1
|
Le Brun AP, Huang TY, Pullen S, Nelson ARJ, Spedding J, Holt SA. Spatz: the time-of-flight neutron reflectometer with vertical sample geometry at the OPAL research reactor. J Appl Crystallogr 2023; 56:18-25. [PMID: 36777140 PMCID: PMC9901927 DOI: 10.1107/s160057672201086x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
The Spatz neutron beam instrument is the second time-of-flight neutron reflectometer to be installed at the OPAL research reactor. The instrument was formerly the V18 BioRef reflectometer at the BER-II reactor in Berlin and was transferred to Australia in 2016. Subsequently the instrument was re-installed in the neutron guide hall of the OPAL reactor at the end position of the CG2B cold-neutron guide and recommissioned. The instrument performance has not been compromised by the move, with reflectivity achieved down to 10-7 and good counting statistics within a reasonable time frame using a wavelength range of 2-20 Å. Several different samples at the solid-air interface and the solid-liquid interface have been measured to demonstrate the instrument's capabilities.
Collapse
Affiliation(s)
- Anton P. Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Tzu-Yen Huang
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Stewart Pullen
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Andrew R. J. Nelson
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - James Spedding
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Stephen A. Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
2
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Lakey JH, Paracini N, Clifton LA. Exploiting neutron scattering contrast variation in biological membrane studies. BIOPHYSICS REVIEWS 2022; 3:021307. [PMID: 38505417 PMCID: PMC10903484 DOI: 10.1063/5.0091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 03/21/2024]
Abstract
Biological membranes composed of lipids and proteins are central for the function of all cells and individual components, such as proteins, that are readily studied by a range of structural approaches, including x-ray crystallography and cryo-electron microscopy. However, the study of complex molecular mixtures within the biological membrane structure and dynamics requires techniques that can study nanometer thick molecular bilayers in an aqueous environment at ambient temperature and pressure. Neutron methods, including scattering and spectroscopic approaches, are useful since they can measure structure and dynamics while also being able to penetrate sample holders and cuvettes. The structural approaches, such as small angle neutron scattering and neutron reflectometry, detect scattering caused by the difference in neutron contrast (scattering length) between different molecular components such as lipids or proteins. Usually, the bigger the contrast, the clearer the structural data, and this review uses examples from our research to illustrate how contrast can be increased to allow the structures of individual membrane components to be resolved. Most often this relies upon the use of deuterium in place of hydrogen, but we also discuss the use of magnetic contrast and other elements with useful scattering length values.
Collapse
Affiliation(s)
- Jeremy H. Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolò Paracini
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, 21432 Malmö, Sweden
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
4
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
5
|
Duff AP, Cagnes M, Darwish TA, Krause-Heuer AM, Moir M, Recsei C, Rekas A, Russell RA, Wilde KL, Yepuri NR. Deuteration for biological SANS: Case studies, success and challenges in chemistry and biology. Methods Enzymol 2022; 677:85-126. [DOI: 10.1016/bs.mie.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Studying the surfaces of bacteria using neutron scattering: finding new openings for antibiotics. Biochem Soc Trans 2021; 48:2139-2149. [PMID: 33005925 PMCID: PMC7609035 DOI: 10.1042/bst20200320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
The use of neutrons as a scattering probe to investigate biological membranes has steadily grown in the past three decades, shedding light on the structure and behaviour of this ubiquitous and fundamental biological barrier. Meanwhile, the rise of antibiotic resistance has catalysed a renewed interest in understanding the mechanisms underlying the dynamics of antibiotics interaction with the bacterial cell envelope. It is widely recognised that the key reason behind the remarkable success of Gram-negative pathogens in developing antibiotic resistance lies in the effectiveness of their outer membrane (OM) in defending the cell from antibacterial compounds. Critical to its function, the highly asymmetric lipid distribution between the inner and outer bilayer leaflets of the OM, adds an extra level of complexity to the study of this crucial defence barrier. Here we review the opportunities offered by neutron scattering techniques, in particular reflectometry, to provide structural information on the interactions of antimicrobials with in vitro models of the OM. The differential sensitivity of neutrons towards hydrogen and deuterium makes them a unique probe to study the structure and behaviour of asymmetric membranes. Molecular-level understanding of the interactions between antimicrobials and the Gram-negative OM provides valuable insights that can aid drug development and broaden our knowledge of this critically important biological barrier.
Collapse
|
7
|
Clifton LA, Hall SCL, Mahmoudi N, Knowles TJ, Heinrich F, Lakey JH. Structural Investigations of Protein-Lipid Complexes Using Neutron Scattering. Methods Mol Biol 2019; 2003:201-251. [PMID: 31218621 DOI: 10.1007/978-1-4939-9512-7_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neutron scattering has significant benefits for examining the structure of protein-lipid complexes. Cold (slow) neutrons are nondamaging and predominantly interact with the atomic nucleus, meaning that neutron beams can penetrate deeply into samples, which allows for flexibility in the design of samples studied. Most importantly, there is a strong difference in neutron scattering length (i.e., scattering power) between protium ([Formula: see text], 99.98% natural abundance) and deuterium ([Formula: see text] or D, 0.015%). Through the mixing of H2O and D2O in the samples and in some cases the deuterium labeling of the biomolecules, components within a complex can be hidden or enhanced in the scattering signal. This enables both the overall structure and the relative distribution of components within a complex to be resolved. Lipid-protein complexes are most commonly studied using neutron reflectometry (NR) and small angle neutron scattering (SANS). In this review the methodologies to produce and examine a variety of model biological membrane systems using SANS and NR are detailed. These systems include supported lipid bilayers derived from vesicle dispersions or Langmuir-Blodgett deposition, tethered bilayer systems, membrane protein-lipid complexes and polymer wrapped lipid nanodiscs. The three key stages of any SANS/NR study on model membrane systems-sample preparation, data collection, and analysis-are described together with some background on the techniques themselves.
Collapse
Affiliation(s)
- Luke A Clifton
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, Oxfordshire, UK.
| | - Stephen C L Hall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Najet Mahmoudi
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, Oxfordshire, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- National Institute of Standards and Technology Centre for Neutron Research, Gaithersburg, MD, USA
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
8
|
The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2016; 74:23-38. [PMID: 27734094 PMCID: PMC5209436 DOI: 10.1007/s00018-016-2386-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.
Collapse
|
9
|
Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proc Natl Acad Sci U S A 2016; 113:E5034-43. [PMID: 27493217 DOI: 10.1073/pnas.1602382113] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion.
Collapse
|