1
|
Vayssières M, Marechal N, Yun L, Lopez Duran B, Murugasamy NK, Fogg JM, Zechiedrich L, Nadal M, Lamour V. Structural basis of DNA crossover capture by Escherichia coli DNA gyrase. Science 2024; 384:227-232. [PMID: 38603484 PMCID: PMC11108255 DOI: 10.1126/science.adl5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.
Collapse
Affiliation(s)
- Marlène Vayssières
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Nils Marechal
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Long Yun
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Brian Lopez Duran
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Naveen Kumar Murugasamy
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Jonathan M. Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Life Sciences, Université Paris Cité, Paris, France
| | - Valérie Lamour
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Portman JR, Qayyum MZ, Murakami KS, Strick TR. On the stability of stalled RNA polymerase and its removal by RapA. Nucleic Acids Res 2022; 50:7396-7405. [PMID: 35819188 PMCID: PMC9303389 DOI: 10.1093/nar/gkac558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Stalling of the transcription elongation complex formed by DNA, RNA polymerase (RNAP) and RNA presents a serious obstacle to concurrent processes due to the extremely high stability of the DNA-bound polymerase. RapA, known to remove RNAP from DNA in an ATP-dependent fashion, was identified over 50 years ago as an abundant binding partner of RNAP; however, its mechanism of action remains unknown. Here, we use single-molecule magnetic trapping assays to characterize RapA activity and begin to specify its mechanism of action. We first show that stalled RNAP resides on DNA for times on the order of 106 seconds and that increasing positive torque on the DNA reduces this lifetime. Using stalled RNAP as a substrate we show that the RapA protein stimulates dissociation of stalled RNAP from positively supercoiled DNA but not negatively supercoiled DNA. We observe that RapA-dependent RNAP dissociation is torque-sensitive, is inhibited by GreB and depends on RNA length. We propose that stalled RNAP is dislodged from DNA by RapA via backtracking in a supercoiling- and torque-dependent manner, suggesting that RapA’s activity on transcribing RNAP in vivo is responsible for resolving conflicts between converging polymerase molecular motors.
Collapse
Affiliation(s)
- James R Portman
- Institut de Biologie de l'Ecole Normale Supérieure, PSL Université, INSERM, CNRS, Paris 75005, France.,Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris 75005, France
| | - M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Terence R Strick
- Institut de Biologie de l'Ecole Normale Supérieure, PSL Université, INSERM, CNRS, Paris 75005, France.,Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris 75005, France.,Equipe Labellisée de la Ligue Nationale Contre le Cancer, Paris 75013, France
| |
Collapse
|
4
|
Abstract
R-loops are nucleic acid hybrids which form when an RNA invades duplex DNA to pair with its template sequence. Although they are implicated in a growing number of gene regulatory processes, their mechanistic origins remain unclear. We here report real-time observations of cotranscriptional R-loop formation at single-molecule resolution and propose a mechanism for their formation. We show that the bacterial Mfd protein can simultaneously interact with both elongating RNA polymerase and upstream DNA, tethering the two together and partitioning the DNA into distinct supercoiled domains. A highly negatively supercoiled domain forms in between Mfd and RNA polymerase, and compensatory positive supercoiling appears in front of the RNA polymerase and behind Mfd. The nascent RNA invades the negatively supercoiled domain and forms a stable R-loop that can drive mutagenesis. This mechanism theoretically enables any protein that simultaneously binds an actively translocating RNA polymerase and upstream DNA to stimulate R-loop formation.
Collapse
|
5
|
Mardenborough YSN, Nitsenko K, Laffeber C, Duboc C, Sahin E, Quessada-Vial A, Winterwerp HHK, Sixma TK, Kanaar R, Friedhoff P, Strick TR, Lebbink JHG. The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res 2020; 47:11667-11680. [PMID: 31598722 PMCID: PMC6902014 DOI: 10.1093/nar/gkz834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
DNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone.
Collapse
Affiliation(s)
| | - Katerina Nitsenko
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Charlie Laffeber
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Camille Duboc
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Enes Sahin
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Audrey Quessada-Vial
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | - Titia K Sixma
- Oncode Institute, the Netherlands.,Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Terence R Strick
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Superieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.,Programme "Equipe Labellisée", Ligue Nationale contre le Cancer
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Kostrz D, Wayment-Steele HK, Wang JL, Follenfant M, Pande VS, Strick TR, Gosse C. A modular DNA scaffold to study protein-protein interactions at single-molecule resolution. NATURE NANOTECHNOLOGY 2019; 14:988-993. [PMID: 31548690 DOI: 10.1038/s41565-019-0542-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The residence time of a drug on its target has been suggested as a more pertinent metric of therapeutic efficacy than the traditionally used affinity constant. Here, we introduce junctured-DNA tweezers as a generic platform that enables real-time observation, at the single-molecule level, of biomolecular interactions. This tool corresponds to a double-strand DNA scaffold that can be nanomanipulated and on which proteins of interest can be engrafted thanks to widely used genetic tagging strategies. Thus, junctured-DNA tweezers allow a straightforward and robust access to single-molecule force spectroscopy in drug discovery, and more generally in biophysics. Proof-of-principle experiments are provided for the rapamycin-mediated association between FKBP12 and FRB, a system relevant in both medicine and chemical biology. Individual interactions were monitored under a range of applied forces and temperatures, yielding after analysis the characteristic features of the energy profile along the dissociation landscape.
Collapse
Affiliation(s)
- Dorota Kostrz
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Marcoussis, France
| | | | - Jing L Wang
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université de Paris, Paris, France
| | - Maryne Follenfant
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France
| | - Vijay S Pande
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Terence R Strick
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France.
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université de Paris, Paris, France.
- Programme Equipe Labellisée, Ligue Nationale Contre le Cancer, Paris, France.
| | - Charlie Gosse
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS) CNRS, INSERM, PSL Research University, Paris, France.
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Marcoussis, France.
| |
Collapse
|
7
|
Bizard AH, Yang X, Débat H, Fogg JM, Zechiedrich L, Strick TR, Garnier F, Nadal M. TopA, the Sulfolobus solfataricus topoisomerase III, is a decatenase. Nucleic Acids Res 2019; 46:861-872. [PMID: 29253195 PMCID: PMC5778498 DOI: 10.1093/nar/gkx1247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/03/2022] Open
Abstract
DNA topoisomerases are essential enzymes involved in all the DNA processes and among them, type IA topoisomerases emerged as a key actor in the maintenance of genome stability. The hyperthermophilic archaeon, Sulfolobus solfataricus, contains three topoisomerases IA including one classical named TopA. SsoTopA is very efficient at unlinking DNA catenanes, grouping SsoTopA into the topoisomerase III family. SsoTopA is active over a wide range of temperatures and at temperatures of up to 85°C it produces highly unwound DNA. At higher temperatures, SsoTopA unlinks the two DNA strands. Thus depending on the temperature, SsoTopA is able to either prevent or favor DNA melting. While canonical topoisomerases III require a single-stranded DNA region or a nick in one of the circles to decatenate them, we show for the first time that a type I topoisomerase, SsoTopA, is able to efficiently unlink covalently closed catenanes, with no additional partners. By using single molecule experiments we demonstrate that SsoTopA requires the presence of a short single-stranded DNA region to be efficient. The unexpected decatenation property of SsoTopA probably comes from its high ability to capture this unwound region. This points out a possible role of TopA in S. solfataricus as a decatenase in Sulfolobus.
Collapse
Affiliation(s)
- Anna H Bizard
- Université Versailles St-Quentin, Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, 91405 Orsay Cedex, France
| | - Xi Yang
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR 7592 CNRS, 75013 Paris, France.,Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France
| | - Hélène Débat
- Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France.,Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 75013 Paris, France
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-280, Houston, TX 77030, USA
| | - Terence R Strick
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR 7592 CNRS, 75013 Paris, France.,Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florence Garnier
- Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France.,Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 75013 Paris, France
| | - Marc Nadal
- Univ Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR 7592 CNRS, 75013 Paris, France.,Programme Equipes Labellisées, Ligue Contre le Cancer, 75013 Paris, France
| |
Collapse
|
8
|
Wang S, Han Z, Libri D, Porrua O, Strick TR. Single-molecule characterization of extrinsic transcription termination by Sen1 helicase. Nat Commun 2019; 10:1545. [PMID: 30948716 PMCID: PMC6449345 DOI: 10.1038/s41467-019-09560-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Extrinsic transcription termination typically involves remodeling of RNA polymerase by an accessory helicase. In yeast this is accomplished by the Sen1 helicase homologous to human senataxin (SETX). To gain insight into these processes we develop a DNA scaffold construct compatible with magnetic-trapping assays and from which S. cerevisiae RNA polymerase II (Pol II), as well as E. coli RNA polymerase (ecRNAP), can efficiently initiate transcription without transcription factors, elongate, and undergo extrinsic termination. By stalling Pol II TECs on the construct we can monitor Sen1-induced termination in real-time, revealing the formation of an intermediate in which the Pol II transcription bubble appears half-rewound. This intermediate requires ~40 sec to form and lasts ~20 sec prior to final dissociation of the stalled Pol II. The experiments enabled by the scaffold construct permit detailed statistical and kinetic analysis of Pol II interactions with a range of cofactors in a multi-round, high-throughput fashion. Yeast’s Sen1 helicase is involved in the suppression of antisense transcription from bidirectional eukaryotic promoters. Here authors develop and utilize a quantitative single-molecule assay reporting on the kinetics of extrinsic eukaryotic transcription termination by the Sen1 helicase and a reaction intermediate in which the Pol II transcription bubble appears half-rewound.
Collapse
Affiliation(s)
- S Wang
- Molecular Motors and Machines group, Ecole normale supérieure, Institut de Biologie de l'Ecole normale supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005, Paris, France.,Biomolecular Nanomanipulation group, Institut Jacques Monod, CNRS, University Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Z Han
- Metabolism and Function of RNA in the Nucleus, Institut Jacques Monod, CNRS, University Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - D Libri
- Metabolism and Function of RNA in the Nucleus, Institut Jacques Monod, CNRS, University Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - O Porrua
- Metabolism and Function of RNA in the Nucleus, Institut Jacques Monod, CNRS, University Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - T R Strick
- Molecular Motors and Machines group, Ecole normale supérieure, Institut de Biologie de l'Ecole normale supérieure (IBENS), CNRS, INSERM, PSL Research University, 75005, Paris, France. .,Biomolecular Nanomanipulation group, Institut Jacques Monod, CNRS, University Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France. .,Programme Equipe Labellisées, Ligue Contre le Cancer, 75013, Paris, France.
| |
Collapse
|
9
|
Dissection of DNA double-strand-break repair using novel single-molecule forceps. Nat Struct Mol Biol 2018; 25:482-487. [PMID: 29786079 PMCID: PMC5990469 DOI: 10.1038/s41594-018-0065-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/13/2018] [Indexed: 02/02/2023]
Abstract
Repairing DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nanomanipulation, allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and the addition of PAXX extends this lifetime to ~2 s. Further addition of XRCC4, XLF and ligase IV results in minute-scale synapsis and leads to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kilocalories per mole. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity.
Collapse
|