1
|
Duan H, Shi Q, Yue X, Zhang Z, Liu L, Wang Y, Cao Y, Ou Z, Liang L, Hu J, Shi H. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs: A WEB prediction approach. PLoS One 2024; 19:e0303501. [PMID: 39642129 PMCID: PMC11623562 DOI: 10.1371/journal.pone.0303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
A new round of monkeypox virus has emerged in the United Kingdom since July 2022 and rapidly swept the world. Currently, despite numerous research groups are studying this virus and seeking effective treatments, the information on the open reading frame, inhibitors, and potential targets of monkeypox has not been updated in time, and the comprehension of monkeypox target ligand interactions remains a key challenge. Here, we first summarized and improved the open reading frame information of monkeypox, constructed the monkeypox inhibitor library and potential targets library by database research as well as literature search, combined with advanced protein modeling technologies (Sequence-based and AI algorithms-based homology modeling). In addition, we build monkeypox virus Docking Server, a web server to predict the binding mode between targets and substrate. The open reading frame information, monkeypox inhibitor library, and monkeypox potential targets library are used as the initial files for server docking, providing free interactive tools for predicting ligand interactions of monkeypox targets, potential drug screening, and potential targets search. In addition, the update of the three databases can also effectively promote the study of monkeypox drug inhibition mechanism and provide theoretical guidance for the development of drugs for monkeypox.
Collapse
Affiliation(s)
- Huaichuan Duan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yujie Cao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zuoxin Ou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
2
|
Rabaan AA, Alshahrani FS, Garout M, Alissa M, Mashraqi MM, Alshehri AA, Alsaleh AA, Alwarthan S, Sabour AA, Alfaraj AH, AlShehail BM, Alotaibi N, Abduljabbar WA, Aljeldah M, Alestad JH. Repositioning of anti-infective compounds against monkeypox virus core cysteine proteinase: a molecular dynamics study. Mol Divers 2024; 28:4113-4135. [PMID: 38652365 DOI: 10.1007/s11030-023-10802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 04/25/2024]
Abstract
Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ -9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from -21.59 to -15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Fatimah S Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, 11362, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, King Saud University and King Saud University Medical City, 11451, Riyadh, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najra, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najra, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, 34222, Dammam, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Amal A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, 33261, Abqaiq, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Wesam A Abduljabbar
- Department of Medical laboratory sciences, Fakeeh College for Medical Science, 21134, Jeddah, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, 39831, Hafr Al Batin, Saudi Arabia
| | - Jeehan H Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow, G1 1XQ, UK.
- Microbiology Department, Collage of Medicine, 46300, Jabriya, Kuwait.
| |
Collapse
|
3
|
Dixit H, Upadhyay V, Kulharia M, Verma SK. The Study of Metalloproteome of DNA Viruses: Identification, Functional Annotation, and Diversity Analysis of Viral Metal-Binding Proteins. J Proteome Res 2024; 23:4014-4026. [PMID: 39134029 DOI: 10.1021/acs.jproteome.4c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metalloproteins are fundamental to diverse biological processes but still lack extensive investigation in viral contexts. This study reveals the prevalence and functional diversity of metal-binding proteins in DNA viruses. Among a subset of 1432 metalloproteins, zinc and magnesium-binding proteins are notably abundant, indicating their importance in viral biology. Furthermore, significant numbers of proteins binding to iron, manganese, copper, nickel, mercury, and cadmium were also detected. Human-infecting viral proteins displayed a rich landscape of metalloproteins, with MeBiPred (964 proteins) and Pfam (666) yielding the highest numbers. Interestingly, many essential viral proteins exhibited metal-binding capabilities, including polymerases, DNA binding proteins, helicases, dUPTase, thymidine kinase, and various structural and accessory proteins. This study sheds light on the ubiquitous presence of metalloproteins, their functional signatures, subcellular placements, and metal-utilization patterns, providing valuable insights into viral biology. A similar metal utilization pattern was observed in similar functional proteins across the various DNA viruses. Furthermore, these findings provide a foundation for identifying potential drug targets for combating viral infections.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, 176206, Himachal Pradesh, India
| | | |
Collapse
|
4
|
Rut W, Groborz K, Sun X, Hilgenfeld R, Drag M. Profiling of coronaviral M pro and enteroviral 3C pro specificity provides a framework for the development of broad-spectrum antiviral compounds. Protein Sci 2024; 33:e5139. [PMID: 39150063 PMCID: PMC11328108 DOI: 10.1002/pro.5139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
The main protease from coronaviruses and the 3C protease from enteroviruses play a crucial role in processing viral polyproteins, making them attractive targets for the development of antiviral agents. In this study, we employed a combinatorial chemistry approach-HyCoSuL-to compare the substrate specificity profiles of the main and 3C proteases from alphacoronaviruses, betacoronaviruses, and enteroviruses. The obtained data demonstrate that coronavirus Mpros exhibit overlapping substrate specificity in all binding pockets, whereas the 3Cpro from enterovirus displays slightly different preferences toward natural and unnatural amino acids at the P4-P2 positions. However, chemical tools such as substrates, inhibitors, and activity-based probes developed for SARS-CoV-2 Mpro can be successfully applied to investigate the activity of the Mpro from other coronaviruses as well as the 3Cpro from enteroviruses. Our study provides a structural framework for the development of broad-spectrum antiviral compounds.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
5
|
Ji J, Du S, Wang K, Qi Z, Zhang C, Wang R, Bruening G, Wang P, Duanmu D, Fan Q. Cowpea lipid transfer protein 1 regulates plant defense by inhibiting the cysteine protease of cowpea mosaic virus. Proc Natl Acad Sci U S A 2024; 121:e2403424121. [PMID: 39159367 PMCID: PMC11363299 DOI: 10.1073/pnas.2403424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
Collapse
Affiliation(s)
- Jie Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shengli Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Ziyan Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunyang Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - George Bruening
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
6
|
Papaneophytou C. Breaking the Chain: Protease Inhibitors as Game Changers in Respiratory Viruses Management. Int J Mol Sci 2024; 25:8105. [PMID: 39125676 PMCID: PMC11311956 DOI: 10.3390/ijms25158105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
| |
Collapse
|
7
|
Anastassov S, Filo M, Khammash M. Inteins: A Swiss army knife for synthetic biology. Biotechnol Adv 2024; 73:108349. [PMID: 38552727 DOI: 10.1016/j.biotechadv.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Inteins are proteins found in nature that execute protein splicing. Among them, split inteins stand out for their versatility and adaptability, presenting creative solutions for addressing intricate challenges in various biological applications. Their exquisite attributes, including compactness, reliability, orthogonality, low toxicity, and irreversibility, make them of interest to various fields including synthetic biology, biotechnology and biomedicine. In this review, we delve into the inherent challenges of using inteins, present approaches for overcoming these challenges, and detail their reliable use for specific cellular tasks. We will discuss the use of conditional inteins in areas like cancer therapy, drug screening, patterning, infection treatment, diagnostics and biocontainment. Additionally, we will underscore the potential of inteins in executing basic logical operations with practical implications. We conclude by showcasing their potential in crafting complex genetic circuits for performing computations and feedback control that achieves robust perfect adaptation.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland.
| |
Collapse
|
8
|
Karasev DA, Sobolev BN, Filimonov DA, Lagunin A. Prediction of viral protease inhibitors using proteochemometrics approach. Comput Biol Chem 2024; 110:108061. [PMID: 38574417 DOI: 10.1016/j.compbiolchem.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.
Collapse
Affiliation(s)
- Dmitry A Karasev
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia.
| | - Boris N Sobolev
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Dmitry A Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia; Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
9
|
Pereira F, Bedda L, Tammam MA, Alabdullah AK, Arafa R, El-Demerdash A. Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro). J Biomol Struct Dyn 2024; 42:3983-4001. [PMID: 37232419 DOI: 10.1080/07391102.2023.2217513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The new coronavirus variant (SARS-CoV-2) and Zika virus are two world-wide health pandemics. Along history, natural products-based drugs have always crucially recognized as a main source of valuable medications. Considering the SARS-CoV-2 and Zika main proteases (Mpro) as the re-production key element of the viral cycle and its main target, herein we report an intensive computer-aided virtual screening for a focused list of 39 marine lamellarins pyrrole alkaloids, against SARS-CoV-2 and Zika main proteases (Mpro) using a set of combined modern computational methodologies including molecular docking (MDock), molecule dynamic simulations (MDS) and structure-activity relationships (SARs) as well. Indeed, the molecular docking studies had revealed four promising marine alkaloids including [lamellarin H (14)/K (17)] and [lamellarin S (26)/Z (39)], according to their notable ligand-protein energy scores and relevant binding affinities with the SARS-CoV-2 and Zika (Mpro) pocket residues, respectively. Consequentially, these four chemical hits were further examined thermodynamically though investigating their MD simulations at 100 ns, where they showed prominent stability within the accommodated (Mpro) pockets. Moreover, in-deep SARs studies suggested the crucial roles of the rigid fused polycyclic ring system, particularly aromatic A- and F- rings, position of the phenolic -OH and δ-lactone functionalities as essential structural and pharmacophoric features. Finally, these four promising lamellarins alkaloids were investigated for their in-silico ADME using the SWISS ADME platform, where they displayed appropriated drug-likeness properties. Such motivating outcomes are greatly recommending further in vitro/vivo examinations regarding those lamellarins pyrrole alkaloids (LPAs).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Loay Bedda
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Reem Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Amr El-Demerdash
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
- Department of Biochemistry and Metabolism, the John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
10
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
11
|
Tran TT, Fanucci GE. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate. Viruses 2024; 16:236. [PMID: 38400012 PMCID: PMC10892587 DOI: 10.3390/v16020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection remains a global health issue plagued by drug resistance and virological failure. Natural polymorphisms (NPs) contained within several African and Brazilian protease (PR) variants have been shown to induce a conformational landscape of more closed conformations compared to the sequence of subtype B prevalent in North America and Western Europe. Here we demonstrate through experimental pulsed EPR distance measurements and molecular dynamic (MD) simulations that the two common NPs D60E and I62V found within subtypes F and H can induce a closed conformation when introduced into HIV-1PR subtype B. Specifically, D60E alters the conformation in subtype B through the formation of a salt bridge with residue K43 contained within the nexus between the flap and hinge region of the HIV-1 PR fold. On the other hand, I62V modulates the packing of the hydrophobic cluster of the cantilever and fulcrum, also resulting in a more closed conformation.
Collapse
Affiliation(s)
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
13
|
Martino SD, Petri GL, De Rosa M. Hepatitis C: The Story of a Long Journey through First, Second, and Third Generation NS3/4A Peptidomimetic Inhibitors. What Did We Learn? J Med Chem 2024; 67:885-921. [PMID: 38179950 DOI: 10.1021/acs.jmedchem.3c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hepatitis C viral (HCV) infection is the leading cause of liver failure and still represents a global health burden. Over the past decade, great advancements made HCV curable, and sustained viral remission significantly improved to more than 98%. Historical treatment with pegylated interferon alpha and ribavirin has been displaced by combinations of direct-acting antivirals. These regimens include drugs targeting different stages of the HCV life cycle. However, the emergence of viral resistance remains a big concern. The design of peptidomimetic inhibitors (PIs) able to fit and fill the conserved substrate envelope region within the active site helped avoid contact with the vulnerable sites of the most common resistance-associated substitutions Arg155, Ala156, and Asp168. Herein, we give an overview of HCV NS3 PIs discovered during the past decade, and we deeply discuss the rationale behind the structural optimization efforts essential to achieve pangenotypic activity.
Collapse
Affiliation(s)
- Simona Di Martino
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Giovanna Li Petri
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Medicinal Chemistry Group, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|
14
|
Rabaan AA, Halwani MA, Alshehri AA, Al-Subaie MF, Almansour ZH, AlShehail BM, Alotaibi N, Khamis F, Al Kaabi NA, Alsomali G, Alqahtani AS, Alissa M. Bioprospecting of Meliaceae family phytomolecules for the treatment of monkeypox virus infection: a QSAR modeling and MD simulation approach. J Biomol Struct Dyn 2024:1-23. [PMID: 38174404 DOI: 10.1080/07391102.2023.2294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Recent monkeypox virus (MPXV) infections show the risk of MPXV transmission that persists today and the significance of surveillance and quick response methods to stop the virus's spread. Currently, the monkeypox virus infection is not specifically treated. In this study, QSAR models were designed using known inhibitors of cysteine proteinase from the vaccinia virus, where the Random Forest model and Ridge model had showed the best correlation between predicted and observed EC50. These models were used to screen Maliaceae family phytochemicals against MPXV cysteine proteinase. The compound, IMPHY010637 was detected in top 5 from both the QSAR screening models and showed best docked score (-8.6 kcal/mol) and thus selected for further investigation. Further, the IMPHY010637 showed interaction with the catalytic residue His241 of the protein as reported in earlier studies. The ADMET analysis of the compound showed the acceptable drug-like properties of IMPHY010637. However, these properties could be improved after experimental validation of protein-ligand binding. Both docked complex and poses created in 100 ns MD simulation of the protein-ligand complex showed the presence of multiple hydrogen bonds. RMSD and conformation analysis showed stable binding of IMPHY010637 with the cysteine proteinase of MPXV at its active site. Compared to the known inhibitor, IMPHY010637 showed better binding with the protein as observed by the PCA and MM/GBSA analysis. This study concluded IMPHY010637 as a potential inhibitor for the cysteine proteinase of MPXV using computational methods that could be tested in in-vitro experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, Saudi Arabia
| | - Zainab H Almansour
- Biological Science Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat, Oman
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, United Arab Emirates
| | - Ghaneema Alsomali
- Infection prevention and control Department, Imam Abdulrahman bin Faisal hospital, Dammam, Saudi Arabia
| | - Ali S Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
15
|
Tsilimingkra NT, Papaneophytou C. Phytochemicals: Promising Inhibitors of Human Rhinovirus Type 14 3C Protease as a Strategy to Fight the Common Cold. Curr Top Med Chem 2024; 24:1343-1358. [PMID: 38698747 DOI: 10.2174/0115680266308561240427065854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Human rhinovirus 3C protease (HRV-3Cpro) plays a crucial role in viral proliferation, establishing it as a prime target for antiviral therapy. However, research on identifying HRV-3Cpro inhibitors is still limited. OBJECTIVE This study had two primary objectives: first, to validate the efficacy of an end-point colorimetric assay, previously developed by our team, for identifying potential inhibitors of HRV-3Cpro; and second, to discover phytochemicals in medicinal plants that inhibit the enzyme's activity. METHODS Rupintrivir, a well-known inhibitor of HRV-3Cpro, was used to validate the colorimetric assay. Following this, we conducted a two-step in silico screening of 2532 phytochemicals, which led to the identification of eight active compounds: apigenin, carnosol, chlorogenic acid, kaempferol, luteolin, quercetin, rosmarinic acid, and rutin. We subsequently evaluated these candidates in vitro. To further investigate the inhibitory potential of the most promising candidates, namely, carnosol and rosmarinic acid, molecular docking studies were performed to analyze their binding interactions with HRV-3Cpro. RESULTS The colorimetric assay we previously developed is effective in identifying compounds that selectively inhibit HRV-3Cpro. Carnosol and rosmarinic acid emerged as potent inhibitors, inhibiting HRV-3Cpro activity in vitro by over 55%. Our analysis indicated that carnosol and rosmarinic acid exert their inhibitory effects through a competitive mechanism. Molecular docking confirmed their competitive binding to the enzyme's active site. CONCLUSION Carnosol and rosmarinic acid warrant additional investigation for their potential in the development of common cold treatment. By highlighting these compounds as effective HRV-3Cpro inhibitors, our study presents a promising approach for discovering phytochemical inhibitors against proteases from similar pathogens.
Collapse
Affiliation(s)
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417, Nicosia, Cyprus
| |
Collapse
|
16
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
17
|
Trivedi A, Kardam V, Inampudi KK, Vrati S, Gupta D, Singh A, Kayampeta SR, Appaiahgari MB, Sehgal D. Identification of a novel inhibitor of SARS-CoV-2 main protease: an in silico, biochemical, and cell-based approach. FEBS J 2023; 290:5496-5513. [PMID: 37657928 DOI: 10.1111/febs.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
The recurrent nature of coronavirus outbreaks, severity of the COVID-19 pandemic, rapid emergence of novel variants, and concerns over the effectiveness of existing vaccines against novel variants have highlighted the need to develop therapeutic interventions. Targeted efforts to identify inhibitors of crucial viral proteins are the preferred strategy. In this study, we screened FDA-approved and natural product libraries using in silico approach for potential hits against the SARS-CoV-2 main protease (Mpro) and experimentally validated their potency using in vitro biochemical and cell-based assays. Seven potential hits were identified through in silico screening and were subsequently evaluated in SARS-CoV-2-based cell-free assays, followed by testing in the HCoV-229E-based culture system. Of the tested compounds, 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1-isopropyl-1H-benzofuro[3,2-b]pyrazolo[4,3-e]pyridin-3(2H)-one (PubChem CID:71755304, hereafter referred to as STL522228) exhibited significant antiviral activity. Subsequently, its potential as a novel COVID therapeutic molecule was validated in the SARS-CoV-2-culture system, where STL522228 demonstrated superior antiviral activity (EC50 = 0.44 μm) compared to Remdesivir (EC50 = 0.62 μm). Based on these findings, we report the strong anti-coronavirus activity of STL522228, and propose that it as a promising pan-coronavirus Mpro inhibitor for further experimental and preclinical validation.
Collapse
Affiliation(s)
- Aditya Trivedi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | | | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Dharmender Gupta
- Laboratory of Virology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Aekagra Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Sarala Rani Kayampeta
- Research and Development Division, Srikara Biologicals Private Limited, Tirupati, India
| | | | - Deepak Sehgal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Lima JCB, Barbosa JARG. Interaction models between peptide substrate and Alphavirus Protease nsP2 of Chikungunya and Mayaro and implications to the mechanism of action. J Biomol Struct Dyn 2023; 41:10851-10858. [PMID: 36562200 DOI: 10.1080/07391102.2022.2158941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The Arbovirus (Arthropod-borne virus) is a group which comprises viruses whose transmission is carried out by arthropod vectors infecting vertebrates. Some arboviruses related to human diseases have been given considerable relevance as Chikungunya and Mayaro of the family Togaviridae, genus Alphavirus. The lack of proper specific treatment has prompted the requirement for deeper structural studies that could unveil leads to new drugs. Among possible targets, viral proteases are recognized as proteins with big potential. These proteins, termed nsP2 in Alphavirus, have the function of cleaving certain regions of the viral polyprotein, being vital to the viral cycle. In this research, we used docking and molecular dynamics to analyze the contact between the protease nsP2 of Alphavirus Chikungunya and Mayaro and substrates formed by peptides with ten amino acid residues. A model of the Mayaro nsP2 was constructed based on homologous proteases. Our study suggests that the glycine specificity motif, a region where a highly conserved glycine residue in position P2 of the protease substrate is positioned, facilitates the nucleophilic attack by assisting in placing the P1 carbonyl group carbon. Stabilization of different substrate regions maybe explained by relevant contacts with the enzyme. Besides that, the phi and psi angles in the outlier region of the Ramachandran plot found for the P2 glycine of the Chikungunya substrate seems to indicate the necessity of this residue that can accommodate angles not allowed to other residues.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jônatas Cunha Barbosa Lima
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, DF, Brazil
| | | |
Collapse
|
19
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
20
|
Alandijany TA, El-Daly MM, Tolah AM, Bajrai LH, Khateb AM, Kumar GS, Dubey A, Dwivedi VD, Azhar EI. A multi-targeted computational drug discovery approach for repurposing tetracyclines against monkeypox virus. Sci Rep 2023; 13:14570. [PMID: 37666979 PMCID: PMC10477205 DOI: 10.1038/s41598-023-41820-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Monkeypox viral infection is an emerging threat and a major concern for the human population. The lack of drug molecules to treat this disease may worsen the problem. Identifying potential drug targets can significantly improve the process of developing potent drug molecules for treating monkeypox. The proteins responsible for viral replication are attractive drug targets. Identifying potential inhibitors from known drug molecules that target these proteins can be key to finding a cure for monkeypox. In this work, two viral proteins, DNA-dependent RNA polymerase (DdRp) and viral core cysteine proteinase, were considered as potential drug targets. Sixteen antibiotic drugs from the tetracycline class were screened against both viral proteins through high-throughput virtual screening. These tetracycline class of antibiotic drugs have the ability to inhibit bacterial protein synthesis, which makes these antibiotics drugs a prominent candidate for drug repurposing. Based on the screening result obtained against DdRp, top two compounds, namely Tigecycline and Eravacycline with docking scores of - 8.88 and - 7.87 kcal/mol, respectively, were selected for further analysis. Omadacycline and minocycline, with docking scores of - 10.60 and - 7.51 kcal/mol, are the top two compounds obtained after screening proteinase with the drug library. These compounds, along with reference compounds GTP for DdRp and tecovirimat for proteinase, were used to form protein-ligand complexes, followed by their evaluation through a 300 ns molecular dynamic simulation. The MM/GBSA binding free energy calculation and principal components analysis of these selected complexes were also conducted for understanding the dynamic stability and binding affinity of these compounds with respective target proteins. Overall, this study demonstrates the repurposing of tetracycline-derived drugs as a therapeutic solution for monkeypox viral infection.
Collapse
Affiliation(s)
- Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Ahmed M Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Leena H Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aiah M Khateb
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
| |
Collapse
|
21
|
Leonard RA, Rao VN, Bartlett A, Froggatt HM, Luftig MA, Heaton BE, Heaton NS. A low-background, fluorescent assay to evaluate inhibitors of diverse viral proteases. J Virol 2023; 97:e0059723. [PMID: 37578235 PMCID: PMC10506478 DOI: 10.1128/jvi.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 08/15/2023] Open
Abstract
Multiple coronaviruses (CoVs) can cause respiratory diseases in humans. While prophylactic vaccines designed to prevent infection are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), incomplete vaccine efficacy, vaccine hesitancy, and the threat of other pathogenic CoVs for which vaccines do not exist have highlighted the need for effective antiviral therapies. While antiviral compounds targeting the viral polymerase and protease are already in clinical use, their sensitivity to potential resistance mutations as well as their breadth against the full range of human and preemergent CoVs remain incompletely defined. To begin to fill that gap in knowledge, we report here the development of an improved, noninfectious, cell-based fluorescent assay with high sensitivity and low background that reports on the activity of viral proteases, which are key drug targets. We demonstrate that the assay is compatible with not only the SARS-CoV-2 Mpro protein but also orthologues from a range of human and nonhuman CoVs as well as clinically reported SARS-CoV-2 drug-resistant Mpro variants. We then use this assay to define the breadth of activity of two clinically used protease inhibitors, nirmatrelvir and ensitrelvir. Continued use of this assay will help define the strengths and limitations of current therapies and may also facilitate the development of next-generation protease inhibitors that are broadly active against both currently circulating and preemergent CoVs. IMPORTANCE Coronaviruses (CoVs) are important human pathogens with the ability to cause global pandemics. Working in concert with vaccines, antivirals specifically limit viral disease in people who are actively infected. Antiviral compounds that target CoV proteases are already in clinical use; their efficacy against variant proteases and preemergent zoonotic CoVs, however, remains incompletely defined. Here, we report an improved, noninfectious, and highly sensitive fluorescent method of defining the sensitivity of CoV proteases to small molecule inhibitors. We use this approach to assay the activity of current antiviral therapies against clinically reported SARS-CoV-2 protease mutants and a panel of highly diverse CoV proteases. Additionally, we show this system is adaptable to other structurally nonrelated viral proteases. In the future, this assay can be used to not only better define the strengths and limitations of current therapies but also help develop new, broadly acting inhibitors that more broadly target viral families.
Collapse
Affiliation(s)
- Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vishwas N. Rao
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexandria Bartlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
22
|
Tang JQ, Marchand MM, Veggiani G. Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies. Cells 2023; 12:2117. [PMID: 37626927 PMCID: PMC10453149 DOI: 10.3390/cells12162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.
Collapse
Affiliation(s)
- Jason Q. Tang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Mary M. Marchand
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Imran M, Abida, Alotaibi NM, Thabet HK, Alruwaili JA, Eltaib L, Alshehri A, Alsaiari AA, Kamal M, Alshammari AMA. Repurposing Anti-Dengue Compounds against Monkeypox Virus Targeting Core Cysteine Protease. Biomedicines 2023; 11:2025. [PMID: 37509664 PMCID: PMC10377189 DOI: 10.3390/biomedicines11072025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The monkeypox virus (MPXV) is an enveloped, double-stranded DNA virus belonging to the genus Orthopox viruses. In recent years, the virus has spread to countries where it was previously unknown, turning it into a worldwide emergency for public health. This study employs a structural-based drug design approach to identify potential inhibitors for the core cysteine proteinase of MPXV. During the simulations, the study identified two potential inhibitors, compound CHEMBL32926 and compound CHEMBL4861364, demonstrating strong binding affinities and drug-like properties. Their docking scores with the target protein were -10.7 and -10.9 kcal/mol, respectively. This study used ensemble-based protein-ligand docking to account for the binding site conformation variability. By examining how the identified inhibitors interact with the protein, this research sheds light on the workings of the inhibitors' mechanisms of action. Molecular dynamic simulations of protein-ligand complexes showed fluctuations from the initial docked pose, but they confirmed their binding throughout the simulation. The MMGBSA binding free energy calculations for CHEMBL32926 showed a binding free energy range of (-9.25 to -9.65) kcal/mol, while CHEMBL4861364 exhibited a range of (-41.66 to -31.47) kcal/mol. Later, analogues were searched for these compounds with 70% similarity criteria, and their IC50 was predicted using pre-trained machine learning models. This resulted in identifying two similar compounds for each hit with comparable binding affinity for cysteine proteinase. This study's structure-based drug design approach provides a promising strategy for identifying new drugs for treating MPXV infections.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Nawaf M. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hamdy Khamees Thabet
- Chemistry Department, College of Arts and Sciences, Northern Border University, Rafha 91911, Saudi Arabia
| | - Jamal Alhameedi Alruwaili
- Medical Lab Technology Department, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | | |
Collapse
|
24
|
The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir. mBio 2023; 14:e0281522. [PMID: 36625640 PMCID: PMC9973015 DOI: 10.1128/mbio.02815-22] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.
Collapse
|
25
|
Jochmans D, Liu C, Donckers K, Stoycheva A, Boland S, Stevens SK, De Vita C, Vanmechelen B, Maes P, Trüeb B, Ebert N, Thiel V, De Jonghe S, Vangeel L, Bardiot D, Jekle A, Blatt LM, Beigelman L, Symons JA, Raboisson P, Chaltin P, Marchand A, Neyts J, Deval J, Vandyck K. The Substitutions L50F, E166A, and L167F in SARS-CoV-2 3CLpro Are Selected by a Protease Inhibitor In Vitro and Confer Resistance To Nirmatrelvir. mBio 2023. [PMID: 36625640 DOI: 10.1101/2022.06.07.495116] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.
Collapse
Affiliation(s)
- Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | - Cheng Liu
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Kim Donckers
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | | | | | - Sarah K Stevens
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Chloe De Vita
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | - Bert Vanmechelen
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, Leuven, Belgium
| | - Bettina Trüeb
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
| | | | - Andreas Jekle
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | | | - Julian A Symons
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | | - Patrick Chaltin
- CISTIM Leuven vzw, Leuven, Belgium
- Centre for Drug Design and Discovery (CD3), KU Leuven, Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Virology & Chemotherapy, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Jerome Deval
- Aligos Therapeutics, Inc., South San Francisco, California, USA
| | | |
Collapse
|
26
|
Lokhande KB, Shrivastava A, Singh A. In silico
discovery of potent inhibitors against monkeypox's major structural proteins. J Biomol Struct Dyn 2023; 41:14259-14274. [PMID: 36841550 DOI: 10.1080/07391102.2023.2183342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
27
|
Nucleo-Cytoplasmic Transport of ZIKV Non-Structural 3 Protein Is Mediated by Importin-α/β and Exportin CRM-1. J Virol 2023; 97:e0177322. [PMID: 36475764 PMCID: PMC9888292 DOI: 10.1128/jvi.01773-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/β) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.
Collapse
|
28
|
Dixit H, Kulharia M, Verma SK. Metalloproteome of human-infective RNA viruses: a study towards understanding the role of metal ions in virology. Pathog Dis 2023; 81:ftad020. [PMID: 37653445 DOI: 10.1093/femspd/ftad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Metalloproteins and metal-based inhibitors have been shown to effectively combat infectious diseases, particularly those caused by RNA viruses. In this study, a diverse set of bioinformatics methods was employed to identify metal-binding proteins of human RNA viruses. Seventy-three viral proteins with a high probability of being metal-binding proteins were identified. These proteins included 40 zinc-, 47 magnesium- and 14 manganese-binding proteins belonging to 29 viral species and eight significant viral families, including Coronaviridae, Flaviviridae and Retroviridae. Further functional characterization has revealed that these proteins play a critical role in several viral processes, including viral replication, fusion and host viral entry. They fall under the essential categories of viral proteins, including polymerase and protease enzymes. Magnesium ion is abundantly predicted to interact with these viral enzymes, followed by zinc. In addition, this study also examined the evolutionary aspects of predicted viral metalloproteins, offering essential insights into the metal utilization patterns among different viral species. The analysis indicates that the metal utilization patterns are conserved within the functional classes of the proteins. In conclusion, the findings of this study provide significant knowledge on viral metalloproteins that can serve as a valuable foundation for future research in this area.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi 110007, Delhi, India
| |
Collapse
|
29
|
Dubey A, Alawi MM, Alandijany TA, Alsaady IM, Altwaim SA, Sahoo AK, Dwivedi VD, Azhar EI. Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors. Viruses 2023; 15:251. [PMID: 36680291 PMCID: PMC9861291 DOI: 10.3390/v15010251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Monkeypox virus (MPXV) is a member of the Orthopoxvirus genus and the Poxviridae family, which instigated a rising epidemic called monkeypox disease. Proteinases are majorly engaged in viral propagation by catalyzing the cleavage of precursor polyproteins. Therefore, proteinase is essential for monkeypox and a critical drug target. In this study, high-throughput virtual screening (HTVS) and molecular dynamics simulation were applied to detect the potential natural compounds against the proteinase of the monkeypox virus. Here, 32,552 natural products were screened, and the top five compounds were selected after implementing the HTVS and molecular docking protocols in series. Gallicynoic Acid F showed the minimum binding score of -10.56 kcal/mole in the extra precision scoring method, which reflected the highest binding with the protein. The top five compounds showed binding scores ≤-8.98 kcal/mole. These compound complexes were tested under 100 ns molecular dynamics simulation, and Vaccinol M showed the most stable and consistent RMSD trend in the range of 2 Å to 3 Å. Later, MM/GBSA binding free energy and principal component analysis were performed on the top five compounds to validate the stability of selected compound complexes. Moreover, the ligands Gallicynoic Acid F and H2-Erythro-Neopterin showed the lowest binding free energies of -61.42 kcal/mol and -61.09 kcal/mol, respectively. Compared to the native ligand TTP-6171 (ΔGBind = -53.86 kcal/mol), these two compounds showed preferable binding free energy, suggesting inhibitory application against MPXV proteinase. This study proposed natural molecules as a therapeutic solution to control monkeypox disease.
Collapse
Affiliation(s)
- Amit Dubey
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India
| | - Maha M. Alawi
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21362, Saudi Arabia
- Infection Control and Environmental Health Unit, King Abdulaziz University Hospital, Jeddah 21362, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Isra M. Alsaady
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Sarah A. Altwaim
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21362, Saudi Arabia
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211015, India
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus, Greater Noida 201310, India
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
30
|
Current Insights into Diagnosis, Prevention Strategies, Treatment, Therapeutic Targets, and Challenges of Monkeypox (Mpox) Infections in Human Populations. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010249. [PMID: 36676198 PMCID: PMC9863601 DOI: 10.3390/life13010249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In the wake of the emergence and worldwide respread of a viral infection called Monkeypox (Mpox), there is a serious threat to the health and safety of the global population. This viral infection was endemic to the western and central parts of Africa, but has recently spread out of this endemic area to various countries, including the United Kingdom (UK), Portugal, Spain, the United States of America (USA), Canada, Sweden, Belgium, Italy, Australia, Germany, France, the Netherlands, Israel, and Mexico. This is a timely review focusing on recent findings and developments in the epidemiology, clinical features, therapeutic targets, diagnosis, prevention mechanisms, research challenges and possible treatment for Mpox. To date (29 November 2022), there have been around 81,225 reported cases of Mpox. In most cases, this illness is mild; however, there is a fatality rate ranging from 1 to 10%, which might be increased due to associated complications and/or secondary infections. There is a real challenge in the diagnosis of Mpox, since its symptoms are very similar to those of other infections, including smallpox and chickenpox. Generally, to prevent/limit the risk and transmission of Mpox, the detection and isolation of infected individuals, as well as hand hygiene and cleanliness, are essential and effective approaches to control/combat this viral infection. Nevertheless, updated information about Mpox from different angles is lacking. Thus, this review provides updated and comprehensive information about the Mpox illness, which should highlight the global burden, pathogenicity, symptoms, diagnosis, prevention measures and possible treatment of this emerging disease.
Collapse
|
31
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
33
|
Le TTV, Do PC. Molecular docking study of various Enterovirus—A71 3C protease proteins and their potential inhibitors. Front Microbiol 2022; 13:987801. [PMID: 36246267 PMCID: PMC9563145 DOI: 10.3389/fmicb.2022.987801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infection that primarily affects children in preschool and kindergarten; however, there is yet no vaccination or therapy available. Despite the fact that current research is only focused on numerous strains of Enterovirus—A71 (EV-A71) 3C protease (3Cpro), these investigations are entirely separate and unrelated. Antiviral agents must therefore be tested on several EV strains or mutations. In total, 21 previously reported inhibitors were evaluated for inhibitory effects on eight EV-A71 3Cpro, including wild-type and mutant proteins in this study, and another 29 powerful candidates with inhibitory effects on EV-A71 were investigated using the molecular docking approach. This method is to determine the broad-spectrum of the antiviral agents on a range of strains or mutants because the virus frequently has mutations. Even though Rupintrivir is reported to pass phase I clinical trial, 4-iminooxazolidin-2-one moiety (FIOMC) was shown to have a broader anti-3Cpro spectrum than Rupintrivir. Meanwhile, Hesperidin possessed a better 3Cpro inhibitory capability than FIOMC. Thus, it could be considered the most promising candidate for inhibiting various strains of EV-A71 3Cpro proteins in the newly anti-EV compounds group. Furthermore, the mutation at E71A has the most significant impact on the docking results of all ligands evaluated. Future in vitro experiments on Hesperidin’s ability to inhibit 3Cpro activity should be conducted to compare with FIOMC’s in vitro results and validate the current in silico work.
Collapse
Affiliation(s)
- Tran Thao Vy Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- *Correspondence: Phuc-Chau Do,
| |
Collapse
|
34
|
Lam HYI, Guan JS, Mu Y. In Silico Repurposed Drugs against Monkeypox Virus. Molecules 2022; 27:molecules27165277. [PMID: 36014515 PMCID: PMC9415168 DOI: 10.3390/molecules27165277] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Monkeypox is an emerging epidemic of concern. The disease is caused by the monkeypox virus and an increasing global incidence with a 2022 outbreak that has spread to Europe amid the COVID-19 pandemic. The new outbreak is associated with novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involves the use of tecovirimat. However, there is otherwise limited pharmacopoeia and research interest in monkeypox. In this study, virtual screening and molecular dynamics were employed to explore the potential repurposing of multiple drugs previously approved by the FDA or other jurisdictions for other applications. Several drugs are predicted to tightly bind to viral proteins, which are crucial in viral replication, including molecules which show high potential for binding the monkeypox D13L capsid protein, whose inhibition has previously been demonstrated to suppress viral replication.
Collapse
Affiliation(s)
- Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- A*STAR Skin Research Labs, Agency of Science, Technology and Research, Singapore, 11 Mandalay Rd, #17-01, Singapore 308232, Singapore
| | - Jia Sheng Guan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- Correspondence:
| |
Collapse
|
35
|
Fló M, Carrión F, Olivero-Deibe N, Bianchi S, Portela M, Rammauro F, Alvarez B, Pritsch O. Kinetics of Bovine leukemia virus aspartic protease reveals its dimerization and conformational change. PLoS One 2022; 17:e0271671. [PMID: 35867649 PMCID: PMC9307154 DOI: 10.1371/journal.pone.0271671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
The retropepsin (PR) of the Bovine leukemia virus (BLV) plays, as in other retroviruses, a crucial role in the transition from the non-infective viral particle to the infective virion by processing the polyprotein Gag. PR is expressed as an immature precursor associated with Gag, after an occasional −1 ribosomal frameshifting event. Self-hydrolysis of PR at specific N- and C-terminal sites releases the monomer that dimerizes giving rise to the active protease. We designed a strategy to express BLV PR in E. coli as a fusion protein with maltose binding protein, with a six-histidine tag at its N-terminal end, and bearing a tobacco etch virus protease hydrolysis site. This allowed us to obtain soluble and mature recombinant PR in relatively good yields, with exactly the same amino acid composition as the native protein. As PR presents relative promiscuity for the hydrolysis sites we designed four fluorogenic peptide substrates based on Förster resonance energy transfer (FRET) in order to characterize the activity of the recombinant enzyme. These substrates opened the way to perform kinetic studies, allowing us to characterize the dimer-monomer equilibrium. Furthermore, we obtained kinetic evidence for the existence of a conformational change that enables the interaction with the substrate. These results constitute a starting point for the elucidation of the kinetic properties of BLV-PR, and may be relevant not only to improve the chemical warfare against this virus but also to better understand other viral PRs.
Collapse
Affiliation(s)
- Martín Fló
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (OP); (MF)
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Sergio Bianchi
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Biomarcadores Moleculares, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Facultad de Ciencias, Montevideo, Uruguay
| | - Florencia Rammauro
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (OP); (MF)
| |
Collapse
|
36
|
Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci 2022; 23:3507. [PMID: 35408866 PMCID: PMC8998604 DOI: 10.3390/ijms23073507] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| |
Collapse
|