuravskii SG, Yukina GY, Sukhorukova EG, Kryzhanovskaya EA, Polovnikov IV, Belorus AO, Spivak YM, Galagudza MM. The Pattern of Granuloma Formation in the Liver of Rats as a Reflection of the Mechanism of Internalization of Submicron Silicon Particles. Bull Exp Biol Med 2024; 176:399-402. [PMID: 38342809 DOI: 10.1007/s10517-024-06032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 02/13/2024]
Abstract
A morphological analysis of the liver of Wistar rats was performed 2 months after a single intravenous injection of porous silicon particles of different sizes (60-80, 250-300, and 500-600 nm; 2 mg/ml, 1 ml). Histological, immunohistochemical, and electron microscopic methods showed the development of CD68+ granulomas in all experimental groups. Injection of 60-80-nm porous silicon particles led to the formation of single large granulomas (>2000 μm2), while 500-600-nm nanoparticles caused the formation of numerous smaller granulomas. The mechanism of involution of granulomas by apoptosis of Kupffer cells and the absence of subsequent connective tissue remodeling of the organ tissue is shown.
Collapse
Affiliation(s)
- S G Zhuravskii
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - G Yu Yukina
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E G Sukhorukova
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E A Kryzhanovskaya
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - I V Polovnikov
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - A O Belorus
- V. I. Ul'yanov (Lenin) St. Petersburg Electrotechnical University "LETI", St. Petersburg, Russia
| | - Yu M Spivak
- V. I. Ul'yanov (Lenin) St. Petersburg Electrotechnical University "LETI", St. Petersburg, Russia
| | - M M Galagudza
- I. P. Pavlov First St. Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
5
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
6
|
Ma X, Knowles JC, Poma A. Biodegradable and Sustainable Synthetic Antibodies-A Perspective. Pharmaceutics 2023; 15:pharmaceutics15051440. [PMID: 37242682 DOI: 10.3390/pharmaceutics15051440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Molecular imprinting technology has been around for almost a century, and we have witnessed dramatic advancements in the overall design and production of molecularly imprinted polymers (MIPs), particularly in terms of possible formats of the final products when it comes to truly resembling antibody substitutes, i.e., MIP nanoparticles (MIP NPs). Nonetheless, the overall technology appears to struggle to keep up with the current global sustainability efforts, as recently elucidated in the latest comprehensive reviews, which introduced the "GREENIFICATION" concept. In this review, we will try to elucidate if these advancements in MIP nanotechnology have indeed resulted in a sustainability amelioration. We will do so by discussing the general production and purification strategies for MIP NPs, specifically from a sustainability and biodegradation perspective, also considering the final intended application and ultimate waste management.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
7
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Liu K, Xing R, Sun R, Ge Y, Chen Y. An Accurate and Rapid Way for Identifying Food Geographical Origin and Authenticity: Editable DNA-Traceable Barcode. Foods 2022; 12:17. [PMID: 36613233 PMCID: PMC9818171 DOI: 10.3390/foods12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
DNA offers significant advantages in information density, durability, and replication efficiency compared with information labeling solutions using electronic, magnetic, or optical devices. Synthetic DNA containing specific information via gene editing techniques is a promising identifying approach. We developed a new traceability approach to convert traditional digitized information into DNA sequence information. We used encapsulation to make it stable for storage and to enable reading and detection by DNA sequencing and PCR-capillary electrophoresis (PCR-CE). The synthesized fragment consisted of a short fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene from the Holothuria fuscogilva (ID: LC593268.1), inserted geographical origin information (18 bp), and authenticity information from Citrus sinensis (20 bp). The obtained DNA-traceable barcodes were cloned into vector PMD19-T. Sanger sequencing of the DNA-traceable barcode vector was 100% accurate and provided a complete readout of the traceability information. Using selected recognition primers CAI-B, DNA-traceable barcodes were identified rapidly by PCR amplification. We encapsulated the DNA-traceable barcodes into amorphous silica spheres and improved the encapsulation procedure to ensure the durability of the DNA-traceable barcodes. To demonstrate the applicability of DNA-traceable barcodes as product labels, we selected Citrus sinensis as an example. We found that the recovered and purified DNA-traceable barcode can be analyzed by standard techniques (PCR-CE for DNA-traceable barcode identification and DNA sequencing for readout). This study provides an accurate and rapid approach to identifying and certifying products' authenticity and traceability.
Collapse
Affiliation(s)
- Kehan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ranran Xing
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ruixue Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yiqiang Ge
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- China Rural Technology Development Center, Beijing 100045, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
9
|
Reagen S, Wu Y, Sun D, Munoz C, Oncel N, Combs C, Zhao JX. Development of Biodegradable GQDs-hMSNs for Fluorescence Imaging and Dual Cancer Treatment via Photodynamic Therapy and Drug Delivery. Int J Mol Sci 2022; 23:ijms232314931. [PMID: 36499261 PMCID: PMC9736776 DOI: 10.3390/ijms232314931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to their small particle size, GQDs struggle to remain in the target area for long periods of time in addition to being poor drug carriers. To address this limitation of GQDs, hollow mesoporous silica nanoparticles (hMSNs) have been extensively researched for drug delivery applications. This project investigates the utilization and combination of biomass-derived GQDs and Stöber silica hMSNs to make graphene quantum dots-hollow mesoporous silica nanoparticles (GQDs-hMSNs) for fluorescent imaging and dual treatment of cancer via drug delivery and photodynamic therapy (PDT). Although the addition of hMSNs made the newly synthesized nanoparticles slightly more toxic at higher concentrations, the GQDs-hMSNs displayed excellent drug delivery using fluorescein (FITC) as a mock drug, and PDT treatment by using the GQDs as a photosensitizer (PS). Additionally, the GQDs retained their fluorescence through the surface binding to hMSNs, allowing them to still be used for cell-labeling applications.
Collapse
Affiliation(s)
- Sarah Reagen
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Di Sun
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Carlos Munoz
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202, USA
| | - Nuri Oncel
- Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202, USA
| | - Colin Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
- Correspondence:
| |
Collapse
|
10
|
Valdés-Sánchez L, Borrego-González S, Montero-Sánchez A, Massalini S, de la Cerda B, Díaz-Cuenca A, Díaz-Corrales FJ. Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11082170. [PMID: 35456263 PMCID: PMC9026300 DOI: 10.3390/jcm11082170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Gene therapy is a therapeutic possibility for retinitis pigmentosa (RP), in which therapeutic transgenes are currently delivered to the retina by adeno-associated viral vectors (AAVs). Although their safety and efficacy have been demonstrated in both clinical and preclinical settings, AAVs present some technical handicaps, such as limited cargo capacity and possible immunogenicity in repetitive doses. The development of alternative, non-viral delivery platforms like nanoparticles is of great interest to extend the application of gene therapy for RP. METHODS Amino-functionalized mesoporous silica-based nanoparticles (N-MSiNPs) were synthesized, physico-chemically characterized, and evaluated as gene delivery systems for human cells in vitro and for retinal cells in vivo. Transgene expression was evaluated by WB and immunofluorescence. The safety evaluation of mice subjected to subretinal injection was assessed by ophthalmological tests (electroretinogram, funduscopy, tomography, and optokinetic test). RESULTS N-MSiNPs delivered transgenes to human cells in vitro and to retinal cells in vivo. No adverse effects were detected for the integrity of the retinal tissue or the visual function of treated eyes. N-MSiNPs were able to deliver a therapeutic transgene candidate for RP, PRPF31, both in vitro and in vivo. CONCLUSIONS N-MSiNPs are safe for retinal delivery and thus a potential alternative to viral vectors.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Sara Borrego-González
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adoración Montero-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Simone Massalini
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| |
Collapse
|
11
|
Development of Amino Acids Functionalized SBA-15 for the Improvement of Protein Adsorption. Molecules 2021; 26:molecules26196085. [PMID: 34641630 PMCID: PMC8512485 DOI: 10.3390/molecules26196085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
Ordered mesoporous materials and their modification with multiple functional groups are of wide scientific interest for many applications involving interaction with biological systems and biomolecules (e.g., catalysis, separation, sensor design, nano-science or drug delivery). In particular, the immobilization of enzymes onto solid supports is highly attractive for industry and synthetic chemistry, as it allows the development of stable and cheap biocatalysts. In this context, we developed novel silylated amino acid derivatives (Si-AA-NH2) that have been immobilized onto SBA-15 materials in biocompatible conditions avoiding the use of toxic catalyst, solvents or reagents. The resulting amino acid-functionalized materials (SBA-15@AA) were characterized by XRD, TGA, EA, Zeta potential, nitrogen sorption and FT-IR. Differences of the physical properties (e.g., charges) were observed while the structural ones remained unchanged. The adsorption of the enzyme lysozyme (Lyz) onto the resulting functionalized SBA-15@AA materials was evaluated at different pHs. The presence of different functional groups compared with bare SBA-15 showed better adsorption results, for example, 79.6 nmol of Lyz adsorbed per m2 of SBA-15@Tyr compared with the 44.9 nmol/m2 of the bare SBA-15.
Collapse
|
12
|
Park S, Gwon H, Lee S. Electroresponsive Performances of Ecoresorbable Smart Fluids Consisting of Various Plant-Derived Carrier Liquids. Chemistry 2021; 27:13739-13747. [PMID: 34342922 DOI: 10.1002/chem.202101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/25/2022]
Abstract
This paper proposes the fabrication of a new type of electrorheological (ER) fluid with ecoresorbable features as well as excellent electroresponsive performance. The proposed ER fluid consists of biocompatible Mg-doped silica/titania hollow nanoparticles (ST HNPs) suspended in vegetable oils (canola, grapeseed, olive, and soy). The effects of biodegradable plant-derived carrier liquids on the ER performance are analyzed. The polarizability and wettability of the fabricated ER fluids are studied. The high polarizability of the nanoparticles contributes to the highly electroresponsive performance by inducing electrostatic interactions between the nanoparticles under electric fields; this enables the formation of a rigid and strong fibril structure. A suitable wettability, which represents the favorable interaction between the oil and the nanoparticles, allows the nanoparticles to disperse evenly in the oil and prevents their aggregation, thereby making the formation of a rigid and strong fibrillar structure under the electric field easier.
Collapse
Affiliation(s)
- Sohee Park
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyukjoon Gwon
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seungae Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| |
Collapse
|
13
|
Tamanoi F, Chinnathambi S, Laird M, Komatsu A, Birault A, Takata T, Doan TLH, Mai NXD, Raitano A, Morrison K, Suzuki M, Matsumoto K. Construction of Boronophenylalanine-Loaded Biodegradable Periodic Mesoporous Organosilica Nanoparticles for BNCT Cancer Therapy. Int J Mol Sci 2021; 22:ijms22052251. [PMID: 33668213 PMCID: PMC7956258 DOI: 10.3390/ijms22052251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Biodegradable periodic mesoporous organosilica (BPMO) has recently emerged as a promising type of mesoporous silica-based nanoparticle for biomedical applications. Like mesoporous silica nanoparticles (MSN), BPMO possesses a large surface area where various compounds can be attached. In this work, we attached boronophenylalanine (10BPA) to the surface and explored the potential of this nanomaterial for delivering boron-10 for use in boron neutron capture therapy (BNCT). This cancer therapy is based on the principle that the exposure of boron-10 to thermal neutron results in the release of α-particles that kill cancer cells. To attach 10BPA, the surface of BPMO was modified with diol groups which facilitated the efficient binding of 10BPA, yielding 10BPA-loaded BPMO (10BPA-BPMO). Surface modification with phosphonate was also carried out to increase the dispersibility of the nanoparticles. To investigate this nanomaterial’s potential for BNCT, we first used human cancer cells and found that 10BPA-BPMO nanoparticles were efficiently taken up into the cancer cells and were localized in perinuclear regions. We then used a chicken egg tumor model, a versatile and convenient tumor model used to characterize nanomaterials. After observing significant tumor accumulation, 10BPA-BPMO injected chicken eggs were evaluated by irradiating with neutron beams. Dramatic inhibition of the tumor growth was observed. These results suggest the potential of 10BPA-BPMO as a novel boron agent for BNCT.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (S.C.); (M.L.); (A.K.); (A.B.); (K.M.)
- Correspondence: ; Tel.: +81-75-753-9856
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (S.C.); (M.L.); (A.K.); (A.B.); (K.M.)
| | - Mathilde Laird
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (S.C.); (M.L.); (A.K.); (A.B.); (K.M.)
| | - Aoi Komatsu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (S.C.); (M.L.); (A.K.); (A.B.); (K.M.)
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (S.C.); (M.L.); (A.K.); (A.B.); (K.M.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori 590-0494, Japan; (T.T.); (M.S.)
| | - Tan Le-Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University, Ho Chi Minh City 721337, Vietnam; (T.L.-H.D.); (N.X.D.M.)
| | - Ngoc Xuan Dat Mai
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University, Ho Chi Minh City 721337, Vietnam; (T.L.-H.D.); (N.X.D.M.)
| | - Arthur Raitano
- TAE Lifesciences, Drug Development Division, Santa Monica, CA 90404, USA; (A.R.); (K.M.)
| | - Kendall Morrison
- TAE Lifesciences, Drug Development Division, Santa Monica, CA 90404, USA; (A.R.); (K.M.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori 590-0494, Japan; (T.T.); (M.S.)
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (S.C.); (M.L.); (A.K.); (A.B.); (K.M.)
| |
Collapse
|
14
|
Schneid AC, Ribeiro IR, Galdino FE, Bettini J, Cardoso MB. Degradable and colloidally stable zwitterionic-functionalized silica nanoparticles. Nanomedicine (Lond) 2021; 16:85-96. [PMID: 33463385 DOI: 10.2217/nnm-2020-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This work is focused on obtaining degradable mesoporous silica nanoparticles (DMSNs) which are able to maintain their colloidal stability in complex biological media. Materials & methods: DMSNs were synthesized using different ratios of disulfide organosilane (degradable structural moiety) and further functionalized with sulfobetaine silane (SBS) to enhance colloidal stability and improve biological compatibility. Results: There was a clear trade-off between nanoparticle degradability and colloidal stability, since full optimization of the degradation process generated unstable particles, while enhancing colloidal stability resulted in poor DMSNs degradation. It was also shown that acidic pH improved particle degradation which is commonly triggered by reduction stimulus. Conclusion: A chemical composition window was found where DMSNs presented satisfactory colloidal stability in biologically relevant medium, meaningful degradation profiles and high biocompatibility.
Collapse
Affiliation(s)
- Andressa C Schneid
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil
| | - Iris Rs Ribeiro
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, SP, CEP 13083 970, Brasil
| | - Flávia E Galdino
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, SP, CEP 13083 970, Brasil
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil
| | - Mateus B Cardoso
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, CEP 13083 970, Brasil.,Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas, SP, CEP 13083 970, Brasil
| |
Collapse
|
15
|
Yukina GY, Polovnikov IV, Sukhorukova EG, Zhuravskii SG, Galagudza MM. Morphological Analysis of the Respiratory Tract of Rats after Parenteral Administration of Silicon Dioxide Nanoparticles. Bull Exp Biol Med 2020; 170:93-97. [PMID: 33231801 DOI: 10.1007/s10517-020-05011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/28/2022]
Abstract
Morphological analysis of the respiratory tract of Wistar rats was performed after a single parenteral administration of 12-nm silicon dioxide nanoparticles (1 ml, 2 mg/ml, intravenously) was performed. On day 21 and in 2, 4, and 6 months after the administration of nanoparticles, the development of macrophage infiltration in the interstitium of the respiratory tract was demonstrated by histological and immunohistochemical methods. The pool of alveolar macrophages increased in 4 months after administration (p=0.004) and returned to the control values in 6 months. The number of mast cells did not significantly change at all stages of the experiment. Connective tissue remodeling in the interstitium of the respiratory tract was not observed throughout the observation period.
Collapse
Affiliation(s)
- G Yu Yukina
- I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - I V Polovnikov
- I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - E G Sukhorukova
- I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia.
| | - S G Zhuravskii
- I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia.,V. A. Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M M Galagudza
- I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia.,V. A. Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
16
|
Chinnathambi S, Tamanoi F. Recent Development to Explore the Use of Biodegradable Periodic Mesoporous Organosilica (BPMO) Nanomaterials for Cancer Therapy. Pharmaceutics 2020; 12:E890. [PMID: 32961990 PMCID: PMC7558858 DOI: 10.3390/pharmaceutics12090890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Porous nanomaterials can be used to load various anti-cancer drugs efficiently and deliver them to a particular location in the body with minimal toxicity. Biodegradable periodic mesoporous organosilica nanoparticles (BPMOs) have recently emerged as promising candidates for disease targeting and drug delivery. They have a large functional surface and well-defined pores with a biodegradable organic group framework. Multiple biodegradation methods have been explored, such as the use of redox, pH, enzymatic activity, and light. Various drug delivery systems using BPMO have been developed. This review describes recent advances in the biomedical application of BPMOs.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
- Department of Microbio., Immunol. & Molec. Genet., University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
M. Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020; 12:E751. [PMID: 32785148 PMCID: PMC7465701 DOI: 10.3390/pharmaceutics12080751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Transmucosal drug delivery includes the administration of drugs via various mucous membranes, such as gastrointestinal, nasal, ocular, and vaginal mucosa. The use of nanoparticles in transmucosal drug delivery has several advantages, including the protection of drugs against the harsh environment of the mucosal lumens and surfaces, increased drug residence time, and enhanced drug absorption. Due to their relatively simple synthetic methods for preparation, safety profile, and possibilities of surface functionalisation, silica nanoparticles are highly promising for transmucosal drug delivery. This review provides a description of silica nanoparticles and outlines the preparation methods for various core and surface-functionalised silica nanoparticles. The relationship between the functionalities of silica nanoparticles and their interactions with various mucous membranes are critically analysed. Applications of silica nanoparticles in transmucosal drug delivery are also discussed.
Collapse
Affiliation(s)
- Twana Mohammed M. Ways
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
- College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | | |
Collapse
|
18
|
Lyles ZK, Tarannum M, Mena C, Inada NM, Bagnato VS, Vivero‐Escoto JL. Biodegradable Silica‐Based Nanoparticles with Improved and Safe Delivery of Protoporphyrin IX for the In Vivo Photodynamic Therapy of Breast Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zachary K. Lyles
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
- Nanoscale Science Program University of North Carolina Charlotte Charlotte NC 28223 USA
| | - Mubin Tarannum
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
- Nanoscale Science Program University of North Carolina Charlotte Charlotte NC 28223 USA
| | - Cayli Mena
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
| | - Natalia M. Inada
- University of São Paulo São Carlos Institute of Physics Group of Optics São Carlos São Paulo 13566‐590 Brazil
| | - Vanderlei S. Bagnato
- University of São Paulo São Carlos Institute of Physics Group of Optics São Carlos São Paulo 13566‐590 Brazil
| | - Juan L. Vivero‐Escoto
- Department of Chemistry University of North Carolina Charlotte Charlotte NC 28223 USA
- Center for Biomedical Engineering and Science University of North Carolina Charlotte Charlotte NC 28223 USA
| |
Collapse
|
19
|
McGlasson A, Rishi K, Beaucage G, Chauby M, Kuppa V, Ilavsky J, Rackaitis M. Quantification of Dispersion for Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex McGlasson
- Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Kabir Rishi
- Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Gregory Beaucage
- Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Michael Chauby
- Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Vikram Kuppa
- Nonstructural Materials Division, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Jan Ilavsky
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Mindaugas Rackaitis
- Bridgestone Americas Center for Research and Technology, Akron, Ohio 44301, United States
| |
Collapse
|
20
|
Karabasz A, Szczepanowicz K, Cierniak A, Mezyk-Kopec R, Dyduch G, Szczęch M, Bereta J, Bzowska M. In vivo Studies on Pharmacokinetics, Toxicity and Immunogenicity of Polyelectrolyte Nanocapsules Functionalized with Two Different Polymers: Poly-L-Glutamic Acid or PEG. Int J Nanomedicine 2019; 14:9587-9602. [PMID: 31824153 PMCID: PMC6901045 DOI: 10.2147/ijn.s230865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background The functionalization of a nanoparticle surface with PEG (polyethylene glycol) is an approach most often used for extending nanomaterial circulation time, enhancing its delivery and retention in the target tissues, and decreasing systemic toxicity of nanocarriers and their cargos. However, because PEGylated nanomedicines were reported to induce immune response including production of anti-PEG antibodies, activation of the complement system as well as hypersensitivity reactions, hydrophilic polymers other than PEG are gaining interest as its replacement in nanomaterial functionalization. Here, we present the results of in vivo evaluation of polyelectrolyte nanocapsules with biodegradable, polyelectrolyte multilayer shells consisting of poly-l-lysine (PLL) and poly-l-glutamic (PGA) acid as a potential drug delivery system. We compared the effects of nanocapsules functionalized with two different “stealth” polymers as the external layer of tested nanocapsules was composed of PGA (PGA-terminated nanocapsules, NC-PGA) or the copolymer of poly-l-lysine and polyethylene glycol (PEG-terminated nanocapsules, NC-PEG). Methods Nanocapsules pharmacokinetics, biodistribution and routes of eliminations were analysed postmortem by fluorescence intensity measurement. Toxicity of intravenously injected nanocapsules was evaluated with analyses of blood morphology and biochemistry and by histological tissue analysis. DNA integrity was determined by comet assay, cytokine profiling was performed using flow cytometer and detection of antibodies specific to PEG was performed by ELISA assay. Results We found that NC-PGA and NC-PEG had similar pharmacokinetic and biodistribution profiles and both were eliminated by hepatobiliary and renal clearance. Biochemical and histopathological evaluation of long-term toxicity performed after a single as well as repeated intravenous injections of nanomaterials demonstrated that neither NC-PGA nor NC-PEG had any acute or chronic hemato-, hepato- or nephrotoxic effects. In contrast to NC-PGA, repeated administration of NC-PEG resulted in prolonged increased serum levels of a number of cytokines. Conclusion Our results indicate that NC-PEG may cause undesirable activation of the immune system. Therefore, PGA compares favorably with PEG in equipping nanomaterials with stealth properties. Our research points to the importance of a thorough assessment of the potential influence of nanomaterials on the immune system.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Cierniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Kraków, Poland
| | - Renata Mezyk-Kopec
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Photocracking Silica: Tuning the Plasmonic Photothermal Degradation of Mesoporous Silica Encapsulating Gold Nanoparticles for Cargo Release. INORGANICS 2019. [DOI: 10.3390/inorganics7060072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The degradation of bionanomaterials is essential for medical applications of nanoformulations, but most inorganic-based delivery agents do not biodegrade at controllable rates. In this contribution, we describe the controllable plasmonic photocracking of gold@silica nanoparticles by tuning the power and wavelength of the laser irradiation, or by tuning the size of the encapsulated gold cores. Particles were literally broken to pieces or dissolved from the inside out upon laser excitation of the plasmonic cores. The photothermal cracking of silica, probably analogous to thermal fracturing in glass, was then harnessed to release cargo molecules from gold@silica@polycaprolactone nanovectors. This unique and controllable plasmonic photodegradation has implications for nanomedicine, photopatterning, and sensing applications.
Collapse
|
22
|
Cheng CA, Deng T, Lin FC, Cai Y, Zink JI. Supramolecular Nanomachines as Stimuli-Responsive Gatekeepers on Mesoporous Silica Nanoparticles for Antibiotic and Cancer Drug Delivery. Am J Cancer Res 2019; 9:3341-3364. [PMID: 31244957 PMCID: PMC6567974 DOI: 10.7150/thno.34576] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Major objectives in nanomedicine and nanotherapy include the ability to trap therapeutic molecules inside of nano-carriers, carry therapeutics to the site of the disease with no leakage, release high local concentrations of drug, release only on demand - either autonomous or external, and kill the cancer cells or an infectious organism. This review will focus on mesoporous silica nanoparticle carriers (MSN) with a large internal pore volume suitable for carrying anticancer and antibiotic drugs, and supramolecular components that function as caps that can both trap and release the drugs on-command. Caps that are especially relevant to this review are rotaxanes and pseudorotaxanes that consist of a long chain-like molecule threaded through a cyclic molecule. Under certain conditions discussed throughout this review, the cyclic molecule can be attracted to one end of the rotaxane and in the presence of a stimulus can slide to the other end. When the thread is attached near the pore opening on MSNs, the sliding cyclic molecule can block the pore when it is near the particle or open it when it slides away. The design, synthesis and operation of supramolecular systems that act as stimuli-responsive pore capping devices that trap and release molecules for therapeutic or imaging applications are discussed. Uncapping can either be irreversible because the cap comes off, or reversible when the cyclic molecule is prevented from sliding off by a steric barrier. In the latter case the amount of cargo released (the dose) can be controlled. These nanomachines act as valves. Examples of supramolecular systems stimulated by chemical signals (pH, redox, enzymes, antibodies) or by external physical signals (light, heat, magnetism, ultrasound) are presented. Many of the systems have been studied in vitro proving that they are taken up by cancer cells and release drugs and kill the cells when stimulated. Some have been studied in mouse models; after IV injection they shrink tumors or kill intracellular pathogens after stimulation. Supramolecular constructs offer fascinating, highly controllable and biologically compatible platforms for drug delivery.
Collapse
|
23
|
Castillo RR, Vallet-Regí M. Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety. Int J Mol Sci 2019; 20:E929. [PMID: 30791663 PMCID: PMC6413128 DOI: 10.3390/ijms20040929] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 02/07/2023] Open
Abstract
The rise and development of nanotechnology has enabled the creation of a wide number of systems with new and advantageous features to treat cancer. However, in many cases, the lone application of these new nanotherapeutics has proven not to be enough to achieve acceptable therapeutic efficacies. Hence, to avoid these limitations, the scientific community has embarked on the development of single formulations capable of combining functionalities. Among all possible components, silica-either solid or mesoporous-has become of importance as connecting and coating material for these new-generation therapeutic nanodevices. In the present review, the most recent examples of fully inorganic silica-based functional composites are visited, paying particular attention to those with potential biomedical applicability. Additionally, some highlights will be given with respect to their possible biosafety issues based on their chemical composition.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red-CIBER, 28029 Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, 28041 Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red-CIBER, 28029 Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, 28041 Madrid, Spain.
| |
Collapse
|