1
|
Tang NC, Su JC, Shmidov Y, Kelly G, Deshpande S, Sirohi P, Peterson N, Chilkoti A. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility. Nat Commun 2024; 15:3727. [PMID: 38697982 PMCID: PMC11066018 DOI: 10.1038/s41467-024-47519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jonathan C Su
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
Verardo D, Adelizzi B, Rodriguez-Pinzon DA, Moghaddam N, Thomée E, Loman T, Godron X, Horgan A. Multiplex enzymatic synthesis of DNA with single-base resolution. SCIENCE ADVANCES 2023; 9:eadi0263. [PMID: 37418522 PMCID: PMC10328407 DOI: 10.1126/sciadv.adi0263] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Loman
- DNA Script, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
3
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
4
|
Kuznetsova AA, Tyugashev TE, Alekseeva IV, Timofeyeva NA, Fedorova OS, Kuznetsov NA. Insight into the mechanism of DNA synthesis by human terminal deoxynucleotidyltransferase. Life Sci Alliance 2022; 5:e202201428. [PMID: 35914812 PMCID: PMC9348634 DOI: 10.26508/lsa.202201428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Terminal deoxynucleotidyltransferase (TdT) is a member of the DNA polymerase X family that is responsible for random addition of nucleotides to single-stranded DNA. We present investigation into the role of metal ions and specific interactions of dNTP with active-site amino acid residues in the mechanisms underlying the recognition of nucleoside triphosphates by human TdT under pre-steady-state conditions. In the elongation mode, the ratios of translocation and dissociation rate constants, as well as the catalytic rate constant were dependent on the nature of the nucleobase. Preferences of TdT in dNTP incorporation were researched by molecular dynamics simulations of complexes of TdT with a primer and dNTP or with the elongated primer. Purine nucleotides lost the "summarised" H-bonding network after the attachment of the nucleotide to the primer, whereas pyrimidine nucleotides increased the number and relative lifetime of H-bonds in the post-catalytic complex. The effect of divalent metal ions on the primer elongation revealed that Me<sup>2+</sup> cofactor can significantly change parameters of the primer elongation by strongly affecting the rate of nucleotide attachment and the polymerisation mode.
Collapse
Affiliation(s)
- Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda A Timofeyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Vacacela J, Schaap‐Johansen A, Manikova P, Marcatili P, Prado M, Sun Y, Ashley J. The Protein‐Templated Synthesis of Enzyme‐Generated Aptamers. Angew Chem Int Ed Engl 2022; 61:e202201061. [PMID: 35167174 PMCID: PMC9314878 DOI: 10.1002/anie.202201061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 01/15/2023]
Abstract
Inspired by the chemical synthesis of molecularly imprinted polymers, we demonstrated for the first time, the protein‐target mediated synthesis of enzyme‐generated aptamers (EGAs). We prepared pre‐polymerisation mixtures containing different ratios of nucleotides, an initiator sequence and protein template and incubated each mixture with terminal deoxynucleotidyl transferase (TdT). Upon purification and rebinding of the EGAs against the target, we observed an enhancement in binding of templated‐EGAs towards the target compared to a non‐templated control. These results demonstrate the presence of two primary mechanisms for the formation of EGAs, namely, the binding of random sequences to the target as observed in systematic evolution of ligands by exponential enrichment (SELEX) and the dynamic competition between TdT enzyme and the target protein for binding of EGAs during synthesis. The latter mechanism serves to increase the stringency of EGA‐based screening and represents a new way to develop aptamers that relies on rational design.
Collapse
Affiliation(s)
- Julio Vacacela
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Anna‐Lisa Schaap‐Johansen
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Patricia Manikova
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Paolo Marcatili
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| | - Yi Sun
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Jon Ashley
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
6
|
Vacacela J, Schaap‐Johansen A, Manikova P, Marcatili P, Prado M, Sun Y, Ashley J. The Protein‐Templated Synthesis of Enzyme‐Generated Aptamers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julio Vacacela
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Anna‐Lisa Schaap‐Johansen
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Patricia Manikova
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Paolo Marcatili
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Marta Prado
- International Iberian Nanotechnology Laboratory (INL) Av. Mestre José Veiga Braga 4715-330 Portugal
| | - Yi Sun
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
| | - Jon Ashley
- Department of Health Technology Technical University of Denmark Ørsteds Pl. 345C Kgs. Lyngby 2800 Denmark
- School of Pharmacy and Biomolecular Sciences Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|