1
|
Matthees ESF, Filor JC, Jaiswal N, Reichel M, Youssef N, D'Uonnolo G, Szpakowska M, Drube J, König GM, Kostenis E, Chevigné A, Godbole A, Hoffmann C. GRK specificity and Gβγ dependency determines the potential of a GPCR for arrestin-biased agonism. Commun Biol 2024; 7:802. [PMID: 38956302 PMCID: PMC11220067 DOI: 10.1038/s42003-024-06490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent β-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein βγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of β-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gβγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated β-arrestin2 recruitment to activated receptors. This was independent of the source of free Gβγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, β-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gβγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of β-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gβγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.
Collapse
Affiliation(s)
- Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Jenny C Filor
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Natasha Jaiswal
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mona Reichel
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Noureldine Youssef
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Gabriele M König
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Amod Godbole
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany.
| |
Collapse
|
2
|
Ganguly A, Quon T, Jenkins L, Joseph B, Al-Awar R, Chevigne A, Tobin AB, Uehling DE, Hoffmann C, Drube J, Milligan G. G protein-receptor kinases 5/6 are the key regulators of G protein-coupled receptor 35-arrestin interactions. J Biol Chem 2023; 299:105218. [PMID: 37660910 PMCID: PMC10520886 DOI: 10.1016/j.jbc.2023.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Human G protein-coupled receptor 35 is regulated by agonist-mediated phosphorylation of a set of five phospho-acceptor amino acids within its C-terminal tail. Alteration of both Ser300 and Ser303 to alanine in the GPR35a isoform greatly reduces the ability of receptor agonists to promote interactions with arrestin adapter proteins. Here, we have integrated the use of cell lines genome edited to lack expression of combinations of G protein receptor kinases (GRKs), selective small molecule inhibitors of subsets of these kinases, and antisera able to specifically identify either human GPR35a or mouse GPR35 only when Ser300 and Ser303 (orce; the equivalent residues in mouse GPR35) have become phosphorylated to demonstrate that GRK5 and GRK6 cause agonist-dependent phosphorylation of these residues. Extensions of these studies demonstrated the importance of the GRK5/6-mediated phosphorylation of these amino acids for agonist-induced internalization of the receptor. Homology and predictive modeling of the interaction of human GPR35 with GRKs showed that the N terminus of GRK5 is likely to dock in the same methionine pocket on the intracellular face of GPR35 as the C terminus of the α5 helix of Gα13 and, that while this is also the case for GRK6, GRK2 and GRK3 are unable to do so effectively. These studies provide unique and wide-ranging insights into modes of regulation of GPR35, a receptor that is currently attracting considerable interest as a novel therapeutic target in diseases including ulcerative colitis.
Collapse
Affiliation(s)
- Amlan Ganguly
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - Tezz Quon
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Andy Chevigne
- Division of Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andrew B Tobin
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK
| | - David E Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, Advanced Research Centre (ARC), College of Medical, Veterinary and Life Sciences University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Zhang J, Zhang X, Shi X, Liu Y, Cheng D, Tian Q, Lin N, Wei W, Wu H. CXCL9, 10, 11/CXCR3 Axis Contributes to the Progress of Primary Sjogren's Syndrome by Activating GRK2 to Promote T Lymphocyte Migration. Inflammation 2023; 46:1047-1060. [PMID: 36801996 DOI: 10.1007/s10753-023-01791-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
Primary Sjogren's syndrome (pSS) is a systemic autoimmune disease that causes dysfunction of secretory glands and the specific pathogenesis is still unknown. The CXCL9, 10, 11/CXCR3 axis and G protein-coupled receptor kinase 2 (GRK2) involved in many inflammation and immunity processes. We used NOD/Ltj mice, a spontaneous SS animal model, to elucidate the pathological mechanism of CXCL9, 10, 11/CXCR3 axis promoting T lymphocyte migration by activating GRK2 in pSS. We found that CD4 + GRK2, Th17 + CXCR3 was apparently increased and Treg + CXCR3 was significantly decreased in the spleen of 4W NOD mice without sicca symptom compared to ICR mice (control group). The protein levels of IFN-γ, CXCL9, 10, 11 increased in submandibular gland (SG) tissue accompanied by obvious lymphocytic infiltration and Th17 cells overwhelmingly infiltrated relative to Treg cells at the sicca symptom occurs, and we found that the proportion of Th17 cells was increased, whereas that of Treg cells was decreased in spleen. In vitro, we used IFN-γ to stimulate human salivary gland epithelial cells (HSGECs) co-cultured with Jurkat cells, and the results showed that CXCL9, 10, 11 was increased by IFN-γ activating JAK2/STAT1 signal pathway and Jurkat cell migration increased with the raised of cell membrane GRK2 expression. HSGECs with tofacitinib or Jurkat cells with GRK2 siRNA can reduce the migration of Jurkat cells. The results indicate that CXCL9, 10, 11 significantly increased in SG tissue through IFN-γ stimulating HSGECs, and the CXCL9, 10, 11/CXCR3 axis contributes to the progress of pSS by activating GRK2 to promote T lymphocyte migration.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China
| | - Xiao Zhang
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China
| | - Xingjie Shi
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, 12 Zhongyou Road, Chuzhou, 239001, China
| | - Yuqi Liu
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China
| | - Danqian Cheng
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China
| | - Qianwen Tian
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, 12 Zhongyou Road, Chuzhou, 239001, China.
| | - Wei Wei
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China.
| | - Huaxun Wu
- Institute of Clinical PharmacologyKey Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineShushan District, Anhui Medical University, 81# Meishan Road, 230032Anhui Province, Hefei City, China. .,Anhui Provincial Institute of Translation Medicine, Hefei, 230032, China.
| |
Collapse
|
4
|
Dosquet H, Neirinckx V, Meyrath M, Wantz M, Haan S, Niclou SP, Szpakowska M, Chevigné A. Nanoluciferase-based complementation assays to monitor activation, modulation and signaling of receptor tyrosine kinases (RTKs). Methods Enzymol 2023; 682:1-16. [PMID: 36948698 DOI: 10.1016/bs.mie.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors activated by a wide diversity of growth factors, cytokines or hormones. They ensure multiple roles in cellular processes, including proliferation, differentiation and survival. They are also crucial drivers of development and progression of multiple cancer types, and represent important drug targets. Generally, ligand binding induces dimerization of RTK monomers, which induces auto-/transphosphorylation of tyrosine residues on the intracellular tails leading to the recruitment of adaptor proteins and modifying enzymes to promote and modulate various downstream signaling pathways. This chapter details easy, rapid, sensitive and versatile methods based on split Nanoluciferase complementation technology (NanoBiT) to monitor activation and modulation of two models of RTKs (EGFR and AXL) through the measurement of their dimerization and the recruitment of the adaptor protein Grb2 (SH2 domain-containing growth factor receptor-bound protein 2) and the receptor-modifying enzyme, the ubiquitin ligase Cbl.
Collapse
Affiliation(s)
- Hugo Dosquet
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Max Meyrath
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - May Wantz
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone P Niclou
- Department of Cancer Research, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immunopharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Meyrath M, Szpakowska M, Plesseria JM, Domingues O, Langlet J, Weber B, Krüger R, Ollert M, Chevigné A. Nanoluciferase-based cell fusion assay for rapid and high-throughput assessment of SARS-CoV-2-neutralizing antibodies in patient samples. Methods Enzymol 2022; 675:351-381. [PMID: 36220277 PMCID: PMC9459433 DOI: 10.1016/bs.mie.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus neutralization assays represent the gold standard for assessing antibody-mediated protection against SARS-CoV-2 in sera from recovered and/or vaccinated individuals. Neutralizing antibodies block the interaction of viral spike protein with human angiotensin-converting enzyme 2 (ACE2) receptor in vitro and prevent viral entry into host cells. Classical viral neutralization assays using full replication-competent viruses are restricted to specific biosafety level 3-certified laboratories, limiting their utility for routine and large-scale applications. We developed therefore a cell-fusion-based assay building on the interaction between viral spike and ACE2 receptor expressed on two different cell lines, substantially reducing biosafety risks associated with classical viral neutralization assays. This chapter describes this simple, sensitive, safe and cost-effective approach for rapid and high-throughput evaluation of SARS-CoV-2 neutralizing antibodies relying on high-affinity NanoLuc® luciferase complementation technology (HiBiT). When applied to a variety of standards and patient samples, this method yields highly reproducible results in 96-well, as well as in 384-well format. The use of novel NanoLuc® substrates with increased signal stability like Nano-Glo® Endurazine™ furthermore allows for high flexibility in assay set-up and full automatization of all reading processes. Lastly, the assay is suitable to evaluate the neutralizing capacity of sera against the existing spike variants, and potentially variants that will emerge in the future.
Collapse
Affiliation(s)
- Max Meyrath
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Laboratoires Réunis Luxembourg, Z.A.C. Laangwiss, Junglinster, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Plesseria
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jérémie Langlet
- Business Development Office, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Bernard Weber
- Laboratoires Réunis Luxembourg, Z.A.C. Laangwiss, Junglinster, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine (TTM), Luxembourg Institute of Health (LIH), Strassen, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval, Luxembourg; Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|