1
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O'Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. Proc Natl Acad Sci U S A 2024; 121:e2317864121. [PMID: 39495910 DOI: 10.1073/pnas.2317864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 11/06/2024] Open
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA-modifying enzyme that methylates wobble uridines in a subset of tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit reduced protein synthesis in the nervous system, including a specific decrease in selenoprotein levels. Either loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 null animals also exhibit associative memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA wobble uridine modification in redox homeostasis in the developing nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Carlson H Ogata
- Department of Biology, Brown University, Providence, RI 02912
| | - Caley A Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY 14627
| | - Kate M O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Sciences, Brown University, Providence, RI 02912
| |
Collapse
|
2
|
Tomecki R, Drazkowska K, Madaj R, Mamot A, Dunin-Horkawicz S, Sikorski PJ. Expanding the Available RNA Labeling Toolbox With CutA Nucleotidyltransferase for Efficient Transcript Labeling with Purine and Pyrimidine Nucleotide Analogs. Chembiochem 2024; 25:e202400202. [PMID: 38818670 DOI: 10.1002/cbic.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates. Here, we report the use of another NTase, CutA from the fungus Thielavia terrestris. Using this enzyme, we were able to incorporate into the 3' end of RNA not only purine analogs, but also pyrimidine analogs. We engaged strain-promoted azide-alkyl cycloaddition (SPAAC) to obtain fluorescently labeled or biotinylated transcripts from RNAs extended with azide analogs by CutA. Importantly, modified transcripts retained their biological properties. Furthermore, fluorescently labeled mRNAs were suitable for visualization in cultured mammalian cells. Finally, we demonstrate that either affinity studies or molecular dynamic (MD) simulations allow for rapid screening of NTase substrates, what opens up new avenues in the search for the optimal substrates for this class of enzymes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Rafal Madaj
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Mamot
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Pawel J Sikorski
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
3
|
Bessler L, Sirleaf J, Kampf CJ, Frankowska K, Leszczyńska G, Opatz T, Helm M. Esterification of Cyclic N 6-Threonylcarbamoyladenosine During RNA Sample Preparation. ChemMedChem 2024; 19:e202400115. [PMID: 38630955 DOI: 10.1002/cmdc.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
The continuous deciphering of crucial biological roles of RNA modifications and their involvement in various pathological conditions, together with their key roles in the use of RNA-based therapeutics, has reignited interest in studying the occurrence and identity of non-canonical ribonucleoside structures during the past years. Discovery and structural elucidation of new modified structures is usually achieved by combination of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) at the nucleoside level and stable isotope labeling experiments. This approach, however, has its pitfalls as demonstrated in the course of the present study: we structurally elucidated a new nucleoside structure that showed significant similarities to the family of (c)t6A modifications and was initially considered a genuine modification, but subsequently turned out to be an in vitro formed glycerol ester of t6A. This artifact is generated from ct6A during RNA hydrolysis upon addition of enzymes stored in glycerol containing buffers in a mildly alkaline milieu, and was moreover shown to undergo an intramolecular transesterification reaction. Our results demand for extra caution, not only in the discovery of new RNA modifications, but also with regard to the quantification of known modified structures, in particular chemically labile modifications, such as ct6A, that might suffer from exposure to putatively harmless reagents during the diverse steps of sample preparation.
Collapse
Affiliation(s)
- Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Jason Sirleaf
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher J Kampf
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Katarzyna Frankowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Łódź, Poland
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Łódź, Poland
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
4
|
Yuan Y, DeMott MS, Byrne SR, Dedon PC. PT-seq: A method for metagenomic analysis of phosphorothioate epigenetics in complex microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597111. [PMID: 38895297 PMCID: PMC11185561 DOI: 10.1101/2024.06.03.597111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of known epigenetic marks, naturally occurring phosphorothioate (PT) DNA modifications are unique in replacing a non-bridging phosphate oxygen with redox-active sulfur and function in prokaryotic restriction-modification and transcriptional regulation. Interest in PTs has grown due to the widespread distribution of the dnd, ssp, and brx genes among bacteria and archaea, as well as the discovery of PTs in 5-10% of gut microbes. Efforts to map PTs in complex microbiomes using existing next-generation and direct sequencing technologies have failed due to poor sensitivity. Here we developed PT-seq as a high-sensitivity method to quantitatively map PTs across genomes and metagenomically identify PT-containing microbes in complex genomic mixtures. Like other methods for mapping PTs in individual genomes, PT-seq exploits targeted DNA strand cleavage at PTs by iodine, followed by sequencing library construction using ligation or template switching approaches. However, PT-specific sequencing reads are dramatically increased by adding steps to heat denature the DNA, block pre-existing 3'-ends, fragment DNA after T-tailing, and enrich iodine-induced breaks using biotin-labeling and streptavidin beads capture. Iterative optimization of the sensitivity and specificity of PT-seq is demonstrated with individual bacteria and human fecal DNA.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Antimicrobial Resistance IRG, Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
5
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
6
|
Lü C, Xu H, Gao P, Huang A, Qu M, He W, Wu H, Chen J, Xu B, Guo L, Xie J. Abundance of Modifications in Mature miRNAs Revealed by LC-MS/MS Method Coupled with a Two-Step Hybridization Purification Strategy. Anal Chem 2024; 96:6870-6874. [PMID: 38648202 DOI: 10.1021/acs.analchem.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate detection of endogenous miRNA modifications, such as N6-methyladenosine (m6A), 7-methylguanosine (m7G), and 5-methylcytidine (m5C), poses significant challenges, resulting in considerable uncertainty regarding their presence in mature miRNAs. In this study, we demonstrate for the first time that liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) nucleoside analysis method is a practical tool for quantitatively analyzing human miRNA modifications. The newly designed liquid-solid two-step hybridization (LSTH) strategy enhances specificity for miRNA purification, while LC-MS/MS offers robust capability in recognizing modifications and sufficient sensitivity with detection limits ranging from attomoles to low femtomoles. Therefore, it provides a more reliable approach compared to existing techniques for revealing modifications in endogenous miRNAs. With this approach, we characterized m6A, m7G, and m5C modifications in miR-21-5p, Let-7a/e-5p, and miR-10a-5p isolated from cultured cells and observed unexpectedly low abundance (<1% at each site) of these modifications.
Collapse
Affiliation(s)
- Chenchen Lü
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
- Beijing Institute of Microchemistry, Beijing 100091, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Pengxia Gao
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Aixue Huang
- Institute of Beijing Basic Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Minmin Qu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Weiwei He
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Haijiang Wu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
7
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
8
|
Yang C, Wu D, Lin H, Ma D, Fu W, Yao Y, Pan X, Wang S, Zhuang Z. Role of RNA Modifications, Especially m6A, in Aflatoxin Biosynthesis of Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:726-741. [PMID: 38112282 DOI: 10.1021/acs.jafc.3c05926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
RNA modifications play key roles in eukaryotes, but the functions in Aspergillus flavus are still unknown. Temperature has been reported previously to be a critical environmental factor that regulates the aflatoxin production of A. flavus, but much remains to be learned about the molecular networks. Here, we demonstrated that 12 kinds of RNA modifications in A. flavus were significantly changed under 29 °C compared to 37 °C incubation; among them, m6A was further verified by a colorimetric method. Then, the transcriptome-wide m6A methylome and m6A-altered genes were comprehensively illuminated through methylated RNA immunoprecipitation sequencing and RNA sequencing, from which 22 differentially methylated and expressed transcripts under 29 °C were screened out. It is especially notable that AFCA_009549, an aflatoxin biosynthetic pathway gene (aflQ), and the m6A methylation of its 332nd adenine in the mRNA significantly affect aflatoxin biosynthesis in A. flavus both on media and crop kernels. The content of sterigmatocystin in both ΔaflQ and aflQA332C strains was significantly higher than that in the WT strain. Together, these findings reveal that RNA modifications are associated with secondary metabolite biosynthesis of A. flavus.
Collapse
Affiliation(s)
- Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Ammann G, Berg M, Dalwigk JF, Kaiser SM. Pitfalls in RNA Modification Quantification Using Nucleoside Mass Spectrometry. Acc Chem Res 2023; 56:3121-3131. [PMID: 37944919 PMCID: PMC10666278 DOI: 10.1021/acs.accounts.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
In recent years, there has been a high interest in researching RNA modifications, as they are involved in many cellular processes and in human diseases. A substantial set of enzymes within the cell, called RNA writers, place RNA modifications selectively and site-specifically. Another set of enzymes, called readers, recognize these modifications which guide the fate of the modified RNA. Although RNA is a transient molecule and RNA modification could be removed by RNA degradation, a subclass of enzymes, called RNA erasers, remove RNA modifications selectively and site-specifically to alter the characteristics of the RNA. The detection of RNA modifications can be done by various methods including second and next generation sequencing but also mass spectrometry. An approach capable of both qualitative and quantitative RNA modification analysis is liquid chromatography coupled to mass spectrometry of enzymatic hydrolysates of RNA into nucleosides. However, for successful detection and quantification, various factors must be considered to avoid biased identification and inaccurate quantification. In this Account, we identify three classes of errors that may distort the analysis. These classes comprise (I) errors related to chemical instabilities, (II) errors revolving around enzymatic hydrolysis to nucleosides, and (III) errors arising from issues with chromatographic separation and/or subsequent mass spectrometric analysis.A prominent example for class 1 is Dimroth rearrangement of m1A to m6A, but class 1 also comprises hydrolytic reactions and reactions with buffer components. Here, we also present the conversion of m3C to m3U under mild alkaline conditions and propose a practical solution to overcome these instabilities. Class 2 errors-such as contaminations in hydrolysis reagents or nuclease specificities-have led to erroneous discoveries of nucleosides in the past and possess the potential for misquantification of nucleosides. Impurities in the samples may also lead to class 3 errors: For instance, issues with chromatographic separation may arise from residual organic solvents, and salt adducts may hamper mass spectrometric quantification. This Account aims to highlight various errors connected to mass spectrometry analysis of nucleosides and presents solutions for how to overcome or circumnavigate those issues. Therefore, the authors anticipate that many scientists, but especially those who plan on doing nucleoside mass spectrometry, will benefit from the collection of data presented in this Account as a raised awareness, toward the variety of potential pitfalls, may further enhance the quality of data.
Collapse
Affiliation(s)
- Gregor Ammann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Felix Dalwigk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie M. Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Hogan CA, Gratz SJ, Dumouchel JL, Thakur RS, Delgado A, Lentini JM, Madhwani KR, Fu D, O'Connor‐Giles KM. Expanded tRNA methyltransferase family member TRMT9B regulates synaptic growth and function. EMBO Rep 2023; 24:e56808. [PMID: 37642556 PMCID: PMC10561368 DOI: 10.15252/embr.202356808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.
Collapse
Affiliation(s)
- Caley A Hogan
- Genetics Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Scott J Gratz
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | | | - Rajan S Thakur
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Ambar Delgado
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Jenna M Lentini
- Department of Biology, Center for RNA BiologyUniversity of RochesterRochesterNYUSA
| | | | - Dragony Fu
- Department of Biology, Center for RNA BiologyUniversity of RochesterRochesterNYUSA
| | - Kate M O'Connor‐Giles
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
- Carney Institute for Brain ScienceProvidenceRIUSA
| |
Collapse
|
12
|
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol 2023; 16:64. [PMID: 37349851 PMCID: PMC10286502 DOI: 10.1186/s13045-023-01466-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Libiad M, Douki T, Fontecave M, Atta M. Identification of 2-Methylthio-methylenethio-N 6 -(cis-4-hydroxyisopentenyl)adenosine (msms 2 io 6 A 37 ) as a Novel Modification at Adenosine 37 of tRNAs from Salmonella typhimurium. Chembiochem 2023; 24:e202300019. [PMID: 36640047 DOI: 10.1002/cbic.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Post-transcriptional modifications of tRNA nucleotide are important determinants in folding, structure and function. We have successfully identified and characterized a new modified base named 2-methylthio-methylenethio-N6 -(cis-4-hydroxyisopentenyl)adenosine, which is present at position 37 in some tRNAs. We also showed that this new modified adenosine is derived from the known 2-methylthio-methylenethio-N6 -(isopentenyl)adenosine nucleoside by a catalytic cycle of the tRNA-diiron monooxygenase, MiaE, present in Salmonella typhimurium.
Collapse
Affiliation(s)
- Marouane Libiad
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11, place Marcellin-Berthelot, Paris, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11, place Marcellin-Berthelot, Paris, France
| | - Mohamed Atta
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, UMR 5249, 38000, Grenoble, France.,Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11, place Marcellin-Berthelot, Paris, France
| |
Collapse
|
14
|
Abstract
The field of epitranscriptomics has expanded dramatically in recent years, both in the number of identified RNA modifications and the number of researchers studying them. As knowledge of post-transcriptional modifications continues to expand, numerous new methods have been developed to detect these modifications. Additionally, modifications are being extended to therapeutic settings, such as with recent mRNA vaccines. With this increase in knowledge and use, the community is recognizing the necessity for user-friendly databases to (i) store information from both high- and low-throughput studies and (ii) provide prediction software on how RNA modifications contribute to RNA function and disease. This mini-review highlights select RNA modification databases and their key attributes with the aim of providing a resource to researchers in the field of epitranscriptomics.
Collapse
Affiliation(s)
- Jillian Ramos
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends Mol Med 2022; 28:964-978. [PMID: 36241532 PMCID: PMC10071289 DOI: 10.1016/j.molmed.2022.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022]
Abstract
Many cancers hijack translation to increase the synthesis of tumor-driving proteins, the messenger mRNAs of which have specific codon usage patterns. Termed 'codon-biased translation' and originally identified in stress response regulation, this mechanism is supported by diverse studies demonstrating how the 50 RNA modifications of the epitranscriptome, specific tRNAs, and codon-biased mRNAs are used by oncogenic programs to promote proliferation and chemoresistance. The epitranscriptome writers METTL1-WDR4, Elongator complex protein (ELP)1-6, CTU1-2, and ALKBH8-TRM112 illustrate the principal mechanism of codon-biased translation, with gene amplifications, increased RNA modifications, and enhanced tRNA stability promoting cancer proliferation. Furthermore, systems-level analyses of 34 tRNA writers and 493 tRNA genes highlight the theme of tRNA epitranscriptome dysregulation in many cancers and identify candidate tRNA writers, tRNA modifications, and tRNA molecules as drivers of pathological codon-biased translation.
Collapse
|
16
|
Jora M, Corcoran D, Parungao GG, Lobue PA, Oliveira LFL, Stan G, Addepalli B, Limbach PA. Higher-Energy Collisional Dissociation Mass Spectral Networks for the Rapid, Semi-automated Characterization of Known and Unknown Ribonucleoside Modifications. Anal Chem 2022; 94:13958-13967. [PMID: 36174068 DOI: 10.1021/acs.analchem.2c03172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Higher-energy collisional dissociation (HCD) of modified ribonucleosides generates characteristic and highly reproducible nucleoside-specific tandem mass spectra (MS/MS). Here, we demonstrate the capability of HCD spectra in combination with spectral matching for the semi-automated characterization of ribonucleosides. This process involved the generation of an HCD spectral library and the establishment of a mass spectral network for rapid detection with high sensitivity and specificity in a retention time-independent fashion. Systematic spectral matching analysis of the MS/MS spectra of tRNA hydrolysates from different organisms has helped us to uncover evidence for the existence of novel ribonucleoside modifications such as s2Cm and OHyW-14. Such an untargeted label-free approach has the potential to be integrated with other methods, including those that use isotope labeling, to simplify the characterization of unknown modified ribonucleosides. These findings suggest the compilation of a universal spectral network, for the characterization of known and unknown ribonucleosides, could accelerate discoveries in the epitranscriptome.
Collapse
Affiliation(s)
- Manasses Jora
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Daniel Corcoran
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Gwenn G Parungao
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Peter A Lobue
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Luiz F L Oliveira
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Balasubrahmanyam Addepalli
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
17
|
Pollo-Oliveira L, Davis NK, Hossain I, Ho P, Yuan Y, Salguero García P, Pereira C, Byrne SR, Leng J, Sze M, Blaby-Haas CE, Sekowska A, Montoya A, Begley T, Danchin A, Aalberts DP, Angerhofer A, Hunt J, Conesa A, Dedon PC, de Crécy-Lagard V. The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12. Metallomics 2022; 14:mfac065. [PMID: 36066904 PMCID: PMC9508795 DOI: 10.1093/mtomcs/mfac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Intekhab Hossain
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Pedro Salguero García
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia 46022, Spain
| | - Cécile Pereira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melody Sze
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Crysten E Blaby-Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY 12222, USA
| | - Antoine Danchin
- Kodikos Labs, 23 rue Baldassini, Lyon 69007, France
- School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, Pokfulam, SAR Hong Kong
| | - Daniel P Aalberts
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | | | - John Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10024, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Janssen KA, Xie Y, Kramer MC, Gregory BD, Garcia BA. Data-Independent Acquisition for the Detection of Mononucleoside RNA Modifications by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:885-893. [PMID: 35357823 PMCID: PMC9425428 DOI: 10.1021/jasms.2c00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
RNA is dynamically modified in cells by a plethora of chemical moieties to modulate molecular functions and processes. Over 140 modifications have been identified across species and RNA types, with the highest density and diversity of modifications found in tRNA (tRNA). The methods used to identify and quantify these modifications have developed over recent years and continue to advance, primarily in the fields of next-generation sequencing (NGS) and mass spectrometry (MS). Most current NGS methods are limited to antibody-recognized or chemically derivatized modifications and have limitations in identifying multiple modifications simultaneously. Mass spectrometry can overcome both of these issues, accurately identifying a large number of modifications in a single run. Here, we present advances in MS data acquisition for the purpose of RNA modification identification and quantitation. Using this approach, we identified multiple tRNA wobble position modifications in Arabidopsis thaliana that are upregulated in salt-stressed growth conditions and may stabilize translation of salt stress induced proteins. This work presents improvements in methods for studying RNA modifications and introduces a possible regulatory role of wobble position modifications in A. thaliana translation.
Collapse
Affiliation(s)
- Kevin A. Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Corresponding Author: Correspondence to: Benjamin A. Garcia;
| |
Collapse
|
19
|
D’Esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes (Basel) 2022; 13:540. [PMID: 35328093 PMCID: PMC8949676 DOI: 10.3390/genes13030540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.
Collapse
Affiliation(s)
- Rebecca J. D’Esposito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
| | - Christopher A. Myers
- Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Alan A. Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
20
|
Evke S, Lin Q, Melendez JA, Begley TJ. Epitranscriptomic Reprogramming Is Required to Prevent Stress and Damage from Acetaminophen. Genes (Basel) 2022; 13:genes13030421. [PMID: 35327975 PMCID: PMC8955276 DOI: 10.3390/genes13030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Epitranscriptomic marks, in the form of enzyme catalyzed RNA modifications, play important gene regulatory roles in response to environmental and physiological conditions. However, little is known with respect to how acute toxic doses of pharmaceuticals influence the epitranscriptome. Here we define how acetaminophen (APAP) induces epitranscriptomic reprogramming and how the writer Alkylation Repair Homolog 8 (Alkbh8) plays a key gene regulatory role in the response. Alkbh8 modifies tRNA selenocysteine (tRNASec) to translationally regulate the production of glutathione peroxidases (Gpx’s) and other selenoproteins, with Gpx enzymes known to play protective roles during APAP toxicity. We demonstrate that APAP increases toxicity and markers of damage, and decreases selenoprotein levels in Alkbh8 deficient mouse livers, when compared to wildtype. APAP also promotes large scale reprogramming of many RNA marks comprising the liver tRNA epitranscriptome including: 5-methoxycarbonylmethyluridine (mcm5U), isopentenyladenosine (i6A), pseudouridine (Ψ), and 1-methyladenosine (m1A) modifications linked to tRNASec and many other tRNA’s. Alkbh8 deficiency also leads to wide-spread epitranscriptomic dysregulation in response to APAP, demonstrating that a single writer defect can promote downstream changes to a large spectrum of RNA modifications. Our study highlights the importance of RNA modifications and translational responses to APAP, identifies writers as key modulators of stress responses in vivo and supports the idea that the epitranscriptome may play important roles in responses to pharmaceuticals.
Collapse
Affiliation(s)
- Sara Evke
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Qishan Lin
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan Andres Melendez
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Thomas John Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
- Correspondence:
| |
Collapse
|
21
|
Espadas G, Morales-Sanfrutos J, Medina R, Lucas MC, Novoa EM, Sabidó E. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry. J Chromatogr A 2022; 1665:462803. [PMID: 35042139 DOI: 10.1016/j.chroma.2022.462803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 01/10/2023]
Abstract
Over 170 post-transcriptional RNA modifications have been described and are common in all kingdoms of life. These modifications range from methylation to complex chemical structures, with methylation being the most abundant. RNA modifications play a key role in RNA folding and function and their dysregulation in humans has been linked to several diseases such as cancer, metabolic diseases or neurological disorder. Nowadays, liquid chromatography-tandem mass spectrometry is considered the gold standard method for the identification and quantification of these modifications due to its sensitivity and accuracy. However, the analysis of modified ribonucleosides by mass spectrometry is complex due to the presence of positional isomers. In this scenario, optimal separation of these compounds by highly sensitive liquid chromatography combined with the generation of high-information spectra is critical to unequivocally identify them, especially in high-complex mixtures. Here we present an analytical method that comprises a new type of mixed-mode nano-flow liquid chromatography column combined with high- and low-collision energy data-independent mass spectrometric acquisition for the identification and quantitation of modified ribonucleosides. The method produces content-rich spectra and combines targeted and screening capabilities thus enabling the identification of a variety of modified nucleosides in biological matrices by single-shot liquid chromatographic analysis coupled to mass spectrometry.
Collapse
Affiliation(s)
- Guadalupe Espadas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Julia Morales-Sanfrutos
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
| | - Morghan C Lucas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eva Maria Novoa
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
22
|
Kaiser S, Byrne SR, Ammann G, Asadi Atoi P, Borland K, Brecheisen R, DeMott MS, Gehrke T, Hagelskamp F, Heiss M, Yoluç Y, Liu L, Zhang Q, Dedon PC, Cao B, Kellner S. Strategien zur Vermeidung von Artefakten in der massenspektrometrischen Epitranskriptomanalytik. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Steffen Kaiser
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
- Institut für Pharmazeutische Chemie Goethe-Universität Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Deutschland
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Gregor Ammann
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Paria Asadi Atoi
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Kayla Borland
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | | | - Michael S. DeMott
- Department of Biological Engineering and Center for Environmental Health Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Tim Gehrke
- Ella Biotech GmbH 82152 München Deutschland
| | - Felix Hagelskamp
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Matthias Heiss
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Yasemin Yoluç
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
| | - Lili Liu
- College of Life Sciences Qufu Normal University Qufu Shandong 273165 China
| | - Qinghua Zhang
- College of Life Sciences Qufu Normal University Qufu Shandong 273165 China
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Sciences Massachusetts Institute of Technology Cambridge MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group Singapore-Massachusetts Institute of Technology Alliance for Research and Technology 138602 Singapore Singapur
| | - Bo Cao
- College of Life Sciences Qufu Normal University Qufu Shandong 273165 China
| | - Stefanie Kellner
- Ludwig-Maximilians Universität München Butenandtstr. 5–13 81137 München Deutschland
- Institut für Pharmazeutische Chemie Goethe-Universität Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Deutschland
| |
Collapse
|
23
|
Kaiser S, Byrne SR, Ammann G, Asadi Atoi P, Borland K, Brecheisen R, DeMott MS, Gehrke T, Hagelskamp F, Heiss M, Yoluç Y, Liu L, Zhang Q, Dedon PC, Cao B, Kellner S. Strategies to Avoid Artifacts in Mass Spectrometry-Based Epitranscriptome Analyses. Angew Chem Int Ed Engl 2021; 60:23885-23893. [PMID: 34339593 PMCID: PMC8597057 DOI: 10.1002/anie.202106215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 11/05/2022]
Abstract
In this report, we perform structure validation of recently reported RNA phosphorothioate (PT) modifications, a new set of epitranscriptome marks found in bacteria and eukaryotes including humans. By comparing synthetic PT-containing diribonucleotides with native species in RNA hydrolysates by high-resolution mass spectrometry (MS), metabolic stable isotope labeling, and PT-specific iodine-desulfurization, we disprove the existence of PTs in RNA from E. coli, S. cerevisiae, human cell lines, and mouse brain. Furthermore, we discuss how an MS artifact led to the initial misidentification of 2'-O-methylated diribonucleotides as RNA phosphorothioates. To aid structure validation of new nucleic acid modifications, we present a detailed guideline for MS analysis of RNA hydrolysates, emphasizing how the chosen RNA hydrolysis protocol can be a decisive factor in discovering and quantifying RNA modifications in biological samples.
Collapse
Affiliation(s)
- Steffen Kaiser
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health SciencesMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Gregor Ammann
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Paria Asadi Atoi
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Kayla Borland
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | | | - Michael S. DeMott
- Department of Biological Engineering and Center for Environmental Health SciencesMassachusetts Institute of TechnologyCambridgeMA02139USA
| | | | - Felix Hagelskamp
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Matthias Heiss
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Yasemin Yoluç
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
| | - Lili Liu
- College of Life SciencesQufu Normal UniversityQufuShandong273165China
| | - Qinghua Zhang
- College of Life SciencesQufu Normal UniversityQufuShandong273165China
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health SciencesMassachusetts Institute of TechnologyCambridgeMA02139USA
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore-Massachusetts Institute of Technology Alliance for Research and Technology138602SingaporeSingapore
| | - Bo Cao
- College of Life SciencesQufu Normal UniversityQufuShandong273165China
| | - Stefanie Kellner
- Ludwig-Maximilians Universität MünchenButenandtstr. 5–1381137MünchenDeutschland
- Institute of Pharmaceutical ChemistryGoethe-University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
24
|
Thakur P, Abernathy S, Limbach PA, Addepalli B. Locating chemical modifications in RNA sequences through ribonucleases and LC-MS based analysis. Methods Enzymol 2021; 658:1-24. [PMID: 34517943 PMCID: PMC9680040 DOI: 10.1016/bs.mie.2021.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Knowledge of the structural information is essential for understanding the functional details of modified RNA. Cellular non-coding RNA such as rRNA, tRNA and even viral RNAs contain a number of post-transcriptional modifications with varied degree of diversity and density. In this chapter, we discuss the use of a combination of biochemical and analytical tools such as ribonucleases and liquid chromatography coupled with mass spectrometry approaches for characterization of modified RNA. We present the protocols and alternate strategies for obtaining confident modified sequence information to facilitate the understanding of function.
Collapse
Affiliation(s)
- Priti Thakur
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
25
|
Yoluç Y, Ammann G, Barraud P, Jora M, Limbach PA, Motorin Y, Marchand V, Tisné C, Borland K, Kellner S. Instrumental analysis of RNA modifications. Crit Rev Biochem Mol Biol 2021; 56:178-204. [PMID: 33618598 DOI: 10.1080/10409238.2021.1887807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organisms from all domains of life invest a substantial amount of energy for the introduction of RNA modifications into nearly all transcripts studied to date. Instrumental analysis of RNA can focus on the modified residues and reveal the function of these epitranscriptomic marks. Here, we will review recent advances and breakthroughs achieved by NMR spectroscopy, sequencing, and mass spectrometry of the epitranscriptome.
Collapse
Affiliation(s)
- Yasemin Yoluç
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Gregor Ammann
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Pierre Barraud
- Expression génétique microbienne, UMR 8261, CNRS, Institut de biologie physico-chimique, IBPC, Université de Paris, Paris, France
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, Epitranscriptomics and RNA Sequencing Core facility, UM S2008, IBSLor, Nancy, France
| | - Carine Tisné
- Expression génétique microbienne, UMR 8261, CNRS, Institut de biologie physico-chimique, IBPC, Université de Paris, Paris, France
| | - Kayla Borland
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University, Munich, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| |
Collapse
|
26
|
Jora M, Borland K, Abernathy S, Zhao R, Kelley M, Kellner S, Addepalli B, Limbach PA. Chemical Amination/Imination of Carbonothiolated Nucleosides During RNA Hydrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Kayla Borland
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Melissa Kelley
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Stefanie Kellner
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| |
Collapse
|
27
|
Gregorova P, Sipari NH, Sarin LP. Broad-range RNA modification analysis of complex biological samples using rapid C18-UPLC-MS. RNA Biol 2020; 18:1382-1389. [PMID: 33356826 PMCID: PMC8494288 DOI: 10.1080/15476286.2020.1853385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Post-transcriptional RNA modifications play an important role in cellular metabolism with homoeostatic disturbances manifesting as a wide repertoire of phenotypes, reduced stress tolerance and translational perturbation, developmental defects, and diseases, such as type II diabetes, leukaemia, and carcinomas. Hence, there has been an intense effort to develop various methods for investigating RNA modifications and their roles in various organisms, including sequencing-based approaches and, more frequently, liquid chromatography–mass spectrometry (LC-MS)-based methods. Although LC-MS offers numerous advantages, such as being highly sensitive and quantitative over a broad detection range, some stationary phase chemistries struggle to resolve positional isomers. Furthermore, the demand for detailed analyses of complex biological samples often necessitates long separation times, hampering sample-to-sample turnover and making multisample analyses time consuming. To overcome this limitation, we have developed an ultra-performance LC-MS (UPLC-MS) method that uses an octadecyl carbon chain (C18)-bonded silica matrix for the efficient separation of 50 modified ribonucleosides, including positional isomers, in a single 9-min sample-to-sample run. To validate the performance and versatility of our method, we analysed tRNA modification patterns of representative microorganisms from each domain of life, namely Archaea (Methanosarcina acetivorans), Bacteria (Pseudomonas syringae), and Eukarya (Saccharomyces cerevisiae). Additionally, our method is flexible and readily applicable for detection and relative quantification using stable isotope labelling and targeted approaches like multiple reaction monitoring (MRM). In conclusion, this method represents a fast and robust tool for broad-range exploration and quantification of ribonucleosides, facilitating future homoeostasis studies of RNA modification in complex biological samples.
Collapse
Affiliation(s)
- Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina H Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki Finland
| | - L Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Galvanin A, Vogt LM, Grober A, Freund I, Ayadi L, Bourguignon-Igel V, Bessler L, Jacob D, Eigenbrod T, Marchand V, Dalpke A, Helm M, Motorin Y. Bacterial tRNA 2'-O-methylation is dynamically regulated under stress conditions and modulates innate immune response. Nucleic Acids Res 2020; 48:12833-12844. [PMID: 33275131 PMCID: PMC7736821 DOI: 10.1093/nar/gkaa1123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2'-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS show substantial, but not uniform, increase of the Gm18 level in selected tRNAs under mild bacteriostatic antibiotic stress, while other Nm modifications remain relatively constant. The absence of Gm18 modification in tRNAs leads to moderate alterations in E. coli mRNA transcriptome, but does not affect polysomal association of mRNAs. Interestingly, the subset of motility/chemiotaxis genes is significantly overexpressed in ΔTrmH mutant, this corroborates with increased swarming motility of the mutant strain. The stress-induced increase of tRNA Gm18 level, in turn, reduced immunostimulation properties of bacterial tRNAs, which is concordant with the previous observation that Gm18 is a suppressor of Toll-like receptor 7 (TLR7)-mediated interferon release. This documents an effect of stress induced modulation of tRNA modification that acts outside protein translation.
Collapse
Affiliation(s)
- Adeline Galvanin
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Antonia Grober
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69117 Heidelberg, Germany
| | - Lilia Ayadi
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Valerie Bourguignon-Igel
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Larissa Bessler
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Dominik Jacob
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Ruprecht-Karls University Heidelberg, 69117 Heidelberg, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| | - Alexander Dalpke
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, IMoPA (UMR7365), F54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, IBSLor (UMS2008/US40), Epitranscriptomics and RNA Sequencing Core Facility, F54000 Nancy, France
| |
Collapse
|
29
|
Jora M, Borland K, Abernathy S, Zhao R, Kelley M, Kellner S, Addepalli B, Limbach PA. Chemical Amination/Imination of Carbonothiolated Nucleosides During RNA Hydrolysis. Angew Chem Int Ed Engl 2020; 60:3961-3966. [DOI: 10.1002/anie.202010793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/17/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Kayla Borland
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Melissa Kelley
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Stefanie Kellner
- Department of Chemistry Ludwig Maximilians University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry Department of Chemistry University of Cincinnati PO Box 210172 Cincinnati OH 45221-0172 USA
| |
Collapse
|
30
|
Schäck MA, Jablonski KP, Gräf S, Klassen R, Schaffrath R, Kellner S, Hammann C. Eukaryotic life without tQCUG: the role of Elongator-dependent tRNA modifications in Dictyostelium discoideum. Nucleic Acids Res 2020; 48:7899-7913. [PMID: 32609816 PMCID: PMC7430636 DOI: 10.1093/nar/gkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.
Collapse
Affiliation(s)
- Manfred A Schäck
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| | - Kim Philipp Jablonski
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Stefanie Kellner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, DE 28759 Bremen, Germany
| |
Collapse
|
31
|
Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando OJ, Guccione E, Kellner SM, Schneider R. METTL6 is a tRNA m 3C methyltransferase that regulates pluripotency and tumor cell growth. SCIENCE ADVANCES 2020; 6:eaaz4551. [PMID: 32923617 PMCID: PMC7449687 DOI: 10.1126/sciadv.aaz4551] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.
Collapse
Affiliation(s)
- Valentina V. Ignatova
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Steffen Kaiser
- Chemical Faculty, Ludwig-Maximilians Universität München, Munich, Germany
| | - Jessica Sook Yuin Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xinyang Bing
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul Stolz
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians Universität München, Munich, Germany
| | - Ying Xim Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chee Leng Lee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florence Pik Hoon Gay
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Palma Rico Lastres
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Raffaele Gerlini
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
| | - Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Adrián Sanz-Moreno
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tanja Klein-Rodewald
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Emil Ibragimov
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Magdalena Valenta
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Susan Marschall
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefanie Leuchtenberger
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Sebastian Bultmann
- Department of Biology II, Human Biology and BioImaging, Ludwig-Maximilians Universität München, Munich, Germany
| | - Oliver J. Rando
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
32
|
Wu Y, Tang Y, Dong X, Zheng YY, Haruehanroengra P, Mao S, Lin Q, Sheng J. RNA Phosphorothioate Modification in Prokaryotes and Eukaryotes. ACS Chem Biol 2020; 15:1301-1305. [PMID: 32275390 DOI: 10.1021/acschembio.0c00163] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
RNA modifications play important roles in RNA structures and regulation of gene expression and translation. We report the first RNA modification on the phosphate, the RNA phosphorothioate (PS) modification, discovered in both prokaryotes and eukaryotes. The PS modification is also first reported on nucleic acids of eukaryotes. The GpsG modification exists in the Rp configuration and was quantified with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). By knocking out the DndA gene in E. coli, we show the Dnd clusters that regulate DNA PS modification may also play roles in RNA PS modification. We also show that the GpsG modification locates on rRNA in E. coli, L. lactis, and HeLa cells, and it is not detected in rRNA-depleted total RNAs from these cells.
Collapse
|
33
|
Lechner A, Wolff P, Leize-Wagner E, François YN. Characterization of Post-Transcriptional RNA Modifications by Sheathless Capillary Electrophoresis-High Resolution Mass Spectrometry. Anal Chem 2020; 92:7363-7370. [PMID: 32343557 DOI: 10.1021/acs.analchem.0c01345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade there has been a growing interest in RNA modification analysis. High performance liquid chromatography-tandem mass spectrometry coupling (HPLC-MS/MS) is classically used to characterize post-transcriptional modifications of ribonucleic acids (RNAs). Here we propose a novel and simple workflow based on capillary zone electrophoresis-tandem mass spectrometry (CE-MS/MS), in positive mode, to characterize RNA modifications at nucleoside and oligonucleotide levels. By first totally digesting the purified RNA, prior to CE-MS/MS analysis, we were able to identify the nucleoside modifications. Then, using a bottom-up approach, sequencing of the RNAs and mapping of the modifications were performed. Sequence coverages from 68% to 97% were obtained for four tRNAs. Furthermore, unambiguous identification and mapping of several modifications were achieved.
Collapse
Affiliation(s)
- Antony Lechner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg F-67081, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, UPR 9002-CNRS, Université de Strasbourg, F-67000 Strasbourg, France.,Plateforme Protéomique Strasbourg Esplanade, CNRS, FRC 1589, F-67000 Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg F-67081, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg F-67081, France
| |
Collapse
|
34
|
The rRNA m 6A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev 2020; 34:715-729. [PMID: 32217665 PMCID: PMC7197354 DOI: 10.1101/gad.333369.119] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.
Collapse
|
35
|
Wein S, Andrews B, Sachsenberg T, Santos-Rosa H, Kohlbacher O, Kouzarides T, Garcia BA, Weisser H. A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat Commun 2020; 11:926. [PMID: 32066737 PMCID: PMC7026122 DOI: 10.1038/s41467-020-14665-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The field of epitranscriptomics continues to reveal how post-transcriptional modification of RNA affects a wide variety of biological phenomena. A pivotal challenge in this area is the identification of modified RNA residues within their sequence contexts. Mass spectrometry (MS) offers a comprehensive solution by using analogous approaches to shotgun proteomics. However, software support for the analysis of RNA MS data is inadequate at present and does not allow high-throughput processing. Existing software solutions lack the raw performance and statistical grounding to efficiently handle the numerous modifications found on RNA. We present a free and open-source database search engine for RNA MS data, called NucleicAcidSearchEngine (NASE), that addresses these shortcomings. We demonstrate the capability of NASE to reliably identify a wide range of modified RNA sequences in four original datasets of varying complexity. In human tRNA, we characterize over 20 different modification types simultaneously and find many cases of incomplete modification.
Collapse
Affiliation(s)
- Samuel Wein
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Byron Andrews
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Timo Sachsenberg
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
| | | | - Oliver Kohlbacher
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | | | - Benjamin A Garcia
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hendrik Weisser
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
36
|
Zhang K, Lentini JM, Prevost CT, Hashem MO, Alkuraya FS, Fu D. An intellectual disability-associated missense variant in TRMT1 impairs tRNA modification and reconstitution of enzymatic activity. Hum Mutat 2020; 41:600-607. [PMID: 31898845 DOI: 10.1002/humu.23976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/22/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
The human TRMT1 gene encodes an RNA methyltransferase enzyme responsible for catalyzing dimethylguanosine (m2,2G) formation in transfer RNAs (tRNAs). Frameshift mutations in TRMT1 have been shown to cause autosomal-recessive intellectual disability (ID) in the human population but additional TRMT1 variants remain to be characterized. Here, we describe a homozygous TRMT1 missense variant in a patient displaying developmental delay, ID, and epilepsy. The missense variant changes an arginine residue to a cysteine (R323C) within the methyltransferase domain and is expected to perturb protein folding. Patient cells expressing TRMT1-R323C exhibit a deficiency in m2,2G modifications within tRNAs, indicating that the mutation causes loss of function. Notably, the TRMT1 R323C mutant retains tRNA binding but is unable to rescue m2,2G formation in TRMT1-deficient human cells. Our results identify a pathogenic point mutation in TRMT1 that perturbs tRNA modification activity and demonstrate that m2,2G modifications are disrupted in the cells of patients with TRMT1-associated ID disorders.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Christopher T Prevost
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| | - Mais O Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York
| |
Collapse
|
37
|
Reichle VF, Petrov DP, Weber V, Jung K, Kellner S. NAIL-MS reveals the repair of 2-methylthiocytidine by AlkB in E. coli. Nat Commun 2019; 10:5600. [PMID: 31811240 PMCID: PMC6898146 DOI: 10.1038/s41467-019-13565-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023] Open
Abstract
RNAs contain post-transcriptional modifications, which fulfill a variety of functions in translation, secondary structure stabilization and cellular stress survival. Here, 2-methylthiocytidine (ms2C) is identified in tRNA of E. coli and P. aeruginosa using NAIL-MS (nucleic acid isotope labeling coupled mass spectrometry) in combination with genetic screening experiments. ms2C is only found in 2-thiocytidine (s2C) containing tRNAs, namely tRNAArgCCG, tRNAArgICG, tRNAArgUCU and tRNASerGCU at low abundances. ms2C is not formed by commonly known tRNA methyltransferases. Instead, we observe its formation in vitro and in vivo during exposure to methylating agents. More than half of the s2C containing tRNA can be methylated to carry ms2C. With a pulse-chase NAIL-MS experiment, the repair mechanism by AlkB dependent sulfur demethylation is demonstrated in vivo. Overall, we describe ms2C as a bacterial tRNA modification and damage product. Its repair by AlkB and other pathways is demonstrated in vivo by our powerful NAIL-MS approach. Bacterial tRNA is modified by thiolation of nucleosides. Here the authors identify 2-methylthiocytidine in bacterial tRNA using nucleic acid isotope labeling coupled mass spectrometry. Exposure to methylating agents converts 2-thiocytidine to 2-methylthiocytidine, which is repaired by demethylase AlkB in vivo.
Collapse
Affiliation(s)
- Valentin F Reichle
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dimitar P Petrov
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Verena Weber
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Kirsten Jung
- Department of Biology, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
38
|
Nakayama H, Yamauchi Y, Nobe Y, Sato K, Takahashi N, Shalev-Benami M, Isobe T, Taoka M. Method for Direct Mass-Spectrometry-Based Identification of Monomethylated RNA Nucleoside Positional Isomers and Its Application to the Analysis of Leishmania rRNA. Anal Chem 2019; 91:15634-15643. [DOI: 10.1021/acs.analchem.9b03735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Biotechnology, Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
39
|
Nilsson EM, Alexander RW. Bacterial wobble modifications of NNA-decoding tRNAs. IUBMB Life 2019; 71:1158-1166. [PMID: 31283100 DOI: 10.1002/iub.2120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/18/2023]
Abstract
Nucleotides of transfer RNAs (tRNAs) are highly modified, particularly at the anticodon. Bacterial tRNAs that read A-ending codons are especially notable. The U34 nucleotide canonically present in these tRNAs is modified by a wide range of complex chemical constituents. An additional two A-ending codons are not read by U34-containing tRNAs but are accommodated by either inosine or lysidine at the wobble position (I34 or L34). The structural basis for many N34 modifications in both tRNA aminoacylation and ribosome decoding has been elucidated, and evolutionary conservation of modifying enzymes is also becoming clearer. Here we present a brief review of the structure, function, and conservation of wobble modifications in tRNAs that translate A-ending codons. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1158-1166, 2019.
Collapse
Affiliation(s)
- Emil M Nilsson
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| | - Rebecca W Alexander
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
40
|
Gkatza NA, Castro C, Harvey RF, Heiß M, Popis MC, Blanco S, Bornelöv S, Sajini AA, Gleeson JG, Griffin JL, West JA, Kellner S, Willis AE, Dietmann S, Frye M. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol 2019; 17:e3000297. [PMID: 31199786 PMCID: PMC6594628 DOI: 10.1371/journal.pbio.3000297] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/26/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023] Open
Abstract
Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.
Collapse
Affiliation(s)
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Robert F. Harvey
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Heiß
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martyna C. Popis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Blanco
- Cancer Cell Signaling and Metabolism Lab, Proteomics Unit CIC bioGUNE, Derio, Spain
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
| | - Susanne Bornelöv
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Abdulrahim A. Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Joseph G. Gleeson
- Department of Neurosciences, San Diego School of Medicine, University of California, La Jolla, California, United States of America
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James A. West
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne E. Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Dietmann
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- German Cancer Center (Deutsches Krebsforschungszntrum), Heidelberg, Germany
| |
Collapse
|
41
|
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 2019; 47:2143-2159. [PMID: 30698754 PMCID: PMC6412123 DOI: 10.1093/nar/gkz011] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these 'unidentified enzymes' cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
- Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Carl G Mangleburg
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
- Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
42
|
Reichle VF, Kaiser S, Heiss M, Hagelskamp F, Borland K, Kellner S. Surpassing limits of static RNA modification analysis with dynamic NAIL-MS. Methods 2019; 156:91-101. [DOI: 10.1016/j.ymeth.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023] Open
|
43
|
Borland K, Diesend J, Ito-Kureha T, Heissmeyer V, Hammann C, Buck AH, Michalakis S, Kellner S. Production and Application of Stable Isotope-Labeled Internal Standards for RNA Modification Analysis. Genes (Basel) 2019; 10:E26. [PMID: 30621251 PMCID: PMC6356711 DOI: 10.3390/genes10010026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/04/2022] Open
Abstract
Post-transcriptional RNA modifications have been found to be present in a wide variety of organisms and in different types of RNA. Nucleoside modifications are interesting due to their already known roles in translation fidelity, enzyme recognition, disease progression, and RNA stability. In addition, the abundance of modified nucleosides fluctuates based on growth phase, external stress, or possibly other factors not yet explored. With modifications ever changing, a method to determine absolute quantities for multiple nucleoside modifications is required. Here, we report metabolic isotope labeling to produce isotopically labeled internal standards in bacteria and yeast. These can be used for the quantification of 26 different modified nucleosides. We explain in detail how these internal standards are produced and show their mass spectrometric characterization. We apply our internal standards and quantify the modification content of transfer RNA (tRNA) from bacteria and various eukaryotes. We can show that the origin of the internal standard has no impact on the quantification result. Furthermore, we use our internal standard for the quantification of modified nucleosides in mouse tissue messenger RNA (mRNA), where we find different modification profiles in liver and brain tissue.
Collapse
Affiliation(s)
- Kayla Borland
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Jan Diesend
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany.
| | - Taku Ito-Kureha
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
- Helmholtz Zentrum München, Research Unit Molecular Immune Regulation, Marchioninistr. 25, 81377 Munich, Germany.
| | - Christian Hammann
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany.
| | - Amy H Buck
- Institute of Immunology & Infection and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Stefanie Kellner
- Department of Chemistry, Ludwig Maximilians University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
44
|
Chan C, Pham P, Dedon PC, Begley TJ. Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol 2018; 19:228. [PMID: 30587213 PMCID: PMC6307160 DOI: 10.1186/s13059-018-1611-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells adapt to stress by altering gene expression at multiple levels. Here, we propose a new mechanism regulating stress-dependent gene expression at the level of translation, with coordinated interplay between the tRNA epitranscriptome and biased codon usage in families of stress-response genes. In this model, auxiliary genetic information contained in synonymous codon usage enables regulation of codon-biased and functionally related transcripts by dynamic changes in the tRNA epitranscriptome. This model partly explains the association between synchronous stress-dependent epitranscriptomic marks and significant multi-codon usage skewing in families of translationally regulated transcripts. The model also predicts translational adaptation during viral infections.
Collapse
Affiliation(s)
- Cheryl Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Phuong Pham
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Thomas J Begley
- The RNA Institute, College of Arts and Science, University at Albany, SUNY, Albany, NY, 12222, USA.
| |
Collapse
|
45
|
Reichle VF, Weber V, Kellner S. NAIL-MS in E. coli Determines the Source and Fate of Methylation in tRNA. Chembiochem 2018; 19:2575-2583. [PMID: 30328661 PMCID: PMC6582434 DOI: 10.1002/cbic.201800525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/11/2022]
Abstract
In all domains of life, the nucleobases of tRNA can be methylated. These methylations are introduced either by enzymes or by the reaction of methylating agents with the nucleophilic centers of the nucleobases. Herein, we present a systematic approach to identify the methylation sites within RNA in vitro and in vivo. For discrimination between enzymatic tRNA methylation and tRNA methylation damage in bacteria, we used nucleic acid isotope labeling coupled mass spectrometry (NAIL‐MS). With NAIL‐MS, we clearly observed the formation of 7‐methylguanosine, 3‐methyluridine, and 6‐methyladenosine during exposure of bacteria to the alkylating agent methyl methanesulfonate (MMS) in vivo. These damage products were not reported to form in tRNA in vivo, as they were masked by the enzymatically formed modified nucleosides in previous studies. In addition, we found formation of the known damage products 1‐methyladenosine and 3‐methylcytidine in vivo. With a dynamic NAIL‐MS setup, we observed tRNA repair by demethylation of these two RNA modifications in vivo. Furthermore, we saw the potential repair of 6‐methyladenosine but not 7‐methylguanosine in bacterial tRNA.
Collapse
Affiliation(s)
- Valentin F Reichle
- Department of Chemistry, LMU Munich, Faculty of Chemistry and Pharmacy, Butenandtstrasse 5, 81377, Munich, Germany
| | - Verena Weber
- Department of Chemistry, LMU Munich, Faculty of Chemistry and Pharmacy, Butenandtstrasse 5, 81377, Munich, Germany
| | - Stefanie Kellner
- Department of Chemistry, LMU Munich, Faculty of Chemistry and Pharmacy, Butenandtstrasse 5, 81377, Munich, Germany
| |
Collapse
|
46
|
Detection of ribonucleoside modifications by liquid chromatography coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:280-290. [PMID: 30414470 DOI: 10.1016/j.bbagrm.2018.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/27/2018] [Indexed: 12/21/2022]
Abstract
A small set of ribonucleoside modifications have been found in different regions of mRNA including the open reading frame. Accurate detection of these specific modifications is critical to understanding their modulatory roles in facilitating mRNA maturation, translation and degradation. While transcriptome-wide next-generation sequencing (NGS) techniques could provide exhaustive information about the sites of one specific or class of modifications at a time, recent investigations strongly indicate cautionary interpretation due to the appearance of false positives. Therefore, it is suggested that NGS-based modification data can only be treated as predicted sites and their existence need to be validated by orthogonal methods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an analytical technique that can yield accurate and reproducible information about the qualitative and quantitative characteristics of ribonucleoside modifications. Here, we review the recent advancements in LC-MS/MS technology that could help in securing accurate, gold-standard quality information about the resident post-transcriptional modifications of mRNA.
Collapse
|
47
|
Lobue PA, Yu N, Jora M, Abernathy S, Limbach PA. Improved application of RNAModMapper - An RNA modification mapping software tool - For analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. Methods 2018; 156:128-138. [PMID: 30366097 DOI: 10.1016/j.ymeth.2018.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Research into post-transcriptional processing and modification of RNA continues to speed forward, as their ever-emerging role in the regulation of gene expression in biological systems continues to unravel. Liquid chromatography tandem mass spectrometry (LC-MS/MS) has proven for over two decades to be a powerful ally in the elucidation of RNA modification identity and location, but the technique has not proceeded without its own unique technical challenges. The throughput of LC-MS/MS modification mapping experiments continues to be impeded by tedious and time-consuming spectral interpretation, particularly during for the analysis of complex RNA samples. RNAModMapper was recently developed as a tool to improve the interpretation and annotation of LC-MS/MS data sets from samples containing post-transcriptionally modified RNAs. Here, we delve deeper into the methodology and practice of RNAModMapper to provide greater insight into its utility, and remaining hurdles, in current RNA modification mapping experiments.
Collapse
Affiliation(s)
- Peter A Lobue
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, United States
| | - Ningxi Yu
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, United States
| | - Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, United States
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, United States.
| |
Collapse
|
48
|
Ng CS, Sinha A, Aniweh Y, Nah Q, Babu IR, Gu C, Chionh YH, Dedon PC, Preiser PR. tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum. Mol Syst Biol 2018; 14:e8009. [PMID: 30287681 PMCID: PMC6171970 DOI: 10.15252/msb.20178009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
Among components of the translational machinery, ribonucleoside modifications on tRNAs are emerging as critical regulators of cell physiology and stress response. Here, we demonstrate highly coordinated behavior of the repertoire of tRNA modifications of Plasmodium falciparum throughout the intra-erythrocytic developmental cycle (IDC). We observed both a synchronized increase in 22 of 28 modifications from ring to trophozoite stage, consistent with tRNA maturation during translational up-regulation, and asynchronous changes in six modifications. Quantitative analysis of ~2,100 proteins across the IDC revealed that up- and down-regulated proteins in late but not early stages have a marked codon bias that directly correlates with parallel changes in tRNA modifications and enhanced translational efficiency. We thus propose a model in which tRNA modifications modulate the abundance of stage-specific proteins by enhancing translation efficiency of codon-biased transcripts for critical genes. These findings reveal novel epitranscriptomic and translational control mechanisms in the development and pathogenesis of Plasmodium parasites.
Collapse
Affiliation(s)
- Chee Sheng Ng
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yaw Aniweh
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Qianhui Nah
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
| | - Indrakanti Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Microbiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore City, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
49
|
Lyons SM, Fay MM, Ivanov P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett 2018; 592:2828-2844. [PMID: 30058219 DOI: 10.1002/1873-3468.13205] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
Transfer RNA (tRNA) have been harbingers of many paradigms in RNA biology. They are among the first recognized noncoding RNA (ncRNA) playing fundamental roles in RNA metabolism. Although mainly recognized for their role in decoding mRNA and delivering amino acids to the growing polypeptide chain, tRNA also serve as an abundant source of small ncRNA named tRNA fragments. The functional significance of these fragments is only beginning to be uncovered. Early on, tRNA were recognized as heavily post-transcriptionally modified, which aids in proper folding and modulates the tRNA:mRNA anticodon-codon interactions. Emerging data suggest that these modifications play critical roles in the generation and activity of tRNA fragments. Modifications can both protect tRNA from cleavage or promote their cleavage. Modifications to individual fragments may be required for their activity. Recent work has shown that some modifications are critical for stem cell development and that failure to deposit certain modifications has profound effects on disease. This review will discuss how tRNA modifications regulate the generation and activity of tRNA fragments.
Collapse
Affiliation(s)
- Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard and M.I.T., Cambridge, MA, USA
| |
Collapse
|
50
|
Jora M, Burns AP, Ross RL, Lobue PA, Zhao R, Palumbo CM, Beal PA, Addepalli B, Limbach PA. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1745-1756. [PMID: 29949056 PMCID: PMC6062210 DOI: 10.1007/s13361-018-1999-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/03/2023]
Abstract
The analytical identification of positional isomers (e.g., 3-, N4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2+) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Manasses Jora
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew P Burns
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Peter A Lobue
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|