1
|
Leone L, De Fenza M, Esposito A, Maglio O, Nastri F, Lombardi A. Peptides and metal ions: A successful marriage for developing artificial metalloproteins. J Pept Sci 2024; 30:e3606. [PMID: 38719781 DOI: 10.1002/psc.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 10/12/2024]
Abstract
The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Ennist NM, Wang S, Kennedy MA, Curti M, Sutherland GA, Vasilev C, Redler RL, Maffeis V, Shareef S, Sica AV, Hua AS, Deshmukh AP, Moyer AP, Hicks DR, Swartz AZ, Cacho RA, Novy N, Bera AK, Kang A, Sankaran B, Johnson MP, Phadkule A, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram JR, Stoddard BL, Romero E, Hunter CN, Baker D. De novo design of proteins housing excitonically coupled chlorophyll special pairs. Nat Chem Biol 2024; 20:906-915. [PMID: 38831036 PMCID: PMC11213709 DOI: 10.1038/s41589-024-01626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
- Nathan M Ennist
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Shunzhi Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | | | | | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arundhati P Deshmukh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Avi Z Swartz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ralph A Cacho
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nathan Novy
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Ennist N, Wang S, Kennedy M, Curti M, Sutherland G, Vasilev C, Redler R, Maffeis V, Shareef S, Sica A, Hua A, Deshmukh A, Moyer A, Hicks D, Swartz A, Cacho R, Novy N, Bera A, Kang A, Sankaran B, Johnson M, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram J, Stoddard B, Romero E, Hunter CN, Baker D. De novo design of energy transfer proteins housing excitonically coupled chlorophyll special pairs. RESEARCH SQUARE 2023:rs.3.rs-2736786. [PMID: 37131790 PMCID: PMC10153362 DOI: 10.21203/rs.3.rs-2736786/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Natural photosystems couple light harvesting to charge separation using a "special pair" of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independent of complexities of native photosynthetic proteins, and as a first step towards synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that precisely position chlorophyll dimers. X-ray crystallography shows that one designed protein binds two chlorophylls in a binding orientation matching native special pairs, while a second positions them in a previously unseen geometry. Spectroscopy reveals excitonic coupling, and fluorescence lifetime imaging demonstrates energy transfer. We designed special pair proteins to assemble into 24-chlorophyll octahedral nanocages; the design model and cryo-EM structure are nearly identical. The design accuracy and energy transfer function of these special pair proteins suggest that de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
| | | | | | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA)
| | | | | | | | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA)
| | | | - Ash Hua
- University of California, Los Angeles
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
5
|
Curti M, Maffeis V, Teixeira Alves Duarte LG, Shareef S, Hallado LX, Curutchet C, Romero E. Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling. Protein Sci 2023; 32:e4579. [PMID: 36715022 PMCID: PMC9951196 DOI: 10.1002/pro.4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
In photosynthesis, pigment-protein complexes achieve outstanding photoinduced charge separation efficiencies through a set of strategies in which excited states delocalization over multiple pigments ("excitons") and charge-transfer states play key roles. These concepts, and their implementation in bioinspired artificial systems, are attracting increasing attention due to the vast potential that could be tapped by realizing efficient photochemical reactions. In particular, de novo designed proteins provide a diverse structural toolbox that can be used to manipulate the geometric and electronic properties of bound chromophore molecules. However, achieving excitonic and charge-transfer states requires closely spaced chromophores, a non-trivial aspect since a strong binding with the protein matrix needs to be maintained. Here, we show how a general-purpose artificial protein can be optimized via molecular dynamics simulations to improve its binding capacity of a chlorophyll derivative, achieving complexes in which chromophores form two closely spaced and strongly interacting dimers. Based on spectroscopy results and computational modeling, we demonstrate each dimer is excitonically coupled, and propose they display signatures of charge-transfer state mixing. This work could open new avenues for the rational design of chromophore-protein complexes with advanced functionalities.
Collapse
Affiliation(s)
- Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRSUniversité Lyon 1LyonFrance
| | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Luisa Xiomara Hallado
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'AlimentacióUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB)BarcelonaSpain
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST)TarragonaSpain
| |
Collapse
|
6
|
Ennist NM, Stayrook SE, Dutton PL, Moser CC. Rational design of photosynthetic reaction center protein maquettes. Front Mol Biosci 2022; 9:997295. [PMID: 36213121 PMCID: PMC9532970 DOI: 10.3389/fmolb.2022.997295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.
Collapse
Affiliation(s)
- Nathan M. Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- *Correspondence: Nathan M. Ennist,
| | - Steven E. Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, United States
| | - P. Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher C. Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Ennist NM, Zhao Z, Stayrook SE, Discher BM, Dutton PL, Moser CC. De novo protein design of photochemical reaction centers. Nat Commun 2022; 13:4937. [PMID: 35999239 PMCID: PMC9399245 DOI: 10.1038/s41467-022-32710-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion. Here, we report the rational design, X-ray crystal structure, and electron transfer activity of a multi-cofactor protein that incorporates essential elements of photosynthetic reaction centers. This highly stable, modular artificial protein framework can be reconstituted in vitro with interchangeable redox centers for nanometer-scale photochemical charge separation. Transient absorption spectroscopy demonstrates Photosystem II-like tyrosine and metal cluster oxidation, and we measure charge separation lifetimes exceeding 100 ms, ideal for light-activated catalysis. This de novo-designed reaction center builds upon engineering guidelines established for charge separation in earlier synthetic photochemical triads and modified natural proteins, and it shows how synthetic biology may lead to a new generation of genetically encoded, light-powered catalysts for solar fuel production.
Collapse
Affiliation(s)
- Nathan M Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA. .,Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Zhenyu Zhao
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Steven E Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA.,Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, 06516, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6058, USA
| |
Collapse
|
8
|
Klein AS, Zeymer C. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis. Protein Eng Des Sel 2021; 34:6150309. [PMID: 33635315 DOI: 10.1093/protein/gzab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.
Collapse
Affiliation(s)
- Andreas S Klein
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Cathleen Zeymer
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
9
|
Koebke KJ, Kühl T, Lojou E, Demeler B, Schoepp-Cothenet B, Iranzo O, Pecoraro VL, Ivancich A. The pH-Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial α-Helical Metalloprotein. Angew Chem Int Ed Engl 2020; 60:3974-3978. [PMID: 33215801 DOI: 10.1002/anie.202012673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Indexed: 11/09/2022]
Abstract
De Novo metalloprotein design assesses the relationship between metal active site architecture and catalytic reactivity. Herein, we use an α-helical scaffold to control the iron coordination geometry when a heme cofactor is allowed to bind to either histidine or cysteine ligands, within a single artificial protein. Consequently, we uncovered a reversible pH-induced switch of the heme axial ligation within this simplified scaffold. Characterization of the specific heme coordination modes was done by using UV/Vis and Electron Paramagnetic Resonance spectroscopies. The penta- or hexa-coordinate thiolate heme (9≤pH≤11) and the penta-coordinate imidazole heme (6≤pH≤8.5) reproduces well the heme ligation in chloroperoxidases or cyt P450 monooxygenases and peroxidases, respectively. The stability of heme coordination upon ferric/ferrous redox cycling is a crucial property of the construct. At basic pHs, the thiolate mini-heme protein can catalyze O2 reduction when adsorbed onto a pyrolytic graphite electrode.
Collapse
Affiliation(s)
- Karl J Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Toni Kühl
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS, Aix-Marseille Univ., Marseille, France
| | - Elisabeth Lojou
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS, Aix-Marseille Univ., Marseille, France
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Barbara Schoepp-Cothenet
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS, Aix-Marseille Univ., Marseille, France
| | - Olga Iranzo
- Institut des Sciences Moléculaires de Marseille (iSm2), Centrale Marseille, Aix-Marseille Univ., CNRS, Marseille, France
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anabella Ivancich
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS, Aix-Marseille Univ., Marseille, France
| |
Collapse
|
10
|
Koebke KJ, Kühl T, Lojou E, Demeler B, Schoepp‐Cothenet B, Iranzo O, Pecoraro VL, Ivancich A. The pH‐Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial α‐Helical Metalloprotein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Toni Kühl
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS Aix-Marseille Univ. Marseille France
| | - Elisabeth Lojou
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS Aix-Marseille Univ. Marseille France
| | - Borries Demeler
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge AB T1K 3M4 Canada
| | - Barbara Schoepp‐Cothenet
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS Aix-Marseille Univ. Marseille France
| | - Olga Iranzo
- Institut des Sciences Moléculaires de Marseille (iSm2) Centrale Marseille Aix-Marseille Univ. CNRS Marseille France
| | | | - Anabella Ivancich
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479, CNRS Aix-Marseille Univ. Marseille France
| |
Collapse
|
11
|
Sutherland GA, Polak D, Swainsbury DJK, Wang S, Spano FC, Auman DB, Bossanyi DG, Pidgeon JP, Hitchcock A, Musser AJ, Anthony JE, Dutton PL, Clark J, Hunter CN. A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. J Am Chem Soc 2020; 142:13898-13907. [PMID: 32672948 DOI: 10.1021/jacs.0c05477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.
Collapse
Affiliation(s)
- George A Sutherland
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Daniel Polak
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Shuangqing Wang
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Dirk B Auman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David G Bossanyi
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - James P Pidgeon
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Kentucky 40511, United States
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
12
|
Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem Sci 2019; 44:1022-1040. [DOI: 10.1016/j.tibs.2019.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
13
|
Grayson KJ, Anderson JLR. Designed for life: biocompatible de novo designed proteins and components. J R Soc Interface 2019; 15:rsif.2018.0472. [PMID: 30158186 PMCID: PMC6127164 DOI: 10.1098/rsif.2018.0472] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
A principal goal of synthetic biology is the de novo design or redesign of biomolecular components. In addition to revealing fundamentally important information regarding natural biomolecular engineering and biochemistry, functional building blocks will ultimately be provided for applications including the manufacture of valuable products and therapeutics. To fully realize this ambitious goal, the designed components must be biocompatible, working in concert with natural biochemical processes and pathways, while not adversely affecting cellular function. For example, de novo protein design has provided us with a wide repertoire of structures and functions, including those that can be assembled and function in vivo. Here we discuss such biocompatible designs, as well as others that have the potential to become biocompatible, including non-protein molecules, and routes to achieving full biological integration.
Collapse
Affiliation(s)
- Katie J Grayson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK .,BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Bialas C, Barnard DT, Auman DB, McBride RA, Jarocha LE, Hore PJ, Dutton PL, Stanley RJ, Moser CC. Ultrafast flavin/tryptophan radical pair kinetics in a magnetically sensitive artificial protein. Phys Chem Chem Phys 2019; 21:13453-13461. [PMID: 31187821 PMCID: PMC7301759 DOI: 10.1039/c9cp01916b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radical pair formation and decay are implicated in a wide range of biological processes including avian magnetoreception. However, studying such biological radical pairs is complicated by both the complexity and relative fragility of natural systems. To resolve open questions about how natural flavin-amino acid radical pair systems are engineered, and to create new systems with novel properties, we developed a stable and highly adaptable de novo artificial protein system. These protein maquettes are designed with intentional simplicity and transparency to tolerate aggressive manipulations that are impractical or impossible in natural proteins. Here we characterize the ultrafast dynamics of a series of maquettes with differing electron-transfer distance between a covalently ligated flavin and a tryptophan in an environment free of other potential radical centers. We resolve the spectral signatures of the cysteine-ligated flavin singlet and triplet states and reveal the picosecond formation and recombination of singlet-born radical pairs. Magnetic field-sensitive triplet-born radical pair formation and recombination occurs at longer timescales. These results suggest that both triplet- and singlet-born radical pairs could be exploited as biological magnetic sensors.
Collapse
Affiliation(s)
- Chris Bialas
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The role of molecular crowding in long-range metalloprotein electron transfer: Dissection into site- and scaffold-specific contributions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Zollitsch TM, Jarocha LE, Bialas C, Henbest KB, Kodali G, Dutton PL, Moser CC, Timmel CR, Hore PJ, Mackenzie SR. Magnetically Sensitive Radical Photochemistry of Non-natural Flavoproteins. J Am Chem Soc 2018; 140:8705-8713. [PMID: 29940116 DOI: 10.1021/jacs.8b03104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is a remarkable fact that ∼50 μT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.
Collapse
Affiliation(s)
- Tilo M Zollitsch
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| | - Lauren E Jarocha
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| | - Chris Bialas
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Kevin B Henbest
- Department of Chemistry , University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory , Oxford OX1 3QR , United Kingdom
| | - Goutham Kodali
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - P Leslie Dutton
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Christiane R Timmel
- Department of Chemistry , University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory , Oxford OX1 3QR , United Kingdom
| | - P J Hore
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| | - Stuart R Mackenzie
- Department of Chemistry , University of Oxford, Physical and Theoretical Chemistry Laboratory , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|
17
|
Villarino L, Splan KE, Reddem E, Alonso‐Cotchico L, Gutiérrez de Souza C, Lledós A, Maréchal J, Thunnissen AWH, Roelfes G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew Chem Int Ed Engl 2018; 57:7785-7789. [PMID: 29719099 PMCID: PMC6033091 DOI: 10.1002/anie.201802946] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Indexed: 12/12/2022]
Abstract
An artificial heme enzyme was created through self-assembly from hemin and the lactococcal multidrug resistance regulator (LmrR). The crystal structure shows the heme bound inside the hydrophobic pore of the protein, where it appears inaccessible for substrates. However, good catalytic activity and moderate enantioselectivity was observed in an abiological cyclopropanation reaction. We propose that the dynamic nature of the structure of the LmrR protein is key to the observed activity. This was supported by molecular dynamics simulations, which showed transient formation of opened conformations that allow the binding of substrates and the formation of pre-catalytic structures.
Collapse
Affiliation(s)
- Lara Villarino
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Kathryn E. Splan
- Department of ChemistryMacalester College1600 Grand AvenueSaint PaulMN55105USA
| | - Eswar Reddem
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Lur Alonso‐Cotchico
- Departament de QuímicaUniversitat Autònoma de BarcelonaEdifici C.n.08193 Cerdanyola del VallésBarcelonaSpain
| | - Cora Gutiérrez de Souza
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Agustí Lledós
- Departament de QuímicaUniversitat Autònoma de BarcelonaEdifici C.n.08193 Cerdanyola del VallésBarcelonaSpain
| | - Jean‐Didier Maréchal
- Departament de QuímicaUniversitat Autònoma de BarcelonaEdifici C.n.08193 Cerdanyola del VallésBarcelonaSpain
| | - Andy‐Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
18
|
Villarino L, Splan KE, Reddem E, Alonso-Cotchico L, Gutiérrez de Souza C, Lledós A, Maréchal JD, Thunnissen AMWH, Roelfes G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802946] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lara Villarino
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Kathryn E. Splan
- Department of Chemistry; Macalester College; 1600 Grand Avenue Saint Paul MN 55105 USA
| | - Eswar Reddem
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Lur Alonso-Cotchico
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdanyola del Vallés Barcelona Spain
| | - Cora Gutiérrez de Souza
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Agustí Lledós
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdanyola del Vallés Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdanyola del Vallés Barcelona Spain
| | - Andy-Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
19
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Mancini JA, Kodali G, Jiang J, Reddy KR, Lindsey JS, Bryant DA, Dutton PL, Moser CC. Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins. J R Soc Interface 2017; 14:rsif.2016.0896. [PMID: 28179548 DOI: 10.1098/rsif.2016.0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 11/12/2022] Open
Abstract
Synthetic proteins designed and constructed from first principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe the expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Bialas C, Jarocha LE, Henbest KB, Zollitsch TM, Kodali G, Timmel CR, Mackenzie SR, Dutton PL, Moser CC, Hore PJ. Engineering an Artificial Flavoprotein Magnetosensor. J Am Chem Soc 2016; 138:16584-16587. [PMID: 27958724 DOI: 10.1021/jacs.6b09682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Migratory birds use the Earth's magnetic field as a source of navigational information. This light-dependent magnetic compass is thought to be mediated by cryptochrome proteins in the retina. Upon light activation, electron transfer between the flavin adenine dinucleotide cofactor and tryptophan residues leads to the formation of a spin-correlated radical pair, whose subsequent fate is sensitive to external magnetic fields. To learn more about the functional requirements of this complex chemical compass, we have created a family of simplified, adaptable proteins-maquettes-that contain a single tryptophan residue at different distances from a covalently bound flavin. Despite the complete absence of structural resemblance to the native cryptochrome fold or sequence, the maquettes exhibit a strong magnetic field effect that rivals those observed in the natural proteins in vitro. These novel maquette designs offer unprecedented flexibility to explore the basic requirements for magnetic sensing in a protein environment.
Collapse
Affiliation(s)
- Chris Bialas
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Lauren E Jarocha
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Kevin B Henbest
- Department of Chemistry, University of Oxford , Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom
| | - Tilo M Zollitsch
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Goutham Kodali
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Christiane R Timmel
- Department of Chemistry, University of Oxford , Inorganic Chemistry Laboratory, Oxford OX1 3QR, United Kingdom
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - P Leslie Dutton
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - P J Hore
- Department of Chemistry, University of Oxford , Physical and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|