1
|
Donaubauer AJ, Frey B, Weber M, Allner M, Vogl C, Almajali O, Kuczera L, Tamse H, Balk M, Müller S, Eckstein M, Zülch L, Mogge L, Weissmann T, Fietkau R, Kesting M, Iro H, Gaipl US, Hecht M, Gostian AO. Defining intra-tumoral and systemic immune biomarkers for locally advanced head-and-neck cancer - detailed protocol of a prospective, observatory multicenter trial (ImmunBioKHT) and first results of the immunophenotyping of the patients' peripheral blood. Front Oncol 2024; 14:1451035. [PMID: 39346733 PMCID: PMC11427411 DOI: 10.3389/fonc.2024.1451035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
The approval and effectiveness of immune checkpoint inhibitors in head-and-neck squamous cell carcinoma (HNSCC) highlights the role of the immune system in this tumor entity. HNSCCs not only interacts with the immune system in the tumor tissue, but also induce systemic effects that may be additionally influenced by further factors such as the microbiome. Nonetheless, reliable immunological biomarkers that predict treatment response and outcome in HNSCC patients are lacking. The currently available biomarkers are mainly limited to analyses from tumor biopsies, while biomarkers from liquid biopsies, such as peripheral blood are not well-established. Thus, the here presented trial aims to identify interactions of intra-tumoral and systemic immune responses and to define prognostic immune signatures. Consequently, not only samples from the tumor tissue, but also from peripheral blood and the microbiome will be studied/are being evaluated and correlated with the clinical outcome. In this prospective, multi-center trial, 1000 HNSCC patients and 100 patients in the control cohort with non-tumor head-and-neck surgery will be enrolled. The local immune status from of the tumor and the microbiome will be sampled before treatment. In addition, the systemic immune status from peripheral blood will be analyzed before and after surgery and after the adjuvant and definitive radio-chemotherapy (RCT). Clinical baseline characteristics and outcome will additionally be collected. Data mining and modelling approaches will finally be applied to identify interactions of local and systemic immune parameters and to define prognostic immune signatures based on the evaluated immune markers. Approval from the institutional review board of the Friedrich-Alexander-Universität Erlangen-Nürnberg was granted in December 2021 (application number 21-440-B). By now, 150 patients have been enrolled in the intervention cohort. The results will be disseminated to the scientific audience and the general public via presentations at conferences and publication in peer-reviewed journals.
Collapse
Affiliation(s)
- Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Manuel Weber
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Moritz Allner
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Vogl
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Omar Almajali
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Kuczera
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Henriette Tamse
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Balk
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarina Müller
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Institute of Pathology, Uniklinikum Erlangen, Erlangen, Germany
| | - Lilli Zülch
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Lia Mogge
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Marco Kesting
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Iro
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Antoniu-Oreste Gostian
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Department of Otolaryngology - Head & Neck Surgery, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Otorhinolaryngology, Merciful Brothers Hospital St. Elisabeth, Straubing, Germany
| |
Collapse
|
2
|
Zahedian S, Hadizadeh M, Farazi MM, Jafarinejad-Farsangi S. MiRNA-miRNA interaction network in peripheral blood of patients with myocardial infarction: a gene expression meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-18. [PMID: 38497563 DOI: 10.1080/15257770.2024.2330597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
In recent years, investigations have revealed that microRNAs (miRNAs) can bind together and form a miRNA-miRNA-mRNA regulatory network that alters the consequence of miRNA-mRNA interaction. If we consider the miRNA that binds to mRNA as the primary miRNA and the miRNA that binds to the primary miRNA as the secondary one, secondry miRNAs can act as master regulators upstream of primary miRNAs and their target mRNAs. One of the distinguishing characteristics of secondary miRNAs as master regulators within a diverse set of differentially expressed genes is the absence of direct target mRNA for them. Instead, these master regulators exclusively govern the regulation of miRNAs that target specific mRNAs. Through in silico analysis, we identified 18 miRNAs among 385 differentially expressed miRNAs (DEmiRNAs) with no direct target mRNAs among 58 differentially expressed mRNAs (DEmRNAs) in peripheral blood of patients with myocardial infarction (MI). Instead, these secondary miRNAs targeted 9 primary miRNAs that had 36 direct targets among 58 DEmRNAs. We found that one primary miRNA might be regulated by more than one secondary miRNAs and each secondary miRNA can target more than one primary miRNAs. Among identified miRNA-miRNA-mRNA networks miR-188-5p/miR-299-3p/natural killer cell granule protein (NKG7), miR-200a-3p/miR-199b-5p/granzyme B (GZMB), and miR-377-3p/miR-581/oviductal glycoprotein 1 (OVGP1) exhibited higher scors in terms of expression levels (>2-fold increase or decrease) and strengh of interactions (ΔG < -5). Given the extensive network of miRNA interactions, focusing on master regulators opens up avenues for identifying key regulatory nodes for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Setareh Zahedian
- Student Research Committee, Kerman University of Medical Science, Kerman, Iran
| | - Morteza Hadizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mojtaba Farazi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
3
|
Hecht M, Frey B, Gaipl US, Tianyu X, Eckstein M, Donaubauer AJ, Klautke G, Illmer T, Fleischmann M, Laban S, Hautmann MG, Tamaskovics B, Brunner TB, Becker I, Zhou JG, Hartmann A, Fietkau R, Iro H, Döllinger M, Gostian AO, Kist AM. Machine Learning-assisted immunophenotyping of peripheral blood identifies innate immune cells as best predictor of response to induction chemo-immunotherapy in head and neck squamous cell carcinoma - knowledge obtained from the CheckRad-CD8 trial. Neoplasia 2024; 49:100953. [PMID: 38232493 PMCID: PMC10827535 DOI: 10.1016/j.neo.2023.100953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC. METHODS The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological complete response (pCR) after induction therapy. RESULTS The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. Highest accuracy was achieved with a low number of features represented as principal components. Immune parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasmacytoid dendritic cells are most prominent. CONCLUSIONS Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.
Collapse
Affiliation(s)
- Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany; Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| | - Benjamin Frey
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Xie Tianyu
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gunther Klautke
- Department of Radiation Oncology, Hospital Chemnitz, Chemnitz, Germany
| | - Thomas Illmer
- Private Praxis Oncology, Arnoldstraße, Dresden, Germany
| | - Maximilian Fleischmann
- Department of Radiation Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Simon Laban
- Department of Otolaryngology - Head & Neck Surgery, University Hospital Ulm, Universität Ulm, Ulm, Germany
| | - Matthias G Hautmann
- Department of Radiotherapy, University Hospital Regensburg, Regensburg, Germany; Department of Radiotherapy and Radiation Oncology, Hospital Traunstein, Traunstein, Germany
| | - Bálint Tamaskovics
- Department of Radiation Oncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorfy, Düsseldorf, Germany
| | - Thomas B Brunner
- Department of Radiation Oncology, Medical University of Graz, Graz, Austria; Department of Radiation Oncology, University Hospitals Magdeburg, Magdeburg, Germany
| | - Ina Becker
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Heinrich Iro
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Elangen, Germany
| | - Michael Döllinger
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Division of Phoniatrics and Pediatric Audiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoniu-Oreste Gostian
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Elangen, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Merciful Brothers Hospital St. Elisabeth, Straubing, Germany
| | - Andreas M Kist
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Otolaryngology - Head & Neck Surgery, Division of Phoniatrics and Pediatric Audiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Donaubauer AJ, Becker I, Klein G, Voll RE, Weikl L, Klieser M, Barzangi S, Zhou JG, Fietkau R, Gaipl US, Frey B. Effects of serial radon spa therapy on pain and peripheral immune status in patients suffering from musculoskeletal disorders- results from a prospective, randomized, placebo-controlled trial. Front Immunol 2024; 15:1307769. [PMID: 38380316 PMCID: PMC10876773 DOI: 10.3389/fimmu.2024.1307769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
In this randomized, placebo-controlled cross-over trial we aimed to investigate if radon spa therapy exerts more pain relief than exposure to warm water alone. In addition, immunological parameters were assessed in both treatment groups. In the RAD-ON02 trial, 116 patients suffering from musculoskeletal disorders (MSDs) received either serial radon spa or solely warm water baths. Pain intensity was assessed by determination of different pain parameters on a visual analogue scale and by pressure point dolorimetry at baseline and at weeks 4, 12 and 24. The longitudinal immune status of the patients was analyzed by a flow cytometry-based assay from peripheral blood at the time points of pain assessments. There were no side effects attributable to radon exposure observed. However, radon spa was superior to warm water applications at week 4 in terms of pain reduction. Pain and morning stiffness at the time of assessment were significantly reduced after radon spa (p<0.001, p<0.01) but not after warm water baths. The dolorimetry resulted in a significantly higher exerted pressure strength in patients after radon spa (p<0.001), but not after warm water applications. During the long-term follow-up, both treatment modalities reduced pain to a similar degree and pain modulation was not distorted by the participants' intake of analgesics. No significant changes in the immune status attributable specifically to radon were found, even though the increase in regulatory T cell counts occurs earlier after radon baths than after sole warm water baths and a higher level of significance is reached after radon spa at week 24. Serial radon spa has additive pain-relieving effects. The immunological parameters assessed in our study appear not to be directly linked to the pain reduction caused by radon exposure, at least in MSD patients with predominantly degenerative diseases. Clinical trial registration https://www.clinicaltrialsregister.eu/ctr-search/search?query=rad-on02, identifier 2016-002085-31; https://drks.de/search/de/trial, identifier DRKS00016019.
Collapse
Affiliation(s)
- Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ina Becker
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gerhart Klein
- Association for Radon Spa Research and Medical Practice for Cardiology, Bad Steben, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Centre – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Weikl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Klieser
- Association for Radon Spa Research and Medical Practice for Cardiology, Bad Steben, Germany
| | - Shakar Barzangi
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jian-Guo Zhou
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Prospective Evaluation of CD45RA+/CCR7- Effector Memory T (T EMRA) Cell Subsets in Patients with Primary and Secondary Brain Tumors during Radiotherapy of the Brain within the Scope of the Prospective Glio-CMV-01 Clinical Trial. Cells 2023; 12:cells12040516. [PMID: 36831183 PMCID: PMC9954596 DOI: 10.3390/cells12040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Radiotherapy (RT) of the brain is a common treatment for patients with high-grade gliomas and brain metastases. It has previously been shown that reactivation of cytomegalovirus (CMV) frequently occurs during RT of the brain. This causes neurological decline, demands antiviral treatment, and is associated with a worse prognosis. CMV-specific T cells are characterized by a differentiated effector memory phenotype and CD45RA+ CCR7- effector memory T (TEMRA) cells were shown to be enriched in CMV seropositive individuals. In this study, we investigated the distribution of TEMRA cells and their subsets in the peripheral blood of healthy donors and, for the first time, prospectively within the scope of the prospective Glio-CMV-01 clinical trial of patients with high-grade glioma and brain metastases during radiation therapy as a potential predictive marker. First, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of TEMRA cells in a longitudinal manner. The CMV serostatus and age were considered as influencing factors. We revealed that patients who had a reactivation of CMV have significantly higher amounts of CD8+ TEMRA cells. Further, the distribution of the subsets of TEMRA cells based on the expression of CD27, CD28, and CD57 is highly dependent on the CMV serostatus. We conclude that the percentage of CD8+ TEMRA cells out of all CD8+ T cells has the potential to serve as a biomarker for predicting the risk of CMV reactivation during RT of the brain. Furthermore, this study highlights the importance of taking the CMV serostatus into account when analyzing TEMRA cells and their subsets.
Collapse
|
6
|
Anti-inflammatory effects of an autologous gold-based serum therapy in osteoarthritis patients. Sci Rep 2022; 12:3560. [PMID: 35241691 PMCID: PMC8894375 DOI: 10.1038/s41598-022-07187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) involves activation and recruitment of immune cells to affected joints, including the production of pro-inflammatory cytokines. Here, a gold-based autologous serum therapy is investigated for its effect on peripheral blood cell composition and cytokine levels in OA patients. From six OA patients serum and blood samples were collected before and after second therapy treatment for analysis of peripheral blood cell composition as well as cytokine levels compared to control samples. This therapy significantly downregulates CD4+ T cells and B cells in OA patients after second treatment compared to healthy controls. Monocytes are significantly upregulated in patients after second treatment Serum IL-9 and TNF-α levels are downregulated in patients after second treatment compared to healthy control serum. The activation status of immune cells was modulated after therapy in patients. Anti-inflammatory effects of the peripheral blood cell composition in OA patients can be seen after therapy treatment. After two treatments IL-9 and TNF-α are significantly downregulated in patient serum. Here, primary data of a new autologous therapy for OA treatment and its modulatory effects on cytokines are presented.
Collapse
|
7
|
Haskamp S, Frey B, Becker I, Schulz-Kuhnt A, Atreya I, Berking C, Pauli D, Ekici AB, Berges J, Mößner R, Wilsmann-Theis D, Sticherling M, Uebe S, Kirchner P, Hüffmeier U. Transcriptomes of MPO-deficient patients with generalized pustular psoriasis reveals expansion of CD4+ cytotoxic T cells and an involvement of the complement system. J Invest Dermatol 2021; 142:2149-2158.e10. [PMID: 34973310 DOI: 10.1016/j.jid.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Generalized pustular psoriasis (GPP) is a severe psoriatic subtype characterized by epidermal neutrophil infiltration. Although variants in IL36RN and MPO have been shown to affect immune cells, a systematic analysis of neutrophils and peripheral blood mononuclear cells (PBMCs) subsets and their differential gene expression dependent on MPO genotypes was not performed yet. We assessed transcriptomes of MPO-deficient patients using single cell RNA-sequencing (scRNAseq) of PBMCs and RNA-sequencing of neutrophils in stable disease state. Cell type annotation by multimodal reference mapping of scRNAseq data was verified by flow cytometry of surface and intracellular markers; proportions of CD4+ cytotoxic T-lymphocytes (CTLs) and other CD4+ effector cells were increased in GPP, while frequencies of naïve CD4+ T cells were significantly lower. The expression of FGFBP2 marking CD4+ CTLs and CD8+ effector memory T-cells (TEMs) was elevated in GPP patients with disease-contributing variants compared to non-carriers (p=0.0015). In neutrophils, differentially expressed genes (DEGs) were significantly enriched in genes of the classical complement activation pathway. Future studies assessing affected cell-types and pathways will show their contribution to GPP's pathogenesis, and indicate whether findings can be transferred to the acute epidermal situation and whether depletion or inactivation of CD4+ CTLs may be a reasonable therapeutic approach.
Collapse
Affiliation(s)
- Stefan Haskamp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Translational Radiobiology, Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Ina Becker
- Department of Radiation Oncology, Translational Radiobiology, Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research & Translational Research Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, University Hospital Erlangen, Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Pauli
- Department of Dermatology, University Hospital Erlangen, Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rotraut Mößner
- Department of Dermatology, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Michael Sticherling
- Department of Dermatology, University Hospital Erlangen, Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Donaubauer AJ, Becker I, Weissmann T, Fröhlich BM, Muñoz LE, Gryc T, Denzler M, Ott OJ, Fietkau R, Gaipl US, Frey B. Low Dose Radiation Therapy Induces Long-Lasting Reduction of Pain and Immune Modulations in the Peripheral Blood - Interim Analysis of the IMMO-LDRT01 Trial. Front Immunol 2021; 12:740742. [PMID: 34712229 PMCID: PMC8546320 DOI: 10.3389/fimmu.2021.740742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
The treatment of chronic inflammatory and degenerative diseases by low dose radiation therapy (LDRT) is promising especially for patients who were refractory for classical therapies. LDRT aims to reduce pain of patients and to increase their mobility. Although LDRT has been applied since the late 19th century, the immunological mechanisms remain elusive. Within the prospective IMMO-LDRT01 trial (NCT02653079) the effects of LDRT on the peripheral blood immune status, as well as on pain and life quality of patients have been analyzed. Blood is taken before and after every serial irradiation with a single dose per fraction of 0.5Gy, as well as during follow-up appointments in order to determine a detailed longitudinal immune status by multicolor flow cytometry. Here, we report the results of an interim analysis of 125 patients, representing half the number of patients to be recruited. LDRT significantly improved patients’ pain levels and induced distinct systemic immune modulations. While the total number of leukocytes remained unchanged in the peripheral blood, LDRT induced a slight reduction of eosinophils, basophils and plasmacytoid dendritic cells and an increase of B cells. Furthermore, activated immune cells were decreased following LDRT. Especially cells of the monocytic lineage correlated to LDRT-induced improvements of clinical symptoms, qualifying these immune cells as predictive biomarkers for the therapeutic success. We conclude that LDRT improves pain of the patients by inducing systemic immune modulations and that immune biomarkers could be defined for prediction by improved patient stratification in the future.
Collapse
Affiliation(s)
- Anna-Jasmina Donaubauer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ina Becker
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Birgitta M Fröhlich
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Gryc
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Denzler
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
10
|
Implementation of Double Immune Checkpoint Blockade Increases Response Rate to Induction Chemotherapy in Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13081959. [PMID: 33921668 PMCID: PMC8073509 DOI: 10.3390/cancers13081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/20/2021] [Accepted: 04/14/2021] [Indexed: 01/26/2023] Open
Abstract
Simple Summary The study compares the effects on complete remission rate (CR) of a single dose of durvalumab/tremelimumab immediately after a single-cycle platinum and docetaxel as part of induction therapy for a controlled trial in head and neck cancer with chemotherapy alone from a historical collective. The CR rate was 60.3% after induction chemoimmunotherapy (ICIT; induction chemotherapy plus double immune checkpoint blockade) compared with 40.3% after induction chemotherapy (IC) alone. Patients with HPV-positive oropharyngeal cancer may benefit the most from additive double checkpoint inhibition, which is presumably due to the higher amount of infiltrating immune cells. Patients older than 60 years without HPV-positive oropharyngeal cancer are unlikely to benefit. Abstract To determine whether a single dose of double immune checkpoint blockade (induction chemoimmunotherapy (ICIT)) adds benefit to induction single-cycle platinum doublet (induction chemotherapy (IC)) in locally advanced head and neck squamous cell carcinoma (HNSCC), patients treated with cisplatin 30 mg/m2 d1-3 and docetaxel 75 mg/m2 d1 combined with durvalumab 1500 mg fixed dose d5 and tremelimumab 75 mg fixed dose d5 (ICIT) within the CheckRad-CD8 trial were compared with a retrospective cohort receiving the same chemotherapy (IC) without immunotherapy. The endpoint of this analysis was the complete response rate (CR). A total of 53 patients were treated with ICIT and 104 patients with IC only. CR rates were 60.3% for ICIT and 40.3% for IC (p = 0.018). In the total population (n = 157), the most important predictor to achieve a CR was treatment type (OR: 2.21 for ICIT vs. IC; p = 0.038, multivariate analysis). The most diverse effects in CR rates between ICIT and IC were observed in younger (age ≤ 60) patients with HPV-positive OPSCCs (82% vs. 33%, p = 0.176), while there was no difference in older patients without HPV-positive OPSCCs (53% vs. 48%). The analysis provides initial evidence that ICIT could result in higher CR rates than IC. Young patients with HPV-positive OPSCCs may have the greatest benefit from additional immune checkpoint inhibitors.
Collapse
|
11
|
Hecht M, Gostian AO, Eckstein M, Rutzner S, von der Grün J, Illmer T, Hautmann MG, Klautke G, Laban S, Brunner T, Hinke A, Becker I, Frey B, Semrau S, Geppert CI, Hartmann A, Balermpas P, Budach W, Gaipl US, Iro H, Fietkau R. Safety and efficacy of single cycle induction treatment with cisplatin/docetaxel/ durvalumab/tremelimumab in locally advanced HNSCC: first results of CheckRad-CD8. J Immunother Cancer 2020; 8:jitc-2020-001378. [PMID: 33023982 PMCID: PMC7539609 DOI: 10.1136/jitc-2020-001378] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background To determine safety and efficacy of single cycle induction treatment with cisplatin/docetaxel and durvalumab/tremelimumab in stage III-IVB head and neck cancer. Methods Patients received a single cycle of cisplatin 30 mg/m² on days 1–3 and docetaxel 75 mg/m² on day 1 combined with durvalumab 1500 mg fix dose on day 5 and tremelimumab 75 mg fix dose on day 5. Patients with pathologic complete response (pCR) in the rebiopsy after induction treatment or at least 20% increase of intratumoral CD8+ cell density in the rebiopsy compared with baseline entered radioimmunotherapy with concomitant durvalumab/tremelimumab. The objective of this interim analysis was to analyze safety and efficacy of the chemoimmunotherapy-induction treatment before radioimmunotherapy. Results A total of 57 patients were enrolled, 56 were treated. Median pretreatment intratumoral CD8+ cell density was 342 cells/mm². After induction treatment, 27 patients (48%) had a pCR in the rebiopsy and further 25 patients (45%) had a relevant increase of intratumoral CD8+ cells (median increase by a factor of 3.0). Adverse event (AE) grade 3–4 appeared in 38 patients (68%) and mainly consisted of leukopenia (43%) and infections (29%). Six patients (11%) developed grade 3–4 immune-related AE. Univariate analysis computed p16 positivity, programmed death ligand 1 immune cell area and intratumoral CD8+ cell density as predictors of pCR. On multivariable analysis, intratumoral CD8+ cell density predicted pCR independently (OR 1.0012 per cell/mm², 95% CI 1.0001 to 1.0022, p=0.016). In peripheral blood CD8+ cells, the coexpression of programmed death protein 1 significantly increased especially in patients with pCR. Conclusions Single cycle induction treatment with cisplatin/docetaxel and durvalumab/tremelimumab is feasible and achieves a high biopsy-proven pCR rate.
Collapse
Affiliation(s)
- Markus Hecht
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany .,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| | - Antoniu Oreste Gostian
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany.,Department of Otolaryngology - Head & Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Sandra Rutzner
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| | - Jens von der Grün
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Illmer
- Medical Oncology Clinic Dresden Freiberg, Dresden, Saxony, Germany
| | - Matthias G Hautmann
- Department of Radiation Oncology, Universität Regensburg, Regensburg, Bayern, Germany
| | - Gunther Klautke
- Department of Radiation Oncology, Chemnitz Hospital, Chemnitz, Sachsen, Germany
| | - Simon Laban
- Department of Otolaryngology - Head & Neck Surgery, Universität Ulm, Ulm, Baden-Württemberg, Germany
| | - Thomas Brunner
- Department of Radiation Oncology, Otto von Guericke Universität Magdeburg, Magdeburg, Sachsen-Anhalt, Germany
| | - Axel Hinke
- Clinical Cancer Research Consulting (CCRC), Düsseldorf, Nordrhein-Westfalen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| | - Carol I Geppert
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Panagiotis Balermpas
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Wilfried Budach
- Department of Radiation Oncology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| | - Heinrich Iro
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany.,Department of Otolaryngology - Head & Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bayern, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, Germany
| |
Collapse
|