1
|
Drozd M, Hamilton F, Cheng CW, Lillie PJ, Brown OI, Chaddock N, Savic S, Naseem K, Iles MM, Morgan AW, Kearney MT, Cubbon RM. Plasma MERTK is causally associated with infection mortality. J Infect 2024; 89:106262. [PMID: 39241967 DOI: 10.1016/j.jinf.2024.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Infectious diseases are a major cause of mortality in spite of existing public health, anti-microbial and vaccine interventions. We aimed to define plasma proteomic associates of infection mortality and then apply Mendelian randomisation (MR) to yield biomarkers that may be causally associated. METHODS We used UK Biobank plasma proteomic data to associate 2923 plasma proteins with infection mortality before 31st December 2019 (240 events in 52,520 participants). Since many plasma proteins also predict non-infection mortality, we focussed on those associated with >1.5-fold risk of infection mortality in an analysis excluding survivors. Protein quantitative trait scores (pQTS) were then used to identify whether genetically predicted protein levels also associated with infection mortality. To conduct Two Sample MR, we performed a genome-wide association study (GWAS) of infection mortality using UK Biobank participants without plasma proteomic data (n = 363,953 including 984 infection deaths). FINDINGS After adjusting for clinical risk factors, 1142 plasma proteins were associated with risk of infection mortality (false discovery rate <0.05). 259 proteins were associated with >1.5-fold increased risk of infection versus non-infection mortality. Of these, we identified genetically predicted increasing MERTK concentration was associated with increased risk of infection mortality. MR supported a causal association between increasing plasma MERTK protein and infection mortality (odds ratio 1.46 per unit; 95% CI 1.15- 1.85; p = 0.002). CONCLUSION Plasma MERTK is causally associated with infection mortality and warrants exploration as a potential therapeutic target.
Collapse
Affiliation(s)
- Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Patrick J Lillie
- Department of Infection, Castle Hill Hospital, Hull University Hospitals NHS Trust, Kingston Upon Hull, UK
| | - Oliver I Brown
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Natalie Chaddock
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Khalid Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Mark M Iles
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Ann W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
2
|
Hou D, Mu Q, Chen W, Cao W, Zhang XF. Nano-Biomechanical Investigation of Phosphatidylserine-Mediated Ebola Viral Attachment via Human Gas6 and Axl. Viruses 2024; 16:1700. [PMID: 39599815 PMCID: PMC11599018 DOI: 10.3390/v16111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors such as Axl. In this study, we investigate the interactions among phosphatidylserine on the Ebola viral-like particle (VLP) membrane, human Gas6, and human Axl using atomic force microscope-based single molecule force spectroscopy to compare their binding strength and affinity from a biomechanical perspective. The impact of calcium ions on their interactions is also studied and quantified to provide more details on the calcium-dependent phosphatidylserine-Gas6 binding mechanism. Our results indicate that, in the presence of calcium ions, the binding strengths of VLP-Gas6 and VLP-Gas6-Axl increase but are still weaker than that of Gas6-Axl, and the binding affinity of VLP-Gas6 and VLP-Gas6-Axl is largely improved. The binding strength and affinity of Gas6-Axl basically remain the same, indicating no impact in the presence of calcium ions. Together, our study suggests that, under physiological conditions with calcium present, the Ebola virus can utilize its membrane phosphatidylserine to dock on cell surface via Gas6-Axl bound complex.
Collapse
Affiliation(s)
- Decheng Hou
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Qian Mu
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Wenpeng Cao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Xiaohui Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| |
Collapse
|
3
|
Papadopoulos KI, Papadopoulou A, Aw TC. Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the "Uncontrolled" in SARS-CoV-2. Hum Cell 2024; 37:582-592. [PMID: 38472734 DOI: 10.1007/s13577-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
AXL is the gene that encodes the Anexelekto (AXL) receptor tyrosine kinase that demonstrates significant roles in various cellular processes, including cell growth, survival, and migration. Anexelekto is a Greek word meaning excessive and uncontrolled, semantically implying the crucial involvement of AXL in cancer and immune biology, and in promoting cancer metastasis. AXL overexpression appears to drive epithelial to mesenchymal transition, tumor angiogenesis, decreased antitumor immune response, and resistance to therapeutic agents. Recently, AXL has been reported to play important roles in several viral infections, including SARS-CoV-2. We have previously outlined the importance of microRNAs (miRNAs, miRs) and especially miR-155 in SARS-CoV-2 pathophysiology through regulation of the Renin-Angiotensin Aldosterone System (RAAS) and influence on several aspects of host innate immunity. MiRNAs are negative regulators of gene expression, decreasing the stability of target RNAs or limiting their translation and, enthrallingly, miR-155 is also involved in AXL homeostasis-both endogenously and pharmaceutically using repurposed drugs (e.g., metformin)-highlighting thrifty evolutionary host innate immunity mechanisms that successfully can thwart viral entry and replication. Cancer, infections, and immune system disturbances will increasingly involve miRNA diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- K I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd, Wangthonglang, Bangkok, 10310, Thailand.
| | - A Papadopoulou
- Feelgood Lund, Occupational and Environmental Health Services, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
4
|
Pyo KH, Rahman SMM, Boraschi D. Editorial: Development of small molecule inhibitors and antibodies targeting AXL for tumor therapy and infectious disease control. Front Oncol 2023; 12:1121120. [PMID: 36703780 PMCID: PMC9872103 DOI: 10.3389/fonc.2022.1121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea,Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Kyoung-Ho Pyo,
| | - S. M. Mazidur Rahman
- International Centre for Diarrhoeal Disease Research (iccdr,b), Dhaka, Bangladesh
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China,Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy,Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| |
Collapse
|
5
|
Rubio-Hernández EI, Comas-García M, Coronado-Ipiña MA, Colunga-Saucedo M, González Sánchez HM, Castillo CG. Astrocytes derived from neural progenitor cells are susceptible to Zika virus infection. PLoS One 2023; 18:e0283429. [PMID: 36989308 PMCID: PMC10057746 DOI: 10.1371/journal.pone.0283429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Zika virus (ZIKV) was first isolated in 1947. From its isolation until 2007, symptoms of ZIKV-caused disease were limited (e.g., fever, hives, and headache); however, during the epidemic in Brazil in 2014, ZIKV infection caused Guillain-Barré syndrome in adults and microcephaly in fetuses and infants of women infected during pregnancy. The neurovirulence of ZIKV has been studied using neural progenitor cells (NPCs), brain organoids, neurons, and astrocytes. NPCs and astrocytes appear to be the most susceptible cells of the Central Nervous System to ZIKV infection. In this work, we aimed to develop a culture of astrocytes derived from a human NPC cell line. We analyze how ZIKV affects human astrocytes and demonstrate that 1) ZIKV infection reduces cell viability, increases the production of Reactive Oxygen Species (ROS), and results in high viral titers; 2) there are changes in the expression of genes that facilitate the entry of the virus into the cells; 3) there are changes in the expression of genes involved in the homeostasis of the glutamatergic system; and 4) there are ultrastructural changes in mitochondria and lipid droplets associated with production of virions. Our findings reveal new evidence of how ZIKV compromises astrocytic functionality, which may help understand the pathophysiology of ZIKV-associated congenital disease.
Collapse
Affiliation(s)
- Edson Iván Rubio-Hernández
- Laboratorio de Células Neurales Troncales Humanas, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mauricio Comas-García
- Sección de Microscopia de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Miguel Angel Coronado-Ipiña
- Sección de Microscopia de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mayra Colunga-Saucedo
- Sección de Genómica Médica, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Hilda Minerva González Sánchez
- Cátedra CONACYT- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Claudia G Castillo
- Laboratorio de Células Neurales Troncales Humanas, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
6
|
Joseph AA, Fasipe OJ, Joseph OA, Olatunji OA. Contemporary and emerging pharmacotherapeutic agents for the treatment of Lassa viral haemorrhagic fever disease. J Antimicrob Chemother 2022; 77:1525-1531. [PMID: 35296886 DOI: 10.1093/jac/dkac064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review was designed to discuss the emerging and current pharmacotherapeutic agents for the treatment of Lassa viral haemorrhagic fever disease (LVHFD), also known as Lassa fever (LF). Original peer-reviewed articles that investigated LF were identified using the Medline Entrez-PubMed search. Information was also sourced from printed textbooks and reports by recognized health professional bodies such as the WHO, CDC, the Nigerian Federal Ministry of Health and the United Nations Children's Fund (UNICEF). A total of 103 articles were reviewed and 78 were found to contain information relevant to the study. LF remains an endemic disease of public health concern in the West Africa region, and in the rest of the world as cases have been imported into non-endemic regions as well. Currently, there are no approved vaccines or therapeutics for the treatment of Lassa mammarenavirus (LASV) infection. There are, however, off-label therapeutics being used (ribavirin and convalescent plasma) whose efficacy is suboptimal. Research is still ongoing on possible therapeutic options and drug repurposing of therapeutic agents currently in use for other clinical conditions. Considered therapeutic options include favipiravir, taribavirin, Arevirumab-3 and experimental drugs such as losmapimod, adamantyl diphenyl piperazine 3.3, Arbidol (umifenovir) and decanoyl-RRLL-chloromethyl ketone (dec-RRLL-CMK). Current treatments for LF are limited, hence the institution of mitigating measures to prevent infection is of utmost importance and should be prioritized, especially in endemic regions. Heightened searches for other therapeutic options with greater efficacy and lower toxicity are still ongoing, as well as for vaccines as the absence of these classifies the disease as a priority disease of high public health impact.
Collapse
Affiliation(s)
| | - Olumuyiwa John Fasipe
- Department of Pharmacology and Therapeutics, University of Medical Sciences, Ondo, Nigeria
| | | | - Olalekan Aliu Olatunji
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Nigeria
| |
Collapse
|
7
|
Wang J, Yu C, Zhuang J, Qi W, Jiang J, Liu X, Zhao W, Cao Y, Wu H, Qi J, Zhao RC. The role of phosphatidylserine on the membrane in immunity and blood coagulation. Biomark Res 2022; 10:4. [PMID: 35033201 PMCID: PMC8760663 DOI: 10.1186/s40364-021-00346-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PtdSer), is located in the inner leaflet of the plasma membrane in normal cells, and may be exposed to the outer leaflet under some immune and blood coagulation processes. Meanwhile, Ptdser exposed to apoptotic cells can be recognized and eliminated by various immune cells, whereas on the surface of activated platelets Ptdser interacts with coagulation factors prompting enhanced production of thrombin which significantly facilitates blood coagulation. In the case where PtdSer fails in exposure or mistakenly occurs, there are occurrences of certain immunological and haematological diseases, such as the Scott syndrome and Systemic lupus erythematosus. Besides, viruses (e.g., Human Immunodeficiency Virus (HIV), Ebola virus (EBOV)) can invade host cells through binding the exposed PtdSer. Most recently, the Corona Virus Disease 2019 (COVID-19) has been similarly linked to PtdSer or its receptors. Therefore, it is essential to comprehensively understand PtdSer and its functional characteristics. Therefore, this review summarizes Ptdser, its eversion mechanism; interaction mechanism, particularly with its immune receptors and coagulation factors; recognition sites; and its function in immune and blood processes. This review illustrates the potential aspects for the underlying pathogenic mechanism of PtdSer-related diseases, and the discovery of new therapeutic strategies as well.
Collapse
Affiliation(s)
- Jiao Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Changxin Yu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Junyi Zhuang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xuanting Liu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wanwei Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yiyang Cao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Beijing, 100005, China.
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
8
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
9
|
Le Bescont J, Mouawad L, Boddaert T, Bombard S, Piguel S. Photoactivatable Small‐Molecule Inhibitors for Light‐Controlled TAM Kinase Activity. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julie Le Bescont
- Institut Curie Université PSL CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
- Université Paris-Saclay CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
| | - Liliane Mouawad
- Institut Curie Université PSL CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
- Université Paris-Saclay CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
| | - Thomas Boddaert
- Université Paris-Saclay CNRS UMR 8182 ICMMO CP3A Organic Synthesis Group 91405 Orsay France
| | - Sophie Bombard
- Institut Curie Université PSL CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
- Université Paris-Saclay CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
| | - Sandrine Piguel
- Institut Curie Université PSL CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
- Université Paris-Saclay CNRS UMR 9187 INSERM U1196 Chimie et Modélisation pour la Biologie du Cancer 91405 Orsay France
| |
Collapse
|
10
|
Post SM, Andreeff M, DiNardo C, Khoury JD, Ruvolo PP. TAM kinases as regulators of cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118992. [PMID: 33647320 DOI: 10.1016/j.bbamcr.2021.118992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/16/2023]
Abstract
Receptor Tyrosine Kinases are critical regulators of signal transduction that support cell survival, proliferation, and differentiation. Dysregulation of normal Receptor Tyrosine Kinase function by mutation or other activity-altering event can be oncogenic or can impact the transformed malignant cell so it becomes particularly resistant to stress challenge, have increased proliferation, become evasive to immune surveillance, and may be more prone to metastasis of the tumor to other organ sites. The TAM family of Receptor Tyrosine Kinases (TYRO3, AXL, MERTK) is emerging as important components of malignant cell survival in many cancers. The TAM kinases are important regulators of cellular homeostasis and proper cell differentiation in normal cells as receptors for their ligands GAS6 and Protein S. They also are critical to immune and inflammatory processes. In malignant cells, the TAM kinases can act as ligand independent co-receptors to mutant Receptor Tyrosine Kinases and in some cases (e.g. FLT3-ITD mutant) are required for their function. They also have a role in immune checkpoint surveillance. At the time of this review, the Covid-19 pandemic poses a global threat to world health. TAM kinases play an important role in host response to many viruses and it is suggested the TAM kinases may be important in aspects of Covid-19 biology. This review will cover the TAM kinases and their role in these processes.
Collapse
Affiliation(s)
- Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Peter P Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|