1
|
Coyote-Maestas W, Nedrud D, He Y, Schmidt D. Determinants of trafficking, conduction, and disease within a K + channel revealed through multiparametric deep mutational scanning. eLife 2022; 11:e76903. [PMID: 35639599 PMCID: PMC9273215 DOI: 10.7554/elife.76903] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
A long-standing goal in protein science and clinical genetics is to develop quantitative models of sequence, structure, and function relationships to understand how mutations cause disease. Deep mutational scanning (DMS) is a promising strategy to map how amino acids contribute to protein structure and function and to advance clinical variant interpretation. Here, we introduce 7429 single-residue missense mutations into the inward rectifier K+ channel Kir2.1 and determine how this affects folding, assembly, and trafficking, as well as regulation by allosteric ligands and ion conduction. Our data provide high-resolution information on a cotranslationally folded biogenic unit, trafficking and quality control signals, and segregated roles of different structural elements in fold stability and function. We show that Kir2.1 surface trafficking mutants are underrepresented in variant effect databases, which has implications for clinical practice. By comparing fitness scores with expert-reviewed variant effects, we can predict the pathogenicity of 'variants of unknown significance' and disease mechanisms of known pathogenic mutations. Our study in Kir2.1 provides a blueprint for how multiparametric DMS can help us understand the mechanistic basis of genetic disorders and the structure-function relationships of proteins.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David Nedrud
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Yungui He
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Daniel Schmidt
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
2
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
3
|
van Zessen R, Li Y, Marion-Poll L, Hulo N, Flakowski J, Lüscher C. Dynamic dichotomy of accumbal population activity underlies cocaine sensitization. eLife 2021; 10:e66048. [PMID: 34608866 PMCID: PMC8523149 DOI: 10.7554/elife.66048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Locomotor sensitization (LS) is an early behavioral adaptation to addictive drugs, driven by the increase of dopamine in the Nucleus Accumbens (NAc). However, the effect on accumbal population activity remains elusive. Here, we used single-cell calcium imaging in mice to record the activity of dopamine-1-receptor (D1R) and dopamine-2-receptor (D2R) expressing spiny projection neurons (SPNs) during cocaine LS. Acute exposure to cocaine elevated D1R SPN activity and reduced D2R SPN activity, albeit with high variability between neurons. During LS, the number of D1R and D2R neurons responding in opposite directions increased. Moreover, preventing LS by inhibition of the ERK signaling pathway decreased the number of cocaine responsive D1R SPNs, but had little effect on D2R SPNs. These results indicate that accumbal population dichotomy is dynamic and contains a subgroup of D1R SPNs that eventually drives LS. Insights into the drug-related activity dynamics provides a foundation for understanding the circuit-level addiction pathogenesis.
Collapse
Affiliation(s)
- Ruud van Zessen
- Department of Basic Neurosciences, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Yue Li
- Department of Basic Neurosciences, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Lucile Marion-Poll
- Department of Basic Neurosciences, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva (IGE3), University of GenevaGenevaSwitzerland
| | - Jérôme Flakowski
- Department of Basic Neurosciences, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of GenevaGenevaSwitzerland
- Clinic of Neurology, Dept. of Clinical Neurosciences, Geneva University HospitalGenevaSwitzerland
| |
Collapse
|
4
|
Sharma S, Lesiak L, Aretz CD, Du Y, Kumar S, Gautam N, Alnouti Y, Dhuria NV, Chhonker YS, Weaver CD, Hopkins CR. Discovery, synthesis and biological characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1 H-pyrazol-5-yl)acetamide ethers as novel GIRK1/2 potassium channel activators. RSC Med Chem 2021; 12:1366-1373. [PMID: 34458739 PMCID: PMC8372201 DOI: 10.1039/d1md00129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lauren Lesiak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Christopher D Aretz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nikilesh V Dhuria
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
5
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
6
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
7
|
Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2020; 456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
Besides their primary function mediating the repolarization phase of action potentials, potassium channels exquisitely and ubiquitously regulate the resting membrane potential of neurons and therefore have a key role establishing their intrinsic excitability. This group of proteins is composed of a very diverse collection of voltage-dependent and -independent ion channels, whose specific distribution is finely tuned at the level of the synapse. Both at the presynaptic and postsynaptic membranes, different types of potassium channels are subjected to modulation by second messenger signaling cascades triggered by metabotropic receptors, which in this way serve as a link between neurotransmitter actions and changes in the neuron membrane excitability. On the one hand, by regulating the resting membrane potential of the postsynaptic membrane, potassium channels appear to be critical towards setting the threshold for the induction of long-term potentiation and depression. On the other hand, these channels maintain the presynaptic membrane potential under control, therefore influencing the probability of neurotransmitter release underlying different forms of short-term plasticity. In the present review, we examine in detail the role of metabotropic receptors translating their activation by different neurotransmitters into a final effect modulating several types of potassium channels. Furthermore, we evaluate the consequences that this interplay has on the induction and maintenance of different forms of synaptic plasticity.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain.
| | - J A Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
8
|
Xu Y, Cantwell L, Molosh AI, Plant LD, Gazgalis D, Fitz SD, Dustrude ET, Yang Y, Kawano T, Garai S, Noujaim SF, Shekhar A, Logothetis DE, Thakur GA. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. J Biol Chem 2020; 295:3614-3634. [PMID: 31953327 DOI: 10.1074/jbc.ra119.011527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
G-protein-gated inwardly-rectifying K+ (GIRK) channels are targets of Gi/o-protein-signaling systems that inhibit cell excitability. GIRK channels exist as homotetramers (GIRK2 and GIRK4) or heterotetramers with nonfunctional homomeric subunits (GIRK1 and GIRK3). Although they have been implicated in multiple conditions, the lack of selective GIRK drugs that discriminate among the different GIRK channel subtypes has hampered investigations into their precise physiological relevance and therapeutic potential. Here, we report on a highly-specific, potent, and efficacious activator of brain GIRK1/2 channels. Using a chemical screen and electrophysiological assays, we found that this activator, the bromothiophene-substituted small molecule GAT1508, is specific for brain-expressed GIRK1/2 channels rather than for cardiac GIRK1/4 channels. Computational models predicted a GAT1508-binding site validated by experimental mutagenesis experiments, providing insights into how urea-based compounds engage distant GIRK1 residues required for channel activation. Furthermore, we provide computational and experimental evidence that GAT1508 is an allosteric modulator of channel-phosphatidylinositol 4,5-bisphosphate interactions. Through brain-slice electrophysiology, we show that subthreshold GAT1508 concentrations directly stimulate GIRK currents in the basolateral amygdala (BLA) and potentiate baclofen-induced currents. Of note, GAT1508 effectively extinguished conditioned fear in rodents and lacked cardiac and behavioral side effects, suggesting its potential for use in pharmacotherapy for post-traumatic stress disorder. In summary, our findings indicate that the small molecule GAT1508 has high specificity for brain GIRK1/2 channel subunits, directly or allosterically activates GIRK1/2 channels in the BLA, and facilitates fear extinction in a rodent model.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Andrei I Molosh
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Stephanie D Fitz
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Erik T Dustrude
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yuchen Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Sami F Noujaim
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Anantha Shekhar
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115.
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115.
| |
Collapse
|
9
|
Sharma S, Kozek KA, Abney KK, Kumar S, Gautam N, Alnouti Y, David Weaver C, Hopkins CR. Discovery, synthesis and characterization of a series of (1-alkyl-3-methyl-1H-pyrazol-5-yl)-2-(5-aryl-2H-tetrazol-2-yl)acetamides as novel GIRK1/2 potassium channel activators. Bioorg Med Chem Lett 2019; 29:791-796. [PMID: 30718161 PMCID: PMC6398930 DOI: 10.1016/j.bmcl.2019.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Krystian A Kozek
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristopher K Abney
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA.
| |
Collapse
|
10
|
GIRK Channel Activity in Dopamine Neurons of the Ventral Tegmental Area Bidirectionally Regulates Behavioral Sensitivity to Cocaine. J Neurosci 2019; 39:3600-3610. [PMID: 30837265 DOI: 10.1523/jneurosci.3101-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABABR and D2R activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Furthermore, GIRK-dependent signaling in VTA DA neurons can be weakened by exposure to psychostimulants and strengthened by phasic DA neuron firing. The objective of this study was to determine how the strength of GIRK channel activity in VTA DA neurons influences sensitivity to cocaine. We used a Cre-dependent viral strategy to overexpress the individual GIRK channel subunits in VTA DA neurons of male and female adult mice, leading to enhancement (GIRK2) or suppression (GIRK3) of GIRK channel activity. Overexpression of GIRK3 decreased somatodendritic GABABR- and D2R-dependent signaling and increased cocaine-induced locomotor activity, whereas overexpression of GIRK2 increased GABABR-dependent signaling and decreased cocaine-induced locomotion. Neither manipulation impacted anxiety- or depression-related behavior, despite the link between such behaviors and DA signaling. Together, these data show that behavioral sensitivity to cocaine in mice is inversely proportional to the strength of GIRK channel activity in VTA DA neurons and suggest that direct activators of the unique VTA DA neuron GIRK channel subtype (GIRK2/GIRK3 heteromer) could represent a promising therapeutic target for treatment of addiction.SIGNIFICANCE STATEMENT Inhibitory G protein signaling in dopamine (DA) neurons, including that mediated by G protein-gated inwardly rectifying K+ (GIRK) channels, has been implicated in behavioral sensitivity to cocaine. Here, we used a viral approach to bidirectionally manipulate GIRK channel activity in DA neurons of the VTA. We found that decreasing GIRK channel activity in VTA DA neurons increased behavioral sensitivity to cocaine, whereas increasing GIRK channel activity decreased behavioral sensitivity to cocaine. These manipulations did not alter anxiety- or depression-related behaviors. These data highlight the unique GIRK channel subtype in VTA DA neurons as a possible therapeutic target for addiction.
Collapse
|
11
|
Huang Y, Zhang Y, Kong S, Zang K, Jiang S, Wan L, Chen L, Wang G, Jiang M, Wang X, Hu J, Wang Y. GIRK1-mediated inwardly rectifying potassium current suppresses the epileptiform burst activities and the potential antiepileptic effect of ML297. Biomed Pharmacother 2018; 101:362-370. [PMID: 29499411 DOI: 10.1016/j.biopha.2018.02.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are important inhibitory regulators of neuronal excitability in central nervous system, and the impairment of GIRK channel function has been reported to be associated with the susceptibility of epilepsy. However, the dynamics of GIRK channels in the pathogenesis of epilepsy are still unclear. In this study, our results showed that cyclothiazide, a potent convulsant, dose dependently increased the epileptiform bursting activities and suppressed the baclofen induced GIRK currents. In addition, TPQ, a selective GIRK antagonist, significantly decreased the total inwardly rectifying potassium (Kir) current, and increased the neuronal epileptiform activities. In contrast, ML297, a potent and selective GIRK channel agonist, reversed the cyclothiazide induced decrease of GIRK currents and the increase of neuronal excitability in cultured hippocampal neurons. Further investigation revealed that GIRK1, but not GIRK2, played a key role in suppressing epileptic activities. Finally, in pilocarpine mice seizure model, we demonstrated that ML297 significantly suppressed the seizure behavior. In summary, our current results indicate that GIRK channels, especially GIRK1-containing channels, are involved in epileptic activities and ML297 has a potential antiepileptic effect.
Collapse
Affiliation(s)
- Yian Huang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Yuwen Zhang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shuzhen Kong
- College of Environment and Resource, Chongqing Technology and Business University, Chongqing 400067, China
| | - Kai Zang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shize Jiang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wan
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lulan Chen
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Min Jiang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Yun Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|