1
|
An N, Huang X, Yang Z, Zhang M, Ma M, Yu F, Jing L, Du B, Wang YF, Zhang X, Zhang P. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. NATURE PLANTS 2024; 10:2052-2061. [PMID: 39496849 DOI: 10.1038/s41477-024-01839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
Jasmonates (JAs) are a class of oxylipin phytohormones including jasmonic acid (JA) and derivatives that regulate plant growth, development and biotic and abiotic stress. A number of transporters have been identified to be responsible for the cellular and subcellular translocation of JAs. However, the mechanistic understanding of how these transporters specifically recognize and transport JAs is scarce. Here we determined the cryogenic electron microscopy structure of JA exporter AtABCG16 in inward-facing apo, JA-bound and occluded conformations, and outward-facing post translocation conformation. AtABCG16 structure forms a homodimer, and each monomer contains a nucleotide-binding domain, a transmembrane domain and an extracellular domain. Structural analyses together with biochemical and plant physiological experiments revealed the molecular mechanism by which AtABCG16 specifically recognizes and transports JA. Structural analyses also revealed that AtABCG16 features a unique bifurcated substrate translocation pathway, which is composed of two independent substrate entrances, two substrate-binding pockets and a shared apoplastic cavity. In addition, residue Phe608 from each monomer is disclosed to function as a gate along the translocation pathway controlling the accessing of substrate JA from the cytoplasm or apoplast. Based on the structural and biochemical analyses, a working model of AtABCG16-mediated JA transport is proposed, which diversifies the molecular mechanisms of ABC transporters.
Collapse
Affiliation(s)
- Ning An
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Fang Yu
- Shanghai Normal University, Shanghai, China
| | - Lianyan Jing
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Boya Du
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Ying W, Liao L, Wei H, Gao Y, Liu X, Sun L. Structural basis for abscisic acid efflux mediated by ABCG25 in Arabidopsis thaliana. NATURE PLANTS 2023; 9:1697-1708. [PMID: 37666962 PMCID: PMC10581904 DOI: 10.1038/s41477-023-01510-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
Abscisic acid (ABA) is a phytohormone essential to the regulation of numerous aspects of plant growth and development. The cellular level of ABA is critical to its signalling and is determined by its rate of biosynthesis, catabolism and the rates of ABA transport. ABCG25 in Arabidopsis thaliana has been identified to be an ABA exporter and play roles in regulating stomatal closure and seed germination. However, its ABA transport mechanism remains unknown. Here we report the structures of ABCG25 under different states using cryo-electron microscopy single particle analysis: the apo state and ABA-bound state of the wild-type ABCG25 and the ATP-bound state of the ATPase catalytic mutant. ABCG25 forms a homodimer. ABA binds to a cone-shaped, cytosolic-facing cavity formed in the middle of the transmembrane domains. Key residues in ABA binding are identified and verified by a cell-based ABA transport assay. ATP binding leads to closing of the nucleotide-binding domains of opposing monomers and conformational transitions of the transmembrane domains. Together, these results provide insights into the substrate recognition and transport mechanisms of ABCG25 in Arabidopsis, and facilitate our understanding of the ABA transport and signalling pathway in plants.
Collapse
Affiliation(s)
- Wei Ying
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianghuan Liao
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Wei
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Linfeng Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Meyer L, Crocoll C, Halkier BA, Mirza OA, Xu D. Identification of key amino acid residues in AtUMAMIT29 for transport of glucosinolates. FRONTIERS IN PLANT SCIENCE 2023; 14:1219783. [PMID: 37528977 PMCID: PMC10388549 DOI: 10.3389/fpls.2023.1219783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 08/03/2023]
Abstract
Glucosinolates are key defense compounds of plants in Brassicales order, and their accumulation in seeds is essential for the protection of the next generation. Recently, members of the Usually Multiple Amino acids Move In and Out Transporter (UMAMIT) family were shown to be essential for facilitating transport of seed-bound glucosinolates from site of synthesis within the reproductive organ to seeds. Here, we set out to identify amino acid residues responsible for glucosinolate transport activity of the main seed glucosinolate exporter UMAMIT29 in Arabidopsis thaliana. Based on a predicted model of UMAMIT29, we propose that the substrate transporting cavity consists of 51 residues, of which four are highly conserved residues across all the analyzed homologs of UMAMIT29. A comparison of the putative substrate binding site of homologs within the brassicaceous-specific, glucosinolate-transporting clade with the non-brassicaceous-specific, non-glucosinolate-transporting UMAMIT32 clade identified 11 differentially conserved sites. When each of the 11 residues of UMAMIT29 was individually mutated into the corresponding residue in UMAMIT32, five mutant variants (UMAMIT29#V27F, UMAMIT29#M86V, UMAMIT29#L109V, UMAMIT29#Q263S, and UMAMIT29#T267Y) reduced glucosinolate transport activity over 75% compared to wild-type UMAMIT29. This suggests that these residues are key for UMAMIT29-mediated glucosinolate transport activity and thus potential targets for blocking the transport of glucosinolates to the seeds.
Collapse
Affiliation(s)
- Lasse Meyer
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Osman Asghar Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Deyang Xu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Halkier BA, Xu D. The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism. Nat Prod Rep 2022; 39:1483-1491. [PMID: 35481602 DOI: 10.1039/d2np00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes. Thus advancing our knowledge about transporters is important as also evidenced by the increasing number of transporters that control key quality traits in agriculture. In this review, we will highlight recently identified transporters and new insights related to already known transporters of plant specialized metabolites. Focus will be on the transport mechanism revealed by the biochemical characterization and how that links to its function in planta.
Collapse
Affiliation(s)
- Barbara Ann Halkier
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | - Deyang Xu
- DynaMo Center of Excellence, Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, Egbaria A, Ripper D, Charrier L, Belew ZM, Wulff N, Damodaran S, Nour-Eldin HH, Aharoni A, Ragni L, Strader L, Sade N, Weinstain R, Geisler M, Shani E. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. SCIENCE ADVANCES 2021; 7:eabf6069. [PMID: 34669479 PMCID: PMC8528425 DOI: 10.1126/sciadv.abf6069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate–binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.
Collapse
Affiliation(s)
- Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Himabindu Vasuki Kilambi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Liu
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Hamutal Bar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Laurence Charrier
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Nikolai Wulff
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | | | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
- Corresponding author.
| |
Collapse
|
6
|
Shitan N, Yazaki K. Dynamism of vacuoles toward survival strategy in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183127. [DOI: 10.1016/j.bbamem.2019.183127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
|
7
|
Kuromori T, Sugimoto E, Shinozaki K. Brachypodium BdABCG25 is a homolog of Arabidopsis AtABCG25 involved in the transport of abscisic acid. FEBS Lett 2020; 595:954-959. [PMID: 32929763 DOI: 10.1002/1873-3468.13925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/11/2022]
Abstract
Abscisic acid (ABA), a stress hormone produced by plants to cope with various environmental stresses, has potential as a mobile molecule. Recently, several types of ABA transporters have been described. We previously found a membrane transporter, AtABCG25, that is involved in intercellular ABA transport in Arabidopsis thaliana. However, it is not yet known whether there are any homologs of AtABCG25 in different plant species. Here, we identified a homolog of AtABCG25 in Brachypodium distachyon, named BdABCG25, and characterized its function. We examined the ABA transport activity of BdABCG25 and the physiological properties of BdABCG25 expression in Arabidopsis. The results suggest that BdABCG25 is a putative functional homolog of AtABCG25. Regulating intercellular ABA transport may be a novel strategy for breeding stress-tolerant monocot crops.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Eriko Sugimoto
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
8
|
Park J, Lee Y, Martinoia E, Geisler M. Plant hormone transporters: what we know and what we would like to know. BMC Biol 2017; 15:93. [PMID: 29070024 PMCID: PMC5655956 DOI: 10.1186/s12915-017-0443-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hormone transporters are crucial for plant hormone action, which is underlined by severe developmental and physiological impacts caused by their loss-of-function mutations. Here, we summarize recent knowledge on the individual roles of plant hormone transporters in local and long-distance transport. Our inventory reveals that many hormones are transported by members of distinct transporter classes, with an apparent dominance of the ATP-binding cassette (ABC) family and of the Nitrate transport1/Peptide transporter family (NPF). The current need to explore further hormone transporter regulation, their functional interaction, transport directionalities, and substrate specificities is briefly reviewed.
Collapse
Affiliation(s)
- Jiyoung Park
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA.
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
9
|
Larsen B, Xu D, Halkier BA, Nour-Eldin HH. Advances in methods for identification and characterization of plant transporter function. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4045-4056. [PMID: 28472492 DOI: 10.1093/jxb/erx140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transport proteins are crucial for cellular function at all levels. Numerous importers and exporters facilitate transport of a diverse array of metabolites and ions intra- and intercellularly. Identification of transporter function is essential for understanding biological processes at both the cellular and organismal level. Assignment of a functional role to individual transporter proteins or to identify a transporter with a given substrate specificity has notoriously been challenging. Recently, major advances have been achieved in function-driven screens, phenotype-driven screens, and in silico-based approaches. In this review, we highlight examples that illustrate how new technology and tools have advanced identification and characterization of plant transporter functions.
Collapse
Affiliation(s)
- Bo Larsen
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|