1
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
2
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
MacKinnon AC, Humphries DC, Herman K, Roper JA, Holyer I, Mabbitt J, Mills R, Nilsson UJ, Leffler H, Pedersen A, Schambye H, Zetterberg F, Slack RJ. Effect of GB1107, a novel galectin-3 inhibitor on pro-fibrotic signalling in the liver. Eur J Pharmacol 2024; 985:177077. [PMID: 39528104 DOI: 10.1016/j.ejphar.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Galectin-3 (Gal-3) is a pro-fibrotic β-galactoside binding lectin highly expressed in fibrotic liver and implicated in hepatic fibrosis. GB1107 is a novel orally active Gal-3 small molecule inhibitor that has high affinity for Gal-3 >1000-fold selectively over other galectins. The aim of this study was to characterise GB1107 and galectin-3 in vitro and in vivo in the context of fibrosis signalling and liver disease. EXPERIMENTAL APPROACH Liver fibrosis was induced by administration of CCl4 twice weekly by intraperitoneal injection in mice for 8 weeks. GB1107 was orally administered once daily (10 mg/kg) for the last 4 weeks of CCl4 treatment. Fibrosis was assessed by picrosirius red staining of FFPE sections. Liver enzymes, Gal-3 and downstream biomarkers were assessed in liver and plasma. Paired-end sequencing was performed on the Nextseq 2000 platform. Pathway enrichment analysis was performed to determine enrichment of differentially expressed genes (DEGs) within Reactome pathways and Gene Ontology (GO) terms. KEY RESULTS GB1107 significantly reduced plasma transaminases and liver Gal-3 and reduced liver fibrosis. RNAseq analysis of whole liver showed that 1659 DEGs were identified with CCl4 treatment compared to control. Pathways enriched in up-regulated genes in the CCl4 group included those related to the extracellular matrix, collagen biosynthesis and assembly, cell cycle and the immune system. Comparing GB1107 treatment with CCl4 control 1147 DEGs were identified. GB1107 effectively reversed the majority of the CCl4 induced gene changes. CONCLUSIONS AND IMPLICATIONS GB1107 attenuated liver fibrosis and highlights Gal-3 as a therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Alison C MacKinnon
- Galecto Biotech AB, Nine Edinburgh Bioquarter, 9 Little France Rd, Edinburgh, EH16 4UX, UK
| | - Duncan C Humphries
- Galecto Biotech AB, Nine Edinburgh Bioquarter, 9 Little France Rd, Edinburgh, EH16 4UX, UK
| | - Kimberley Herman
- Galecto Biotech AB, Nine Edinburgh Bioquarter, 9 Little France Rd, Edinburgh, EH16 4UX, UK
| | - James A Roper
- Galecto Biotech AB, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Ian Holyer
- Galecto Biotech AB, Nine Edinburgh Bioquarter, 9 Little France Rd, Edinburgh, EH16 4UX, UK
| | - Joseph Mabbitt
- Galecto Biotech AB, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Ross Mills
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden
| | | | | | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Gothenburg, S-413 46, Sweden
| | - Robert J Slack
- Galecto Biotech AB, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK.
| |
Collapse
|
4
|
Humphries C, Addison M, Aithal G, Boyd J, Briody L, Campbell JDM, Candela ME, Clarke E, Coulson J, Downing-James N, Fontana RJ, Geddes A, Grahamslaw J, Grant A, Heye A, Hutchinson JA, Jones A, Mitchell F, Moore J, Riddell A, Rodriguez A, Thomas A, Tucker G, Walker K, Weir CJ, Woods R, Zahra S, Forbes SJ, Dear JW. Macrophage Therapy for Acute Liver Injury (MAIL): a study protocol for a phase 1 randomised, open-label, dose-escalation study to evaluate safety, tolerability and activity of allogeneic alternatively activated macrophages in patients with paracetamol-induced acute liver injury in the UK. BMJ Open 2024; 14:e089417. [PMID: 39653576 PMCID: PMC11628987 DOI: 10.1136/bmjopen-2024-089417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Acute liver failure (ALF) has no effective treatment other than liver transplantation and is commonly caused by paracetamol overdose. New treatments are needed to treat and prevent ALF. Alternatively-activated macrophages (AAMs) can promote resolution of liver necrosis and stimulate hepatocyte proliferation. Using AAMs in unscheduled care requires the use of an allogeneic product. A clinical trial is needed to determine the safety and tolerability of allogeneic AAMs. METHODS AND ANALYSIS A single-centre, open-label, dose-escalation, phase 1 randomised trial to determine whether there is dose-limiting toxicity of AAMs in patients with paracetamol-induced acute liver injury. Randomisation will occur at higher doses. Between 17 and 30 patients will receive treatment, subject to dose-limiting toxicity and an adaptive trial design which aims to reduce the risk of allocation bias through blinding and randomisation. ETHICS AND DISSEMINATION The trial will be conducted according to the ethical principles of the Declaration of Helsinki 2013 and has been approved by North East-York Research Ethics Committee (reference 23/NE/0019), National Health Service Lothian Research and Development department, and the UK Medicines and Healthcare products Regulatory Agency. When the trial concludes, results will be shared by presentation and publication. TRIAL REGISTRATION NUMBER ISRCTN12637839.
Collapse
Affiliation(s)
- Christopher Humphries
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - Melisande Addison
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, UK
| | - Guruprasad Aithal
- MAIL Trial Data Monitoring Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Derby Road, Nottingham, UK
| | - Julia Boyd
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Lesley Briody
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - John D M Campbell
- Scottish National Blood Transfusion Service, Jack Copland Centre, 52 Research Avenue North, Edinburgh, UK
| | - Maria Elena Candela
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, UK
| | - Ellise Clarke
- Emergency Medicine Research Group Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - James Coulson
- MAIL Trial Data Monitoring Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Nicholas Downing-James
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Robert John Fontana
- MAIL Trial Steering Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Ailsa Geddes
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Julia Grahamslaw
- Emergency Medicine Research Group Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Alison Grant
- Emergency Medicine Research Group Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Anna Heye
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - James A Hutchinson
- MAIL Trial Steering Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Ashley Jones
- MAIL Trial Data Monitoring Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Fiona Mitchell
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Joanna Moore
- MAIL Trial Data Monitoring Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Alice Riddell
- MAIL Trial Steering Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Aryelly Rodriguez
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Angela Thomas
- MAIL Trial Steering Committee, Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Garry Tucker
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Kim Walker
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, 3 Little France Road, Edinburgh, UK
| | - Rachel Woods
- Edinburgh Clinical Research Facility, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Sharon Zahra
- Scottish National Blood Transfusion Service, Jack Copland Centre, 52 Research Avenue North, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - James W Dear
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
- Centre for Precision Cell Therapy for the Liver, Lothian Health Board, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
5
|
Forni MF, Pizzurro GA, Krause W, Alexander AF, Bridges K, Xu Y, Justynski O, Gabry A, Camara NOS, Miller-Jensen K, Horsley V. Multiomics reveals age-dependent metabolic reprogramming of macrophages by wound bed niche secreted signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621159. [PMID: 39553941 PMCID: PMC11565841 DOI: 10.1101/2024.10.30.621159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The cellular metabolism of macrophages depends on tissue niches and can control macrophage inflammatory or resolving phenotypes. Yet, the identity of signals within tissue niches that control macrophage metabolism is not well understood. Here, using single-cell RNA sequencing of macrophages in early mouse wounds, we find that, rather than gene expression of canonical inflammatory or resolving polarization markers, metabolic gene expression defines distinct populations of early wound macrophages. Single-cell secretomics and transcriptomics identify inflammatory and resolving cytokines expressed by early wound macrophages, and we show that these signals drive metabolic inputs and mitochondrial metabolism in an age-dependent manner. We show that aging alters the metabolome of early wound macrophages and rewires their metabolism from mitochondria to glycolysis. We further show that macrophage-derived Chi3l3 and IGF-1 can induce metabolic inputs and mitochondrial mass/metabolism in aged and bone marrow-derived macrophages. Together, these findings reveal that macrophage-derived signals drive the mitochondrial metabolism of macrophages within early wounds in an age-dependent manner and have implications for inflammatory diseases, chronic injuries, and age-related inflammatory diseases. In Brief This study reveals that macrophage subsets in early inflammatory stages of skin wound healing are defined by their metabolic profiles rather than polarization phenotype. Using single-cell secretomics, we establish key macrophage cytokines that comprise the in vivo wound niche and drive mitochondrial-based metabolism. Aging significantly alters macrophage heterogeneity and increases glycolytic metabolism, which can be restored to OxPHOS-based metabolism with young niche cytokines. These findings highlight the importance of the tissue niche in driving macrophage phenotypes, with implications for aging-related impairments in wound healing. Highlights Single cell transcriptional analysis reveals that reveals that metabolic gene expression identifies distinct macrophage populations in early skin wounds.Single-cell secretomic data show that young macrophages contribute to the wound bed niche by secreting molecules such as IGF-1 and Chi3l3.Old wound macrophages display altered metabolomics, elevated glycolytic metabolism and glucose uptake, and reduced lipid uptake and mitochondrial mass/metabolism.Chi3l3 but not IGF-1 secretion is altered in macrophages in an age dependent manner.Chi3l3 can restore mitochondrial mass/metabolism in aged macrophages.
Collapse
|
6
|
Tian L, Chen J, Yang M, Chen L, Qiu J, Jiang Y, Tan X, Qian Q, Liang X, Dou X. Xiezhuo Tiaozhi formula inhibits macrophage pyroptosis in the non-alcoholic fatty liver disease by targeting the SIRT1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155776. [PMID: 38851104 DOI: 10.1016/j.phymed.2024.155776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a challenging disease to interfere with and represents a potential long-term risk factor for hepatic fibrosis and liver cancer. The Xiezhuo Tiaozhi (XZTZ) formula, a water extract from crude herbs, has been widely used as an anti-NAFLD agent through clinical observation. However, the underlying pharmacological mechanisms of the XZTZ formula and its impact on the potential pathways against NAFLD have not been elucidated. PURPOSE Our study aims to investigate the pharmacological effects and underlying regulatory mechanisms of the XZTZ formula to treat NAFLD. METHODS The possible active components and pharmacological mechanisms of the XZTZ formula against NAFLD were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and molecular docking. To further explore the potential mechanisms, forty-eight 6-week-old male C57BL/6 J mice were given individual attention with high-fat and high-sugar diet (HFHSD) or relevant control (Ctrl) diets for 16 weeks to successfully construct a NAFLD mouse model. Subsequently, the levels of serum biochemicals, pathological changes in the liver, and pyroptosis levels were assessed in mice to investigate the therapeutic effects of the XZTZ formula. Further, LPS-induced RAW264.7 cells and Immortalized Mouse Kupffer cells (ImKC) were used to verify the potential mechanisms of the XZTZ formula against NAFLD in vitro. RESULTS We identified 7 chemical compounds and 2 potential therapeutic targets as plausible therapeutic points for the treatment of NAFLD using the XZTZ formula. Subsequent histopathological analysis revealed marked hepatic steatosis and lipid accumulation in the HFHSD mice liver, while conditions were effectively ameliorated by administration of the XZTZ formula. Additionally, our work demonstrated that the XZTZ formula could attenuate M1 polarization, promote M2 polarization, and suppress pyroptosis via the SIRT1 pathway in tissue samples. Moreover, validation performed through LPS-induced RAW264.7 and ImKC cells by showing that silencing SIRT1 weaken the effects of the XZTZ formula on relative pyroptosis affirmed that its role was associated with the SIRT1 pathway in macrophage. CONCLUSION These findings suggest that the XZTZ formula alleviated hepatic steatosis and lipid accumulation in NAFLD mice. These ameliorations are associated with mechanisms involving the attenuation of M1 polarization, promotion of M2 polarization, and anti-pyroptosis effects through the SIRT1 pathway.
Collapse
Affiliation(s)
- Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, China
| | - Lin Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaolong Tan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Quaranta V, Ballarò C, Giannelli G. Macrophages Orchestrate the Liver Tumor Microenvironment. Cancers (Basel) 2024; 16:1772. [PMID: 38730724 PMCID: PMC11083142 DOI: 10.3390/cancers16091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Liver cancer is one of the leading causes of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma are the most common types, and despite numerous advances, therapeutic options still remain poor for these cancer patients. Tumor development and progression strictly depend on a supportive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immune cells population within a tumorigenic liver; they sustain cancer cells' growth and invasiveness, and their presence is correlated with a poor prognosis. Furthermore, TAM cross-talk with cells and components of the TME promotes immunosuppression, a desmoplastic response, and angiogenesis. In this review, we summarize the latest advances in understanding TAM heterogeneity and function, with a particular focus on TAM modulation of the TME. We also discuss the potential of targeting macrophage subpopulations and how this is now being exploited in current clinical trials for the treatment of liver cancer.
Collapse
Affiliation(s)
- Valeria Quaranta
- National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy (G.G.)
| | | | | |
Collapse
|
8
|
Liang Y, Zhang R, Biswas S, Bu Q, Xu Z, Qiao L, Zhou Y, Tang J, Zhou J, Zhou H, Lu L. Integrated single-cell transcriptomics reveals the hypoxia-induced inflammation-cancer transformation in NASH-derived hepatocellular carcinoma. Cell Prolif 2024; 57:e13576. [PMID: 37994257 PMCID: PMC10984103 DOI: 10.1111/cpr.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the primary risk factor for hepatocellular carcinoma (HCC), owing to improved vaccination rates of Hepatitis B and the increasing prevalence of metabolic syndrome related to obesity. Although the importance of innate and adaptive immune cells has been emphasized, the malignant transformation of hepatocytes and their intricate cellular network with the immune system remain unclear. The study incorporated four single-cell transcriptomic datasets of liver tissues covering healthy and NAFLD-related disease status. To identify the subsets and functions of hepatocytes and macrophages, we employed differential composition analysis, functional enrichment analysis, pseudotime analysis, and scenic analysis. Furthermore, an experimental mouse model for the transformation of nonalcoholic steatohepatitis into hepatocellular carcinoma was established for validation purposes. We defined CYP7A1+ hepatocytes enriched in precancerous lesions as 'Transitional Cells' in the progression from NAFLD to HCC. CYP7A1+ hepatocytes upregulated genes associated with stress response, inflammation and cancer-associated pathways and downregulated the normal hepatocyte signature. We observed that hypoxia activation accompanied the entire process of inflammation-cancer transformation. Hepatocyte-derived HIF1A was gradually activated during the progression of NAFLD disease to adapt to the hypoxic microenvironment and hepatocytes under hypoxic environment led to changes in the metabolism, proliferation and angiogenesis, promoting the occurrence of tumours. Meanwhile, hypoxia induced the polarization of RACK1+ macrophages that enriched in the liver tissues of NASH towards immunosuppressed TREM2+ macrophages. Moreover, immunosuppressive TREM2+ macrophages were recruited by tumour cells through the CCL15-CCR1 axis to enhance immunosuppressive microenvironment and promote NAFLD-related HCC progression. The study provides a deep understanding of the development mechanism of NAFLD-related HCC and offers theoretical support and experimental basis for biological targets, drug research, and clinical application.
Collapse
Affiliation(s)
- Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- School of Biological Science & Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Siddhartha Biswas
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- Department of BioinformaticsNanjing Medical UniversityNanjingChina
| | - Yan Zhou
- Department of Pancreatic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jiaqi Tang
- Department of BioinformaticsNanjing Medical UniversityNanjingChina
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
9
|
Zhang L, Liu M, Sun Q, Cheng S, Chi Y, Zhang J, Wang B, Zhou L, Zhao J. Engineering M2 type macrophage-derived exosomes for autoimmune hepatitis immunotherapy via loading siRIPK3. Biomed Pharmacother 2024; 171:116161. [PMID: 38244330 DOI: 10.1016/j.biopha.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive liver disease mediated by the immune system that involves an imbalance in pro-inflammatory and regulatory mechanisms including regulatory T cells (Tregs), T helper 17 (Th17) cells, Th1, macrophages, and many other immune cells. Current steroid therapy for AIH has significant systemic side effects and is poorly tolerated by some individuals. Therefore, there is an urgent need for alternative treatments. Maintaining homeostasis in macrophage differentiation and activation is crucial for regulating immune responses in hepatitis. In this study, we loaded small interfering RNA (siRNA) targeting receptor-interacting protein kinase 3 (RIPK3) into M2-type macrophage-derived exosomes (M2 Exos) to create functionalized exosomes called M2 Exos/siRIPK3. These exosomes demonstrated a natural ability to target the liver in mice, as they were efficiently taken up by hepatic macrophages and showed significant and stable accumulation. M2 Exos/siRIPK3 effectively mitigated immune-mediated hepatitis by suppressing the expression of RIPK3, resulting in a reduced release of pro-inflammatory cytokines and chemokines in both liver tissues and serum. Additionally, M2 Exos/siRIPK3 exhibited immunomodulatory effects, as its administration resulted in a decreased proportion of hepatic and splenic Th17 cells, along with an increased ratio of Tregs. Overall, this study suggests that loading small molecule drugs onto M2 Exos could be a promising approach for developing immunomodulators that specifically target liver macrophages to treat AIH. This strategy has the potential to provide a safer and more effective alternative to current therapy for AIH patients.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Qiu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Shuqin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Yirong Chi
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
10
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Gao Y, Tian X, Zhang X, Milebe Nkoua GD, Chen F, Liu Y, Chai Y. The roles of tissue-resident macrophages in sepsis-associated organ dysfunction. Heliyon 2023; 9:e21391. [PMID: 38027963 PMCID: PMC10643296 DOI: 10.1016/j.heliyon.2023.e21391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis, a syndrome caused by a dysregulated host response to infection and characterized by life-threatening organ dysfunction, particularly septic shock and sepsis-associated organ dysfunction (SAOD), is a medical emergency associated with high morbidity, high mortality, and long-term sequelae. Tissue-resident macrophages (TRMs) are a subpopulation of macrophages derived primarily from yolk sac progenitors and fetal liver during embryogenesis, located primarily in non-lymphoid tissues in adulthood, capable of local self-renewal independent of hematopoiesis, and developmentally and functionally restricted to the non-lymphoid organs in which they reside. TRMs are the first line of defense against life-threatening conditions such as sepsis, tumor growth, traumatic-associated organ injury, and surgical-associated injury. In the context of sepsis, TRMs can be considered as angels or demons involved in organ injury. Our proposal is that sepsis, septic shock, and SAOD can be attenuated by modulating TRMs in different organs. This review summarizes the pathophysiological mechanisms of TRMs in different organs or tissues involved in the development and progression of sepsis.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
- Department of Emergency Medicine, China-Congo Friendship Hospital, Brazzaville, 999059, P. R. Congo
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, 100193, P. R. China
- Department of Medical Research, Sen Sho Ka Gi Company, Inba-gun, Chiba, 285-0905, Japan
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, 276825, P. R. China
| | | | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| |
Collapse
|
12
|
Mooring M, Yeung GA, Luukkonen P, Liu S, Akbar MW, Zhang GJ, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky MV, Booth CJ, Konnikova L, Shulman GI, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Sci Transl Med 2023; 15:eade3157. [PMID: 37756381 PMCID: PMC10874639 DOI: 10.1126/scitranslmed.ade3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.
Collapse
Affiliation(s)
- Meghan Mooring
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Grace A. Yeung
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Panu Luukkonen
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Muhammad Waqas Akbar
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gary J. Zhang
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Oluwashanu Balogun
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Xuemei Yu
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Rigen Mo
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Kari Nejak-Bowen
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Masha V. Poyurovsky
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Carmen J. Booth
- Department of Comparative Medicine; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Liza Konnikova
- Section of Neonatology; Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Dean Yimlamai
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- The Yale Liver Center, Yale School of Medicine; New Haven, Connecticut 06514, USA
| |
Collapse
|
13
|
Zheng L, Wu J, Hu H, Cao H, Xu N, Chen K, Wen B, Wang H, Yuan H, Xie L, Jiang Y, Li Z, Liang C, Yuan J, Li Z, Yuan X, Xiao W, Wang J. Single-cell RNA transcriptome landscape of murine liver following systemic administration of mesoporous silica nanoparticles. J Control Release 2023; 361:427-442. [PMID: 37487929 DOI: 10.1016/j.jconrel.2023.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Due to the unique physicochemical properties, mesoporous silica nanoparticles (MONs) have been widely utilized in biomedical fields for drug delivery, gene therapy, disease diagnosis and imaging. With the extensive applications and large-scale production of MONs, the potential effects of MONs on human health are gaining increased attention. To better understand the cellular and molecular mechanisms underlying the effects of MONs on the mouse liver, we profiled the transcriptome of 63,783 single cells from mouse livers following weekly intravenous administration of MONs for 2 weeks. The results showed that the proportion of endothelial cells and CD4+ T cells was increased, whereas that of Kupffer cells was decreased, in a dose-dependent manner after MONs treatment in the mouse liver. We also observed that the proportion of inflammation-related Kupffer cell subtype and wound healing-related hepatocyte subtype were elevated, but the number of hepatocytes with detoxification characteristics was reduced after MONs treatment. The cell-cell communication network revealed that there was more crosstalk between cholangiocytes and Kupffer cells, liver capsular macrophages, hepatic stellate cells, and endothelial cells following MONs treatment. Furthermore, we identified key ligand-receptor pairs between crucial subtypes after MONs treatment that are known to promote liver fibrosis. Collectively, our study explored the effects of MONs on mouse liver at a single-cell level and provides comprehensive information on the potential hepatotoxicity of MONs.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiangpeng Wu
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Hong Hu
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Hua Cao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Nan Xu
- Division of Thyroid surgery, Department of General Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Kun Chen
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Bowen Wen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Huifang Wang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haitao Yuan
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lulin Xie
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Yuke Jiang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Cailing Liang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jimin Yuan
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zhijie Li
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Jigang Wang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
14
|
Guo Q, Wu J, Wang Q, Huang Y, Chen L, Gong J, Du M, Cheng G, Lu T, Zhao M, Zhao Y, Qiu C, Xia F, Zhang J, Chen J, Qiu F, Wang J. Single-cell transcriptome analysis uncovers underlying mechanisms of acute liver injury induced by tripterygium glycosides tablet in mice. J Pharm Anal 2023; 13:908-925. [PMID: 37719192 PMCID: PMC10499593 DOI: 10.1016/j.jpha.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 09/19/2023] Open
Abstract
Tripterygium glycosides tablet (TGT), the classical commercial drug of Tripterygium wilfordii Hook. F. has been effectively used in the treatment of rheumatoid arthritis, nephrotic syndrome, leprosy, Behcet's syndrome, leprosy reaction and autoimmune hepatitis. However, due to its narrow and limited treatment window, TGT-induced organ toxicity (among which liver injury accounts for about 40% of clinical reports) has gained increasing attention. The present study aimed to clarify the cellular and molecular events underlying TGT-induced acute liver injury using single-cell RNA sequencing (scRNA-seq) technology. The TGT-induced acute liver injury mouse model was constructed through short-term TGT exposure and further verified by hematoxylin-eosin staining and liver function-related serum indicators, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin. Using the mouse model, we identified 15 specific subtypes of cells in the liver tissue, including endothelial cells, hepatocytes, cholangiocytes, and hepatic stellate cells. Further analysis indicated that TGT caused a significant inflammatory response in liver endothelial cells at different spatial locations; led to marked inflammatory response, apoptosis and fatty acid metabolism dysfunction in hepatocytes; activated hepatic stellate cells; brought about the activation, inflammation, and phagocytosis of liver capsular macrophages cells; resulted in immune dysfunction of liver lymphocytes; disturbed the intercellular crosstalk in liver microenvironment by regulating various signaling pathways. Thus, these findings elaborate the mechanism underlying TGT-induced acute liver injury, provide new insights into the safe and rational applications in the clinic, and complement the identification of new biomarkers and therapeutic targets for liver protection.
Collapse
Affiliation(s)
- Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiangpeng Wu
- School of Chinese Materia Medica, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuwen Huang
- College of Food Science and Engineering, Institute of Ocean, Bohai University, Jinzhou, Liaoning, 121013, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Maobo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Minghong Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuan Zhao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Qiu
- School of Chinese Materia Medica, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- School of Chinese Materia Medica, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, China
| |
Collapse
|
15
|
Li J, Huang Q, Lv M, Ma W, Sun J, Zhong X, Hu R, Ma M, Han Z, Zhang W, Feng W, Sun X, Zhou X. Role of liensinine in sensitivity of activated macrophages to ferroptosis and in acute liver injury. Cell Death Discov 2023; 9:189. [PMID: 37353487 DOI: 10.1038/s41420-023-01481-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
Acute liver injury (ALI) is an acute inflammatory liver disease with a high mortality rate. Alternatively, activated macrophages (AAMs) have been linked to the inflammation and recovery of ALI. However, the mechanism underlying AAM death in ALI has not been studied sufficiently. We used liensinine (Lie) as a drug of choice after screening a library of small-molecule monomers with 1488 compounds from traditional Chinese remedies. In ALI, we evaluated the potential therapeutic effects and underlying mechanisms of action of the drug in ALI and found that it effectively inhibited RSL3-induced ferroptosis in AAM. Lie significantly reduced lipid peroxidation in RSL3-generated AAM. It also improved the survival rate of LPS/D-GalN-treated mice, reduced serum transaminase activity, suppressed inflammatory factor production, and may have lowered AAM ferroptosis in ALI. Lie also inhibited ferritinophagy and blocked Fe2+ synthesis. Following combined treatment with RSL3 and Lie, super-resolution microscopy revealed a close correlation between ferritin and LC3-positive vesicles in the AAM. The co-localization of ferritin and LC3 with LAMP1 was significantly reduced. These findings suggest that Lie may ameliorate ALI by inhibiting ferritinophagy and enhancing AMM resistance to ferroptosis by inhibiting autophagosome-lysosome fusion. Therefore, Lie may be used as a potential therapeutic agent for patients with ALI.
Collapse
Affiliation(s)
- Jing Li
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China
| | - Qi Huang
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Minling Lv
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Wenfeng Ma
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Jialing Sun
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xin Zhong
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Rui Hu
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - MengQing Ma
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Zhiyi Han
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Wei Zhang
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Wenxing Feng
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xinfeng Sun
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xiaozhou Zhou
- Department of Liver Disease, The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
16
|
Gregucci F, Spada S, Barcellos-Hoff MH, Bhardwaj N, Chan Wah Hak C, Fiorentino A, Guha C, Guzman ML, Harrington K, Herrera FG, Honeychurch J, Hong T, Iturri L, Jaffee E, Karam SD, Knott SR, Koumenis C, Lyden D, Marciscano AE, Melcher A, Mondini M, Mondino A, Morris ZS, Pitroda S, Quezada SA, Santambrogio L, Shiao S, Stagg J, Telarovic I, Timmerman R, Vozenin MC, Weichselbaum R, Welsh J, Wilkins A, Xu C, Zappasodi R, Zou W, Bobard A, Demaria S, Galluzzi L, Deutsch E, Formenti SC. Updates on radiotherapy-immunotherapy combinations: Proceedings of 6 th annual ImmunoRad conference. Oncoimmunology 2023; 12:2222560. [PMID: 37363104 PMCID: PMC10286673 DOI: 10.1080/2162402x.2023.2222560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.
Collapse
Affiliation(s)
- Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA
| | - Nina Bhardwaj
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica L. Guzman
- Division of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Harrington
- The Institute of Cancer Research/The Royal Marsden NHS Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK
| | - Fernanda G. Herrera
- Centre Hospitalier Universitaire Vaudois, University of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland
| | - Jamie Honeychurch
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Theodore Hong
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Elisabeth Jaffee
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Simon R.V. Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Michele Mondini
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Sergio A. Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Timmerman
- Departments of Radiation Oncology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA
| | - James Welsh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, Sutton, UK
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Weiping Zou
- Departments of Surgery and Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Université of Paris-Saclay, Saclay, France
- INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Fan JH, Luo N, Liu GF, Xu XF, Li SQ, Lv XP. Mechanism of annexin A1/N-formylpeptide receptor regulation of macrophage function to inhibit hepatic stellate cell activation through Wnt/β-catenin pathway. World J Gastroenterol 2023; 29:3422-3439. [PMID: 37389234 PMCID: PMC10303517 DOI: 10.3748/wjg.v29.i22.3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a common pathological process of chronic liver diseases with various causes, which can progress to cirrhosis.
AIM To evaluate the effect and mechanism of action annexin (Anx)A1 in liver fibrosis and how this could be targeted therapeutically.
METHODS CCl4 (20%) and active N-terminal peptide of AnxA1 (Ac2-26) and N-formylpeptide receptor antagonist N-Boc-Phe-Leu-Phe-Leu-Phe (Boc2) were injected intraperitoneally to induce liver fibrosis in eight wild-type mice/Anxa1 knockout mice, and to detect expression of inflammatory factors, collagen deposition, and the role of the Wnt/β-catenin pathway in hepatic fibrosis.
RESULTS Compared with the control group, AnxA1, transforming growth factor (TGF)-β1, interleukin (IL)-1β and IL-6 expression in the liver of mice with hepatic fibrosis induced by CCl4 was significantly increased, which promoted collagen deposition and expression of α-smooth muscle actin (α-SMA), collagen type I and connective tissue growth factor (CTGF), and increased progressively with time. CCl4 induced an increase in TGF-β1, IL-1β and IL-6 in liver tissue of AnxA1 knockout mice, and the degree of liver inflammation and fibrosis and expression of α-SMA, collagen I and CTGF were significantly increased compared with in wild-type mice. After treatment with Ac2-26, expression of liver inflammatory factors, degree of collagen deposition and expression of a-SMA, collagen I and CTGF were decreased compared with before treatment. Boc2 inhibited the anti-inflammatory and antifibrotic effects of Ac2-26. AnxA1 downregulated expression of the Wnt/β-catenin pathway in CCl4-induced hepatic fibrosis. In vitro, lipopolysaccharide (LPS) induced hepatocyte and hepatic stellate cell (HSC) expression of AnxA1. Ac2-26 inhibited LPS-induced RAW264.7 cell activation and HSC proliferation, decreased expression of α-SMA, collagen I and CTGF in HSCs, and inhibited expression of the Wnt/β-catenin pathway after HSC activation. These therapeutic effects were inhibited by Boc2.
CONCLUSION AnxA1 inhibited liver fibrosis in mice, and its mechanism may be related to inhibition of HSC Wnt/β-catenin pathway activation by targeting formylpeptide receptors to regulate macrophage function.
Collapse
Affiliation(s)
- Jun-Hua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Na Luo
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Geng-Feng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Fang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shi-Quan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Ping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
19
|
Malaria-derived exosomes exacerbate liver injury during blood stage of Plasmodium berghei infection. Acta Trop 2023; 239:106815. [PMID: 36608749 DOI: 10.1016/j.actatropica.2023.106815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Liver injury is a common clinical feature of Plasmodium spp. infection and contributes to multi-organ failure of severe malaria. Malaria-derived exosomes (MD-Exos) have recently engaged as key mediators in parasite-host interactions, modulating the subsequent pathogenic process. However, the role of MD-Exos in malaria-related liver injury and the underlying mechanisms remain unclear. Herein, exosomes from C57BL/6 mice infected with or without P. berghei ANKA serum (namely inf-Exos or un-Exos) were isolated and characterized by transmission electron microscopy, western blotting, and nanoparticle tracking analysis. The miRNAs profiling between inf-Exos and un-Exos were generated using RNA-seq and qPCR. The functions of inf-Exos on liver injury were investigated after two types of exosomes injected into mice intravenously (i.v.), by examining histopathological and apoptotic changes, macrophage polarization, and pro-inflammatory response. The infected red blood cells-stimulated mouse Raw264.7 macrophage cells targeted by inf-Exos or un-Exos were cultured for further study and verification the potential mechanisms. We found that both inf-Exos and un-Exos displayed a typical cup-shaped structure with a diameter of 60-200 nm, and had a positive expression of exosomal markers (e.g., CD9, CD63, and CD81). Compared with infected control mice, the treatment of inf-Exos but not un-Exos dramatically enhanced peripheral blood parasitemia and ECM incidence, exacerbated liver histopathological damage, elevated numbers of liver apoptotic cells, CD68+and CD86+ macrophages. The CD68+-TREM-1+ macrophages in liver tissues and the mRNA levels of pro-inflammatory cytokines (e.g., iNOS, TNF-α, IL-1β, and IL-6) were increased by inf-Exos treatment in vivo. Meanwhile, the treatment of inf-Exos resulted in a substantial increase of the mRNA levels of CD86, iNOS, TNF-α, IL-1β, and IL-6, but led to a remarkable decrease of Bcl-6 and SOCS-1 in Raw264.7 cells stimulated with iRBC in vitro. Notably, compared to un-Exos, five types of miRNAs (including miR-10a-5p, miR-10b-5p, miR-155-5p, miR-205-5p, and miR-21a-5p), that were previously reported to target Bcl-6 or SOCS-1, present higher abundance on inf-Exos, as demonstrated by RNA-seq and qPCR. Collectively, our data suggest that inf-Exos exacerbate malaria-induced liver pathology via triggering excessive pro-inflammatory response and promoting macrophage M1 polarization. Our findings will provide new insights into the roles of inf-Exos in malaria parasite-host interaction and pathogenesis of liver injury.
Collapse
|
20
|
Liu B, Cheng L, Gao H, Zhang J, Dong Y, Gao W, Yuan S, Gong T, Huang W. The biology of VSIG4: Implications for the treatment of immune-mediated inflammatory diseases and cancer. Cancer Lett 2023; 553:215996. [PMID: 36343787 DOI: 10.1016/j.canlet.2022.215996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
V-set and immunoglobulin domain containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, plays a pivotal role in clearing C3-opsonized pathogens and their byproducts from the circulation. VSIG4 maintains immune homeostasis by suppressing the activation of complement pathways or T cells and inducing regulatory T-cell differentiation, thereby inhibiting the development of immune-mediated inflammatory diseases but enhancing cancer progression. Consequently, VSIG4 exhibits a potential therapeutic effect for immune-mediated inflammatory diseases, but also is regarded as a novel target of immune checkpoint inhibition in cancer therapy. Recently, soluble VSIG4, the extracellular domain of VSIG4, shed from the surface of macrophages, has been found to be a biomarker to define macrophage activation-related diseases. This review mainly summarizes recent new findings of VSIG4 in macrophage phagocytosis and immune homeostasis, and discusses its potential diagnostic and therapeutic usage in infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Bei Liu
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China
| | - Li Cheng
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Honghao Gao
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jiale Zhang
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Yanxin Dong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, 02021, USA
| | - Shunzong Yuan
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China; PLA 307 Clinical College of Anhui Medical University, Beijing, 100071, China.
| | - Taiqian Gong
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, Fuchenglu 6#, Haidian District, Beijing, 100048, China.
| | - Wenrong Huang
- Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
21
|
Zhang N, Yao H, Zhang Z, Li Z, Chen X, Zhao Y, Ju R, He J, Pan H, Liu X, Lv Y. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14:1131588. [PMID: 36875101 PMCID: PMC9978172 DOI: 10.3389/fimmu.2023.1131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhixuan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi He
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heli Pan
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|