1
|
Pastok MW, Tomlinson CWE, Turberville S, Butler AM, Baslé A, Noble MEM, Endicott JA, Pohl E, Tatum NJ. Structural requirements for the specific binding of CRABP2 to cyclin D3. Structure 2024; 32:2301-2315.e6. [PMID: 39419021 DOI: 10.1016/j.str.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold.
Collapse
Affiliation(s)
- Martyna W Pastok
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Charles W E Tomlinson
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Shannon Turberville
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Abbey M Butler
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin E M Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Yamashita A, Ignatenko O, Nguyen M, Lambert R, Watt K, Daneault C, Robillard-Frayne I, Topisirovic I, Rosiers CD, McBride HM. Depletion of LONP2 unmasks differential requirements for peroxisomal function between cell types and in cholesterol metabolism. Biol Direct 2023; 18:60. [PMID: 37736739 PMCID: PMC10515011 DOI: 10.1186/s13062-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell-type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways are not yet understood. Herein, we report the cellular responses to peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered the accumulation of its substrate TYSND1 protease, while the overall expression of peroxisomal proteins, as well as TYSND1-dependent ACOX1 processing appeared normal, reflecting early stages of peroxisomal proteotoxic stress. Consequently, the alteration of peroxisome size and numbers, and luminal protein import failure was coupled with induction of cell-specific cellular stress responses. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight into our understanding of the tissue-specific responses seen in peroxisomal disorders.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Olesia Ignatenko
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Mai Nguyen
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Kathleen Watt
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Ivan Topisirovic
- Lady Davis Institute, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Zhang W, Peng Q, Zhang X, Guo J, Tong H, Li S. Vitamin A Promotes the Repair of Mice Skeletal Muscle Injury through RARα. Nutrients 2023; 15:3674. [PMID: 37686706 PMCID: PMC10490340 DOI: 10.3390/nu15173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Vitamin A (VitA) is an important fat-soluble vitamin which plays an important role in cell growth and individual development. However, the effect of VitA on the repair process of muscle injury and its molecular mechanism are still unclear. In this study, VitA and RA were first added to the culture medium of differentiated cells. We then detected cell differentiation marker proteins and myotube fusion. Moreover, the effects of VitA on RARα expression and nuclear translocation were further examined. The results showed that VitA significantly promoted the differentiation of C2C12, and the expression of RARα was significantly increased. Furthermore, VitA was injected into skeletal muscle injury in mice. HE staining and Western Blot results showed that VitA could significantly accelerate the repair of skeletal muscle injury and VitA increase the expression of RARα in mice. This study provides a theoretical basis for elucidating the regulation mechanism of VitA-mediated muscle development and the development of therapeutic drugs for muscle diseases in animals.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Qingyun Peng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxu Guo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (W.Z.); (Q.P.); (X.Z.); (J.G.); (H.T.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Zolfaghari R, Bonzo JA, Gonzalez FJ, Ross AC. Hepatocyte Nuclear Factor 4α (HNF4α) Plays a Controlling Role in Expression of the Retinoic Acid Receptor β ( RARβ) Gene in Hepatocytes. Int J Mol Sci 2023; 24:8608. [PMID: 37239961 PMCID: PMC10218549 DOI: 10.3390/ijms24108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARβ gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARβ promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARβ promoter activity 15-fold. The human RARβ2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARβ, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.
Collapse
Affiliation(s)
- Reza Zolfaghari
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA;
| | - Jessica A. Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
5
|
Bang YJ. Vitamin A: a key coordinator of host-microbe interactions in the intestine. BMB Rep 2023; 56:133-139. [PMID: 36751944 PMCID: PMC10068342 DOI: 10.5483/bmbrep.2023-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 09/29/2023] Open
Abstract
The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions. [BMB Reports 2023; 56(3): 133-139].
Collapse
Affiliation(s)
- Ye-Ji Bang
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Abdel-Bakky MS, Helal GK, El-Sayed ESM, Amin E, Alqasoumi A, Alhowail A, Abdelmoti ESS, Saad AS. Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:385-393. [PMID: 34448456 PMCID: PMC8405435 DOI: 10.4196/kjpp.2021.25.5.385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 11/15/2022]
Abstract
Tissue factor (TF) activates the coagulation system and has an important role in the pathogenesis of various diseases. Our previous study stated that retinoid receptors (RAR-α and RXR-α) are released as a lipid droplet in monocrotaline/ lipopolysaccharide-induced idiosyncratic liver toxicity in mice. Herein, the interdependence between the release of retinoid receptors RAR-α and RXR-α and TF in Nacetyl-p-aminophenol (APAP)-induced mice liver toxicity, is investigated. Serum alanine transaminase (ALT) level, platelet and white blood cells (WBCs) counts, protein expression of fibrin, TF, cyclin D1 and cleaved caspase-3 in liver tissues are analyzed. In addition, histopathological evaluation and survival study are also performed. The results indicate that using of TF-antisense (TF-AS) deoxyoligonucleotide (ODN) injection (6 mg/kg), to block TF protein synthesis, significantly restores the elevated level of ALT and WBCs and corrects thrombocytopenia in mice injected with APAP. TF-AS prevents the peri-central overexpression of liver TF, fibrin, cyclin D1 and cleaved caspase- 3. The release of RXR-α and RAR-α droplets, in APAP treated sections, is inhibited upon treatment with TF-AS. In conclusion, the above findings designate that the released RXR-α and RAR-α in APAP liver toxicity is TF dependent. Additionally, the enhancement of cyclin D1 to caspase-3-dependent apoptosis can be prevented by blocking of TF protein synthesis.
Collapse
Affiliation(s)
- Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.,Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - El-Sayed Mohamed El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.,Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| | - Abdulmajeed Alqasoumi
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia
| | - Eman Sayed Said Abdelmoti
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52471, Saudi Arabia.,Department of Clinical Pharmacology, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Saad Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|