1
|
Shaw AE, Mihelich MN, Whitted JE, Reitman HJ, Timmerman AJ, Tehseen M, Hamdan SM, Schauer GD. Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative. Proc Natl Acad Sci U S A 2024; 121:e2404470121. [PMID: 39374399 PMCID: PMC11494364 DOI: 10.1073/pnas.2404470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of deoxynucleotide triphosphate synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, facilitated by the replisome-associated mediator Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast and human cells and show that antioxidants restore growth of yeast in HU. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron-sulfur (Fe-S) clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80525
| |
Collapse
|
2
|
Saha S, Kanaujia SP. Decoding Substrate Selectivity of an Archaeal RlmCD-like Methyltransferase Through Its Salient Traits. Biochemistry 2024; 63:2477-2492. [PMID: 39350642 DOI: 10.1021/acs.biochem.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
5-Methyluridine (m5U) rRNA modifications frequently occur at U747 and U1939 (Escherichia coli numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of S-adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the Thermococcales group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) m5U (Arm5U) MTases. Among these, a tRNA-specific Arm5U MTase (PabTrmU54) has already been characterized. This study focused on the structural and functional characterization of the rRNA-specific Arm5U MTase from the hyperthermophilic archaeon Pyrococcus horikoshii (PhRlmCD). An in-depth structural examination revealed a dynamic hinge movement induced by the replacement of the iron-sulfur cluster with disulfide bonds, obstructing the substrate-binding site. It revealed distinctive characteristics of PhRlmCD, including elongated positively charged loops in the central domain and rotational variations in the TRAM domain, which influence substrate selectivity. Additionally, the results suggested that two potential mini-rRNA fragments interact in a similar manner with PhRlmCD at a positively charged cleft at the interface of domains and facilitate dual MTase activities akin to the protein RlmCD. Altogether, these observations showed that Arm5U MTases originated from horizontal gene transfer events, most likely from Gram-positive bacteria.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krauß N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. Chem 2024; 10:2103-2130. [PMID: 39170732 PMCID: PMC11335340 DOI: 10.1016/j.chempr.2024.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes. The prokaryotic DNA repair photolyase PhrB carries a four-iron-four-sulfur cluster ([4Fe4S]) in addition to the catalytic flavin adenine dinucleotide (FAD) and a second cofactor ribolumazine. Our recent study suggested that the [4Fe4S] cluster functions as an electron cache to coordinate two interdependent photoreactions of the FAD and ribolumazine. Here we report the crystallography observations of light-induced responses in PhrB using the cryo-trapping method and in situ serial Laue diffraction at room temperature. We capture strong signals that depict electron density changes arising from quantized electronic movements in the [4Fe4S] cluster. Our data reveal the mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light-induced redox changes. The quantum effects imaged by decomposition of electron density changes have shed light on the emerging roles of metal clusters in proteins.
Collapse
Affiliation(s)
- Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Renz Research, Inc., Westmont, IL 60559, USA
- Lead contact
| | - Fan Zhang
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Weijia Kang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Cong Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Heewhan Shin
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Semini Gunawardana
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kalinga Bowatte
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Shaw AE, Whitted JE, Mihelich MN, Reitman HJ, Timmerman AJ, Schauer GD. Revised Mechanism of Hydroxyurea Induced Cell Cycle Arrest and an Improved Alternative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583010. [PMID: 38496404 PMCID: PMC10942336 DOI: 10.1101/2024.03.02.583010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Replication stress describes various types of endogenous and exogenous challenges to DNA replication in S-phase. Stress during this critical process results in helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response is hydroxyurea (HU), a chemotherapeutic agent. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of dNTP synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, mediated by the replisome associated effector kinase Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast nuclei. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron sulfur Fe-S clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.
Collapse
Affiliation(s)
- Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Jackson E. Whitted
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Mattias N. Mihelich
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Hannah J. Reitman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Adam J. Timmerman
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| | - Grant D. Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, CO, USA
| |
Collapse
|
5
|
Ren Z, Zhang F, Kang W, Wang C, Shin H, Zeng X, Gunawardana S, Bowatte K, Krau Ü N, Lamparter T, Yang X. Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523341. [PMID: 36711581 PMCID: PMC9882091 DOI: 10.1101/2023.01.09.523341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes including DNA processing. The prokaryotic DNA repair enzyme PhrB, a member of the protein family of cryptochromes and photolyases, carries a four-iron-four-sulfur cluster [4Fe4S] in addition to the catalytic cofactor flavin adenine dinucleotide (FAD) and a second pigment 6,7-dimethyl-8-ribityllumazine (DMRL). The light-induced redox reactions of this multi-cofactor protein complex were recently shown as two interdependent photoreductions of FAD and DMRL mediated by the [4Fe4S] cluster functioning as an electron cache to hold a fine balance of electrons. Here, we apply the more traditional temperature-scan cryo-trapping technique in protein crystallography and the newly developed technology of in situ serial Laue diffraction at room temperature. These diffraction methods in dynamic crystallography enable us to capture strong signals of electron density changes in the [4Fe4S] cluster that depict quantized electronic movements. The mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light illumination are observed directly in our difference maps between its redox states. These direct observations of the quantum effects in a protein bound iron-sulfur cluster have thus opened a window into the mechanistic understanding of metal clusters in biological systems.
Collapse
|
6
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
7
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Rana M, Perotti A, Bisset LM, Smith JD, Lamden E, Khan Z, Ismail MK, Ellis K, Armstrong KA, Hodder SL, Bertoli C, Meneguello L, de Bruin RAM, Morris JR, Romero-Canelon I, Tucker JHR, Hodges NJ. A ferrocene-containing nucleoside analogue targets DNA replication in pancreatic cancer cells. Metallomics 2022; 14:mfac041. [PMID: 35689667 PMCID: PMC9320222 DOI: 10.1093/mtomcs/mfac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.
Collapse
Affiliation(s)
- Marium Rana
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alessio Perotti
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lucy M Bisset
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James D Smith
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Lamden
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zahra Khan
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Media K Ismail
- Department of pharmacy, college of pharmacy, Knowledge University, 44001 Erbil, Kurdistan Region, Iraq
| | - Katherine Ellis
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katie A Armstrong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samantha L Hodder
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cosetta Bertoli
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Leticia Meneguello
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isolda Romero-Canelon
- School of Pharmacy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
9
|
Lisova AE, Baranovskiy AG, Morstadt LM, Babayeva ND, Tahirov TH. Efficient discrimination against RNA-containing primers by human DNA polymerase ε. Sci Rep 2022; 12:10163. [PMID: 35715491 PMCID: PMC9205888 DOI: 10.1038/s41598-022-14602-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023] Open
Abstract
DNA polymerase ε (Polε) performs bulk synthesis of DNA on the leading strand during genome replication. Polε binds two substrates, a template:primer and dNTP, and catalyzes a covalent attachment of dNMP to the 3' end of the primer. Previous studies have shown that Polε easily inserts and extends ribonucleotides, which may promote mutagenesis and genome instability. In this work, we analyzed the mechanisms of discrimination against RNA-containing primers by human Polε (hPolε), performing binding and kinetic studies at near-physiological salt concentration. Pre-steady-state kinetic studies revealed that hPolεCD extends RNA primers with approximately 3300-fold lower efficiency in comparison to DNA, and addition of one dNMP to the 3' end of an RNA primer increases activity 36-fold. Likewise, addition of one rNMP to the 3' end of a DNA primer reduces activity 38-fold. The binding studies conducted in the presence of 0.15 M NaCl revealed that human hPolεCD has low affinity to DNA (KD of 1.5 µM). Strikingly, a change of salt concentration from 0.1 M to 0.15 M reduces the stability of the hPolεCD/DNA complex by 25-fold. Upon template:primer binding, the incoming dNTP and magnesium ions make hPolε discriminative against RNA and chimeric RNA-DNA primers. In summary, our studies revealed that hPolε discrimination against RNA-containing primers is based on the following factors: incoming dNTP, magnesium ions, a steric gate for the primer 2'OH, and the rigid template:primer binding pocket near the catalytic site. In addition, we showed the importance of conducting functional studies at near-physiological salt concentration.
Collapse
Affiliation(s)
- Alisa E Lisova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Shi R, Hou W, Wang ZQ, Xu X. Biogenesis of Iron-Sulfur Clusters and Their Role in DNA Metabolism. Front Cell Dev Biol 2021; 9:735678. [PMID: 34660592 PMCID: PMC8514734 DOI: 10.3389/fcell.2021.735678] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
Iron–sulfur (Fe/S) clusters (ISCs) are redox-active protein cofactors that their synthesis, transfer, and insertion into target proteins require many components. Mitochondrial ISC assembly is the foundation of all cellular ISCs in eukaryotic cells. The mitochondrial ISC cooperates with the cytosolic Fe/S protein assembly (CIA) systems to accomplish the cytosolic and nuclear Fe/S clusters maturation. ISCs are needed for diverse cellular functions, including nitrogen fixation, oxidative phosphorylation, mitochondrial respiratory pathways, and ribosome assembly. Recent research advances have confirmed the existence of different ISCs in enzymes that regulate DNA metabolism, including helicases, nucleases, primases, DNA polymerases, and glycosylases. Here we outline the synthesis of mitochondrial, cytosolic and nuclear ISCs and highlight their functions in DNA metabolism.
Collapse
Affiliation(s)
- Ruifeng Shi
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenya Hou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Xingzhi Xu
- Shenzhen University-Friedrich Schiller Universität Jena Joint Ph.D. Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
11
|
Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 2021; 47:102164. [PMID: 34656823 PMCID: PMC8577454 DOI: 10.1016/j.redox.2021.102164] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors most commonly known for their role mediating electron transfer within the mitochondrial respiratory chain. The Fe-S cluster pathways that function within the respiratory complexes are highly conserved between bacteria and the mitochondria of eukaryotic cells. Within the electron transport chain, Fe-S clusters play a critical role in transporting electrons through Complexes I, II and III to cytochrome c, before subsequent transfer to molecular oxygen. Fe-S clusters are also among the binding sites of classical mitochondrial inhibitors, such as rotenone, and play an important role in the production of mitochondrial reactive oxygen species (ROS). Mitochondrial Fe-S clusters also play a critical role in the pathogenesis of disease. High levels of ROS produced at these sites can cause cell injury or death, however, when produced at low levels can serve as signaling molecules. For example, Ndufs2, a Complex I subunit containing an Fe-S center, N2, has recently been identified as a redox-sensitive oxygen sensor, mediating homeostatic oxygen-sensing in the pulmonary vasculature and carotid body. Fe-S clusters are emerging as transcriptionally-regulated mediators in disease and play a crucial role in normal physiology, offering potential new therapeutic targets for diseases including malaria, diabetes, and cancer.
Collapse
|
12
|
Pinto MN, Ter Beek J, Ekanger LA, Johansson E, Barton JK. The [4Fe4S] Cluster of Yeast DNA Polymerase ε Is Redox Active and Can Undergo DNA-Mediated Signaling. J Am Chem Soc 2021; 143:16147-16153. [PMID: 34559527 PMCID: PMC8499023 DOI: 10.1021/jacs.1c07150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many DNA replication and DNA repair enzymes have been found to carry [4Fe4S] clusters. The major leading strand polymerase, DNA polymerase ε (Pol ε) from Saccharomyces cerevisiae, was recently reported to have a [4Fe4S] cluster located within the catalytic domain of the largest subunit, Pol2. Here the redox characteristics of the [4Fe4S] cluster in the context of that domain, Pol2CORE, are explored using DNA electrochemistry, and the effects of oxidation and rereduction on polymerase activity are examined. The exonuclease deficient variant D290A/E292A, Pol2COREexo-, was used to limit DNA degradation. While no redox signal is apparent for Pol2COREexo- on DNA-modified electrodes, a large cathodic signal centered at -140 mV vs NHE is observed after bulk oxidation. A double cysteine to serine mutant (C665S/C668S) of Pol2COREexo-, which lacks the [4Fe4S] cluster, shows no similar redox signal upon oxidation. Significantly, protein oxidation yields a sharp decrease in polymerization, while rereduction restores activity almost to the level of untreated enzyme. Moreover, the addition of reduced EndoIII, a bacterial DNA repair enzyme containing [4Fe4S]2+, to oxidized Pol2COREexo- bound to its DNA substrate also significantly restores polymerase activity. In contrast, parallel experiments with EndoIIIY82A, a variant of EndoIII, defective in DNA charge transport (CT), does not show restoration of activity of Pol2COREexo-. We propose a model in which EndoIII bound to the DNA duplex may shuttle electrons through DNA to the DNA-bound oxidized Pol2COREexo- via DNA CT and that this DNA CT signaling offers a means to modulate the redox state and replication by Pol ε.
Collapse
Affiliation(s)
- Miguel N Pinto
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-910 87 Umeå, Sweden
| | - Levi A Ekanger
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-910 87 Umeå, Sweden
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
14
|
Vallée Y, Youssef-Saliba S. Sulfur Amino Acids: From Prebiotic Chemistry to Biology and Vice Versa. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1472-7914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractTwo sulfur-containing amino acids are included in the list of the 20 classical protein amino acids. A methionine residue is introduced at the start of the synthesis of all current proteins. Cysteine, thanks to its thiol function, plays an essential role in a very large number of catalytic sites. Here we present what is known about the prebiotic synthesis of these two amino acids and homocysteine, and we discuss their introduction into primitive peptides and more elaborate proteins.1 Introduction2 Sulfur Sources3 Prebiotic Synthesis of Cysteine4 Prebiotic Synthesis of Methionine5 Homocysteine and Its Thiolactone6 Methionine and Cystine in Proteins7 Prebiotic Scenarios Using Sulfur Amino Acids8 Introduction of Cys and Met in the Genetic Code9 Conclusion
Collapse
|
15
|
Wozniak KJ, Simmons LA. Hydroxyurea Induces a Stress Response That Alters DNA Replication and Nucleotide Metabolism in Bacillus subtilis. J Bacteriol 2021; 203:e0017121. [PMID: 34031038 PMCID: PMC8407345 DOI: 10.1128/jb.00171-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Hydroxyurea (HU) is classified as a ribonucleotide reductase (RNR) inhibitor and has been widely used to stall DNA replication by depleting deoxyribonucleoside triphosphate (dNTP) pools. Recent evidence in Escherichia coli shows that HU readily forms breakdown products that damage DNA directly, indicating that toxicity is a result of secondary effects. Because HU is so widely used in the laboratory and as a clinical therapeutic, it is important to understand its biological effects. To determine how Bacillus subtilis responds to HU-induced stress, we performed saturating transposon insertion mutagenesis followed by deep sequencing (Tn-seq), transcriptome sequencing (RNA-seq) analysis, and measurement of replication fork progression. Our data show that B. subtilis cells elongate, and replication fork progression is slowed, following HU challenge. The transcriptomic data show that B. subtilis cells initially mount a metabolic response likely caused by dNTP pool depletion before inducing the DNA damage response (SOS) after prolonged exposure. To compensate for reduced nucleotide pools, B. subtilis upregulates the purine and pyrimidine biosynthetic machinery and downregulates the enzymes producing ribose 5-phosphate. We show that overexpression of the RNR genes nrdEF suppresses the growth interference caused by HU, suggesting that RNR is an important target of HU in B. subtilis. Although genes involved in nucleotide and carbon metabolism showed considerable differential expression, we also find that genes of unknown function (y-genes) represent the largest class of differentially expressed genes. Deletion of individual y-genes caused moderate growth interference in the presence of HU, suggesting that cells have several ways of coping with HU-induced metabolic stress. IMPORTANCE Hydroxyurea (HU) has been widely used as a clinical therapeutic and an inhibitor of DNA replication. Some evidence suggests that HU inhibits ribonucleotide reductase, depleting dNTP pools, while other evidence shows that toxic HU breakdown products are responsible for growth inhibition and genotoxic stress. Here, we use multiple, complementary approaches to characterize the response of Bacillus subtilis to HU. B. subtilis responds by upregulating the expression of purine and pyrimidine biosynthesis. We show that HU challenge reduced DNA replication and that overexpression of the ribonucleotide reductase operon suppressed growth interference by HU. Our results demonstrate that HU targets RNR and several other metabolic enzymes contributing to toxicity in bacteria.
Collapse
Affiliation(s)
- Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Kiktev DA, Dominska M, Zhang T, Dahl J, Stepchenkova EI, Mieczkowski P, Burgers PM, Lujan S, Burkholder A, Kunkel TA, Petes TD. The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ. Nucleic Acids Res 2021; 49:5623-5636. [PMID: 34019669 PMCID: PMC8191807 DOI: 10.1093/nar/gkab371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 05/16/2021] [Indexed: 11/12/2022] Open
Abstract
Iron-sulfur clusters (4Fe–4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme.
Collapse
Affiliation(s)
- Denis A Kiktev
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tony Zhang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joseph Dahl
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elena I Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, St. Petersburg, Russia.,Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russia
| | - Piotr Mieczkowski
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
17
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
18
|
Kolodny R, Nepomnyachiy S, Tawfik DS, Ben-Tal N. Bridging Themes: Short Protein Segments Found in Different Architectures. Mol Biol Evol 2021; 38:2191-2208. [PMID: 33502503 PMCID: PMC8136508 DOI: 10.1093/molbev/msab017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vast majority of theoretically possible polypeptide chains do not fold, let alone confer function. Hence, protein evolution from preexisting building blocks has clear potential advantages over ab initio emergence from random sequences. In support of this view, sequence similarities between different proteins is generally indicative of common ancestry, and we collectively refer to such homologous sequences as "themes." At the domain level, sequence homology is routinely detected. However, short themes which are segments, or fragments of intact domains, are particularly interesting because they may provide hints about the emergence of domains, as opposed to divergence of preexisting domains, or their mixing-and-matching to form multi-domain proteins. Here we identified 525 representative short themes, comprising 20-80 residues that are unexpectedly shared between domains considered to have emerged independently. Among these "bridging themes" are ones shared between the most ancient domains, for example, Rossmann, P-loop NTPase, TIM-barrel, flavodoxin, and ferredoxin-like. We elaborate on several particularly interesting cases, where the bridging themes mediate ligand binding. Ligand binding may have contributed to the stability and the plasticity of these building blocks, and to their ability to invade preexisting domains or serve as starting points for completely new domains.
Collapse
Affiliation(s)
- Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | | | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Ben-Tal
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Stepchenkova EI, Zhuk AS, Cui J, Tarakhovskaya ER, Barbari SR, Shcherbakova PV, Polev DE, Fedorov R, Poliakov E, Rogozin IB, Lada AG, Pavlov YI. Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations in CDC28. Genetics 2021; 218:6222163. [PMID: 33844024 DOI: 10.1093/genetics/iyab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/02/2021] [Indexed: 11/14/2022] Open
Abstract
Current eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability. Despite extensive studies of yeast Saccharomyces cerevisiae strains lacking the active N-terminal half, it is still unclear how these strains survive and recover. We designed a robust method for constructing mutants with only the C-terminal part of Pol2. Strains without the active polymerase part show severe growth defects, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly accumulate fast-growing clones. Analysis of genomic DNA sequences of these clones revealed that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs by a positive selection of mutants with improved growth. Elevated mutation rates help generate sufficient numbers of these variants. Single nucleotide changes in the cell cycle-dependent kinase gene, CDC28, improve the growth of strains lacking the N-terminal part of Pol2, and rescue their sensitivity to replication inhibitors and, in parallel, lower mutation rates. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may contribute to cellular responses to the leading strand polymerase defects.
Collapse
Affiliation(s)
- Elena I Stepchenkova
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia.,Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna S Zhuk
- ITMO University, Saint-Petersburg 191002, Russia
| | - Jian Cui
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Elena R Tarakhovskaya
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia.,Department of Plant Physiology and Biochemistry, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Stephanie R Barbari
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dmitrii E Polev
- Research Resource Center "Biobank," Research Park, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Roman Fedorov
- Department of Mathematics, University of Pittsburgh, PA 15213, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Artem G Lada
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA 92697, USA
| | - Youri I Pavlov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Lehrke MJ, Shapiro MJ, Rajcula MJ, Kennedy MM, McCue SA, Medina KL, Shapiro VS. The mitochondrial iron transporter ABCB7 is required for B cell development, proliferation, and class switch recombination in mice. eLife 2021; 10:69621. [PMID: 34762046 PMCID: PMC8585479 DOI: 10.7554/elife.69621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors essential for the activity of numerous enzymes including DNA polymerases, helicases, and glycosylases. They are synthesized in the mitochondria as Fe-S intermediates and are exported to the cytoplasm for maturation by the mitochondrial transporter ABCB7. Here, we demonstrate that ABCB7 is required for bone marrow B cell development, proliferation, and class switch recombination, but is dispensable for peripheral B cell homeostasis in mice. Conditional deletion of ABCB7 using Mb1-cre resulted in a severe block in bone marrow B cell development at the pro-B cell stage. The loss of ABCB7 did not alter expression of transcription factors required for B cell specification or commitment. While increased intracellular iron was observed in ABCB7-deficient pro-B cells, this did not lead to increased cellular or mitochondrial reactive oxygen species, ferroptosis, or apoptosis. Interestingly, loss of ABCB7 led to replication-induced DNA damage in pro-B cells, independent of VDJ recombination, and these cells had evidence of slowed DNA replication. Stimulated ABCB7-deficient splenic B cells from CD23-cre mice also had a striking loss of proliferation and a defect in class switching. Thus, ABCB7 is essential for early B cell development, proliferation, and class switch recombination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kay L Medina
- Department of Immunology, Mayo ClinicRochesterUnited States
| | | |
Collapse
|
21
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|
22
|
Pavlov YI, Zhuk AS, Stepchenkova EI. DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer. Cancers (Basel) 2020; 12:E3489. [PMID: 33255191 PMCID: PMC7760166 DOI: 10.3390/cancers12123489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named "division of labor," remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants' effects on cancer.
Collapse
Affiliation(s)
- Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Anna S. Zhuk
- International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia;
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
23
|
Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res 2020; 48:10142-10156. [PMID: 32976577 PMCID: PMC7544198 DOI: 10.1093/nar/gkaa760] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Patrick Forterre
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
24
|
Acharya N, Khandagale P, Thakur S, Sahu JK, Utkalaja BG. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet 2020; 66:635-655. [PMID: 32236653 DOI: 10.1007/s00294-020-01071-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Sixteen eukaryotic DNA polymerases have been identified and studied so far. Based on the sequence similarity of the catalytic subunits of DNA polymerases, these have been classified into four A, B, X and Y families except PrimPol, which belongs to the AEP family. The quaternary structure of these polymerases also varies depending upon whether they are composed of one or more subunits. Therefore, in this review, we used a quaternary structure-based classification approach to group DNA polymerases as either monomeric or multimeric and highlighted functional significance of their accessory subunits. Additionally, we have briefly summarized various DNA polymerase discoveries from a historical perspective, emphasized unique catalytic mechanism of each DNA polymerase and highlighted recent advances in understanding their cellular functions.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
25
|
Lancey C, Tehseen M, Raducanu VS, Rashid F, Merino N, Ragan TJ, Savva CG, Zaher MS, Shirbini A, Blanco FJ, Hamdan SM, De Biasio A. Structure of the processive human Pol δ holoenzyme. Nat Commun 2020; 11:1109. [PMID: 32111820 PMCID: PMC7048817 DOI: 10.1038/s41467-020-14898-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 01/01/2023] Open
Abstract
In eukaryotes, DNA polymerase δ (Pol δ) bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. We present the high-resolution cryo-EM structure of the human processive Pol δ–DNA–PCNA complex in the absence and presence of FEN1. Pol δ is anchored to one of the three PCNA monomers through the C-terminal domain of the catalytic subunit. The catalytic core sits on top of PCNA in an open configuration while the regulatory subunits project laterally. This arrangement allows PCNA to thread and stabilize the DNA exiting the catalytic cleft and recruit FEN1 to one unoccupied monomer in a toolbelt fashion. Alternative holoenzyme conformations reveal important functional interactions that maintain PCNA orientation during synthesis. This work sheds light on the structural basis of Pol δ’s activity in replicating the human genome. Pol δ bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand in eukaryotes and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. Here, the authors present a Cryo-EM structure of the human 4-subunit Pol δ bound to DNA and PCNA in a replicating state with an incoming nucleotide in the active site.
Collapse
Affiliation(s)
- Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Fahad Rashid
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain
| | - Timothy J Ragan
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Christos G Savva
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Manal S Zaher
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Afnan Shirbini
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK.
| |
Collapse
|
26
|
Teo RD, Migliore A, Beratan DN. Mutation effects on charge transport through the p58c iron-sulfur protein. Chem Sci 2020; 11:7076-7085. [PMID: 33250976 PMCID: PMC7690218 DOI: 10.1039/d0sc02245d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Growing experimental evidence indicates that iron–sulfur proteins play key roles in DNA repair and replication. In particular, charge transport between [Fe4S4] clusters, mediated by proteins and DNA, may convey signals to coordinate enzyme action. Human primase is a well studied [Fe4S4] protein, and its p58c domain (which contains an [Fe4S4] cluster) plays a role in the initiation of DNA replication. The Y345C mutation in p58c is linked to gastric tumors and may influence the protein-mediated charge transport. The complexity of protein–DNA systems, and the intricate electronic structure of [Fe4S4] clusters, have impeded progress into understanding functional charge transport in these systems. In this study, we built force fields to describe the high potential [Fe4S4] cluster in both oxidation states. The parameterization is compatible with AMBER force fields and enabled well-balanced molecular dynamics simulations of the p58c–RNA/DNA complex relevant to the initiation of DNA replication. Using the molecular mechanics Poisson–Boltzmann and surface area solvation method on the molecular dynamics trajectories, we find that the p58c mutation induces a modest change in the p58c–duplex binding free energy in agreement with recent experiments. Through kinetic modeling and analysis, we identify key features of the main charge transport pathways in p58c. In particular, we find that the Y345C mutation partially changes the composition and frequency of the most efficient (and potentially relevant to the biological function) charge transport pathways between the [Fe4S4] cluster and the duplex. Moreover, our approach sets the stage for a deeper understanding of functional charge transfer in [Fe4S4] protein–DNA complexes. Functional electron transfer between the [Fe4S4] cluster and the nucleic acid is impacted by a Y345C mutation in the p58c subunit of human primase.![]()
Collapse
Affiliation(s)
- Ruijie D Teo
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA . ;
| | - Agostino Migliore
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA . ;
| | - David N Beratan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA . ; .,Department of Physics , Duke University , Durham , North Carolina 27708 , USA.,Department of Biochemistry , Duke University , Durham , North Carolina 27710 , USA
| |
Collapse
|
27
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
28
|
An updated structural classification of replicative DNA polymerases. Biochem Soc Trans 2019; 47:239-249. [PMID: 30647142 DOI: 10.1042/bst20180579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.
Collapse
|
29
|
Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes 2019; 45:225-256. [PMID: 31627878 DOI: 10.1016/bs.enz.2019.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite their relative simplicity, iron-sulfur clusters have been omnipresent as cofactors in myriad cellular processes such as oxidative phosphorylation and other respiratory pathways. Recent research advances confirm the presence of different clusters in enzymes involved in nucleic acid metabolism. Iron-sulfur clusters can therefore be considered hallmarks of cellular metabolism. Helicases, nucleases, glycosylases, DNA polymerases and transcription factors, among others, incorporate various types of clusters that serve differing roles. In this chapter, we review our current understanding of the identity and functions of iron-sulfur clusters in DNA and RNA metabolizing enzymes, highlighting their importance as regulators of cellular function.
Collapse
Affiliation(s)
- Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
30
|
Stepchenkova EI, Shiriaeva AA, Pavlov YI. Deletion of the DEF1 gene does not confer UV-immutability but frequently leads to self-diploidization in yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 70:49-54. [PMID: 30172224 DOI: 10.1016/j.dnarep.2018.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
In yeast Saccharomyces cerevisiae, the DEF1 gene is responsible for regulation of many cellular processes including ubiquitin-dependent degradation of DNA metabolism proteins. Recently it has been proposed that Def1 promotes degradation of the catalytic subunit of DNA polymerase δ at sites of DNA damage and regulates a switch to specialized polymerases and, as a consequence, DNA-damage induced mutagenesis. The idea was based substantially on the severe defects in induced mutagenesis observed in the def1 mutants. We describe that UV mutability of def1Δ strains is actually only moderately affected, while the virtual absence of UV mutagenesis in many def1Δ clones is caused by a novel phenotype of the def1 mutants, proneness to self-diploidization. Diploids are extremely frequent (90%) after transformation of wild-type haploids with def1::kanMX disruption cassette and are frequent (2.3%) in vegetative haploid def1 cultures. Such diploids look "UV immutable" when assayed for recessive forward mutations but have normal UV mutability when assayed for dominant reverse mutations. The propensity for frequent self-diploidization in def1Δ mutants should be taken into account in studies of the def1Δ effect on mutagenesis. The true haploids with def1Δ mutation are moderately UV sensitive but retain substantial UV mutagenesis for forward mutations: they are fully proficient at lower doses and only partially defective at higher doses of UV. We conclude that Def1 does not play a critical role in damage-induced mutagenesis.
Collapse
Affiliation(s)
- E I Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg, 199034, Russia; Department of Genetics, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - A A Shiriaeva
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia; Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143028, Russia; Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, Saint-Petersburg, 195251, Russia; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Y I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Departments of Microbiology and Pathology, Biochemistry and Molecular Biology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|