1
|
Dashtmian AR, Darvishi FB, Arnold WD. Chronological and Biological Aging in Amyotrophic Lateral Sclerosis and the Potential of Senolytic Therapies. Cells 2024; 13:928. [PMID: 38891059 PMCID: PMC11171952 DOI: 10.3390/cells13110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a group of sporadic and genetic neurodegenerative disorders that result in losses of upper and lower motor neurons. Treatment of ALS is limited, and survival is 2-5 years after disease onset. While ALS can occur in younger individuals, the risk significantly increases with advancing age. Notably, both sporadic and genetic forms of ALS share pathophysiological features overlapping hallmarks of aging including genome instability/DNA damage, mitochondrial dysfunction, inflammation, proteostasis, and cellular senescence. This review explores chronological and biological aging in the context of ALS onset and progression. Age-related muscle weakness and motor unit loss mirror aspects of ALS pathology and coincide with peak ALS incidence, suggesting a potential link between aging and disease development. Hallmarks of biological aging, including DNA damage, mitochondrial dysfunction, and cellular senescence, are implicated in both aging and ALS, offering insights into shared mechanisms underlying disease pathogenesis. Furthermore, senescence-associated secretory phenotype and senolytic treatments emerge as promising avenues for ALS intervention, with the potential to mitigate neuroinflammation and modify disease progression.
Collapse
Affiliation(s)
- Anna Roshani Dashtmian
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - Fereshteh B. Darvishi
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| | - William David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (A.R.D.); (F.B.D.)
- NextGen Precision Health, Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Lee YN, Wu YJ, Lee HI, Wang HH, Hung CL, Chang CY, Chou YH, Tien TY, Lee CW, Lin CF, Su CH, Yeh HI. Hsa-miR-409-3p regulates endothelial progenitor senescence via PP2A-P38 and is a potential ageing marker in humans. J Cell Mol Med 2023; 27:687-700. [PMID: 36756741 PMCID: PMC9983318 DOI: 10.1111/jcmm.17691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
We explored the roles of hsa-microRNA (miR)-409-3p in senescence and signalling mechanism of human endothelial progenitor cells (EPCs). Hsa-miR-409-3p was found upregulated in senescent EPCs. Overexpression of miRNA mimics in young EPCs inhibited angiogenesis. In senescent EPCs, compared to young EPCs, protein phosphatase 2A (PP2A) was downregulated, with activation of p38/JNK by phosphorylation. Young EPCs treated with siPP2A caused inhibited angiogenesis with activation of p38/JNK, similar to findings in senescent EPCs. Time series analysis showed, in young EPCs treated with hsa-miR-409-3p mimics, PP2A was steadily downregulated for 72 h, while p38/JNK was activated with a peak at 48 hours. The inhibited angiogenesis of young EPCs after miRNA-409-3p mimics treatment was reversed by the p38 inhibitor. The effect of hsa-miR-409-3p on PP2A signalling was attenuated by exogenous VEGF. Analysis of human peripheral blood mononuclear cells (PBMCs) obtained from healthy people revealed hsa-miR-409-3p expression was higher in those older than 65 years, compared to those younger than 30 years, regardless of gender. In summary, hsa-miR-409-3p was upregulated in senescent EPCs and acted as a negative modulator of angiogenesis via targeting protein phosphatase 2 catalytic subunit alpha (PPP2CA) gene and regulating PP2A/p38 signalling. Data from human PBMCs suggested hsa-miR-409-3p a potential biomarker for human ageing.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Hsin-I Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | | | - Chung-Lieh Hung
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yen-Hung Chou
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Ting-Yi Tien
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chun-Wei Lee
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chao-Feng Lin
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Huang Su
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
3
|
Miryala SK, Anbarasu A, Ramaiah S. Organ-specific host differential gene expression analysis in systemic candidiasis: A systems biology approach. Microb Pathog 2022; 169:105677. [PMID: 35839997 PMCID: PMC9283004 DOI: 10.1016/j.micpath.2022.105677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
5
|
Stojiljković A, Gaschen V, Forterre F, Rytz U, Stoffel MH, Bluteau J. Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells. GeroScience 2021; 44:1301-1323. [PMID: 34806133 DOI: 10.1007/s11357-021-00488-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
In the last decades, the scientific community spared no effort to elucidate the therapeutic potential of mesenchymal stromal cells (MSCs). Unfortunately, in vitro cellular senescence occurring along with a loss of proliferative capacity is a major drawback in view of future therapeutic applications of these cells in the field of regenerative medicine. Even though insight into the mechanisms of replicative senescence in human medicine has evolved dramatically, knowledge about replicative senescence of canine MSCs is still scarce. Thus, we developed a high-content analysis workflow to simultaneously investigate three important characteristics of senescence in canine adipose-derived MSCs (cAD-MSCs): morphological changes, activation of the cell cycle arrest machinery, and increased activity of the senescence-associated β-galactosidase. We took advantage of this tool to demonstrate that passaging of cAD-MSCs results in the appearance of a senescence phenotype and proliferation arrest. This was partially prevented upon immortalization of these cells using a newly designed PiggyBac™ Transposon System, which allows for the expression of the human polycomb ring finger proto-oncogene BMI1 and the human telomerase reverse transcriptase under the same promotor. Our results indicate that cAD-MSCs immortalized with this new vector maintain their proliferation capacity and differentiation potential for a longer time than untreated cAD-MSCs. This study not only offers a workflow to investigate replicative senescence in eukaryotic cells with a high-content analysis approach but also paves the way for a rapid and effective generation of immortalized MSC lines. This promotes a better understanding of these cells in view of future applications in regenerative medicine.
Collapse
Affiliation(s)
- Ana Stojiljković
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Franck Forterre
- Division of Small Animal Surgery and Orthopaedics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ulrich Rytz
- Division of Small Animal Surgery and Orthopaedics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jasmin Bluteau
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Das M, Das A, Barui A, Paul RR. Comparative evaluation of proliferative potential and replicative senescence associated changes in mesenchymal stem cells derived from dental pulp and umbilical cord. Cell Tissue Bank 2021; 23:157-170. [PMID: 33900487 DOI: 10.1007/s10561-021-09926-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSC) have been widely studied for tissue regeneration and cell-based therapy. MSC can be isolated from different body tissues while several biological waste sources like dental pulp, umbilical cord, cord derived blood, amniotic fluid or urine have also emerged as potential sources of MSCs. Specifically, isolation of MSCs from such non-conventional sources show promising outcomes due to the non-invasiveness of the extraction process and high proliferation capacity of the isolated MSC. However, these stem cells also exhibit the limitation of replicative senescence in long-term culture condition. Inter-cellular reactive oxygen species is an important contributor for inducing cellular senescence under long-term culture conditions. For translational application, it becomes imperative to compare the stem cells isolated from these sources for their senescence and proliferative properties. In this study, MSC were extracted from two different sources of biological waste materials-dental pulp and umbilical cord, and compared for their proliferation capacity and replicative senescence at different passage numbers (i.e. P2 and P6). Intracellular ROS production was significantly (p < 0.001) less in dental pulp stem cells culture in comparison to umbilical cord-derived stem cells at P6. The β-gal expression also showed significantly (p < 0.001) low expression in DPSC culture compared to that of UCSC at P6. The study indicates the source of stem cells influences the proliferation capacity as well as replicative senescence of MSCs. This study will thus pave the path of future research in selecting appropriate stem cell source for regenerative medicine application.
Collapse
Affiliation(s)
- Monalisa Das
- Department of Oral and Dental Sciences, JIS University, Kolkata, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India.
| | - Ranjan Rashmi Paul
- Department of Oral and Dental Sciences, JIS University, Kolkata, India. .,Department of Oral and Dental Sciences, Guru Nanak Institute of Dental Sciences and Research, JIS University, Kolkata, India.
| |
Collapse
|
7
|
MiR-217 promotes endothelial cell senescence through the SIRT1/p53 signaling pathway. J Mol Histol 2021; 52:257-267. [PMID: 33392891 DOI: 10.1007/s10735-020-09945-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
Studies have shown that miR-217 can induce cell senescence, but its mechanism of action in vascular endothelial cell senescence is less reported. Therefore, this study aimed to investigate how miR-217 plays a role in endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) were used to replicate the aging model, and the population doubling levels (PDLs) during cell passage were counted. Senescence-associated β-galactosidase (SA-β-gal) staining, Real-time quantitative PCR (RT-qPCR), MTT assay, Transwell, and tube formation were used to detect the effects of miR-217 on young and senescent HUVECs. Targetscan7.2 and luciferase assay predicted and verified the relationship between miR-217 and the target gene, and the expression of silent information regulator 1 (SIRT1) and p53 was detected by RT-qPCR and western blot. In addition, SA-β-gal staining detected the effects of miR-217 inhibitor and SIRT1 on senescent HUVECs. MiR-217 was upregulated in senescent endothelial cells. Overexpression of miR-217 promoted the increase of SA-β-gal positive cells, and inhibited proliferation, migration and angiogenesis during endothelial cell growth. Furthermore, SIRT1 was a target gene of miR-217. Simultaneous silencing of SIRT1 reversed the effect of miR-217 inhibitor on the reduction of SA-β-gal positive-staining cells. Our data suggest that overexpression of miR-217 promoted vascular endothelial cell senescence by targeting the SIRT1/p53 signaling pathway, which may provide a new basis for studying the mechanism of action in vascular endothelial cell senescence.
Collapse
|
8
|
Strappazzon F. A global view of the miRNA-mitophagy connexion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:37-54. [PMID: 32620248 DOI: 10.1016/bs.pmbts.2020.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamics organelles that provide the necessary energy for cellular functions. However, when they are dysfunctional, they can, by contrast, be very harmful for the cell. Mitophagy ensures their recycling and preserves cell performance. This mechanism is particularly important in neurons because they use a lot of energy. Failed mitophagy can thus affect the development of neurons and lead to brain problems. In this regard, a tight regulation of this process is needed. In recent years microRNAs, as regulators of several biological processes, have attracted attention in the field of mitophagy. In this review, we focused on the studies that highlight the miRNAs implicated in the regulation of mitophagic pathways. In particular, we described the first study carried out 7 years ago, in the context of mitophagy during erythroid differentiation. Next, we have cited all the other works to date on microRNAs and mitophagy regulation. Finally, we have underlined the importance of these discoveries in order to define new therapeutic approaches in the context of age-related diseases involving mitochondrial dysfunctions, such as cancers and neurodegenerative diseases.
Collapse
|
9
|
Ferrucci L, Gonzalez‐Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, de Cabo R. Measuring biological aging in humans: A quest. Aging Cell 2020; 19:e13080. [PMID: 31833194 PMCID: PMC6996955 DOI: 10.1111/acel.13080] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
The global population of individuals over the age of 65 is growing at an unprecedented rate and is expected to reach 1.6 billion by 2050. Most older individuals are affected by multiple chronic diseases, leading to complex drug treatments and increased risk of physical and cognitive disability. Improving or preserving the health and quality of life of these individuals is challenging due to a lack of well-established clinical guidelines. Physicians are often forced to engage in cycles of "trial and error" that are centered on palliative treatment of symptoms rather than the root cause, often resulting in dubious outcomes. Recently, geroscience challenged this view, proposing that the underlying biological mechanisms of aging are central to the global increase in susceptibility to disease and disability that occurs with aging. In fact, strong correlations have recently been revealed between health dimensions and phenotypes that are typical of aging, especially with autophagy, mitochondrial function, cellular senescence, and DNA methylation. Current research focuses on measuring the pace of aging to identify individuals who are "aging faster" to test and develop interventions that could prevent or delay the progression of multimorbidity and disability with aging. Understanding how the underlying biological mechanisms of aging connect to and impact longitudinal changes in health trajectories offers a unique opportunity to identify resilience mechanisms, their dynamic changes, and their impact on stress responses. Harnessing how to evoke and control resilience mechanisms in individuals with successful aging could lead to writing a new chapter in human medicine.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Marta Gonzalez‐Freire
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Elisa Fabbri
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Eleanor Simonsick
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Toshiko Tanaka
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Zenobia Moore
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Shabnam Salimi
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Felipe Sierra
- Division of Aging BiologyNational Institute on AgingNIHBethesdaMDUSA
| | - Rafael de Cabo
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| |
Collapse
|
10
|
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet 2018; 137:865-879. [DOI: 10.1007/s00439-018-1955-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
11
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|