1
|
Rabello JP, da Silva Cavalcante PE, Leme J, Aragão Tejo Dias V, Correia Barrence FA, de Oliveira Guardalini LG, Bernardino TC, Nunes R, Barros IH, Tonso A, Calil Jorge SA, Fernández Núñez EG. Chemometrics and analytical blank on the at-line monitoring of Zika-VLP production using near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125217. [PMID: 39369592 DOI: 10.1016/j.saa.2024.125217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The Zika disease caused by the Zika virus was declared a Public Health Emergency by the World Health Union (WHO), with microcephaly as the most critical consequence. Aiming to reduce the spread of the virus, biopharmaceutical organizations invest in vaccine research and production, based on multiple platforms. A crescent vaccine production approach is based on virus-like particles (VLP), for not having genetic material in its composition, hypoallergenic and non-mutant character. For bioprocess, it is essential to have means of real-time monitoring, which can be assessed using process analysis techniques such as Near-infrared (NIR) spectroscopy, that can be combined with chemometric methods, like Partial-Least Squares (PLS) and Artificial Neural Networks (ANN) for prediction of biochemical variables. This work proposes a biochemical Zika VLP upstream production at-line monitoring model using NIR spectroscopy comparing sampling conditions (with or without cells), analytical blank (air, ultrapure water), and spectra pre-processing approaches. Seven experiments in a benchtop bioreactor using recombinant baculovirus/Sf9 insect cell platform in serum-free medium were performed to obtain biochemical and spectral data for chemometrics modeling (PLS and ANN), composed by a random data split (80 % calibration, 20 % validation) for cross-validation of the PLS models and 70 % training, 15 % testing, 15 % validation for ANN. The best models generated in the present work presented an average absolute error of 1.59 × 105 cell/mL for density of viable cells, 2.37 % for cell viability, 0.25 g/L for glucose, 0.007 g/L for lactate, 0.138 g/L for glutamine, 0.18 g/L for glutamate, 0,003 g/L for ammonium, and 0.014 g/L for potassium.
Collapse
Affiliation(s)
- Júlia Públio Rabello
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000 São Paulo, SP, Brazil
| | | | - Jaci Leme
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900 São Paulo, SP, Brazil
| | - Vinícius Aragão Tejo Dias
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000 São Paulo, SP, Brazil
| | - Fernanda Angela Correia Barrence
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000 São Paulo, SP, Brazil
| | | | - Thaissa Consoni Bernardino
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900 São Paulo, SP, Brazil
| | - Robson Nunes
- Grupo de Espectroscopia, Astro34. Rua Belém, 106 - Jardim Vista Alegre, Embu das Artes, SP CEP: 06807-340, Brazil
| | - Iago Henrique Barros
- Grupo de Espectroscopia, Astro34. Rua Belém, 106 - Jardim Vista Alegre, Embu das Artes, SP CEP: 06807-340, Brazil
| | - Aldo Tonso
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, travessa do Politécnico, 380, 05508-010 São Paulo, SP, Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900 São Paulo, SP, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Maddirevula S, Shagrani M, Ji AR, Horne CR, Young SN, Mather LJ, Alqahtani M, McKerlie C, Wood G, Potter PK, Abdulwahab F, AlSheddi T, van der Woerd WL, van Gassen KLI, AlBogami D, Kumar K, Muhammad Akhtar AS, Binomar H, Almanea H, Faqeih E, Fuchs SA, Scott JW, Murphy JM, Alkuraya FS. Large-scale genomic investigation of pediatric cholestasis reveals a novel hepatorenal ciliopathy caused by PSKH1 mutations. Genet Med 2024; 26:101231. [PMID: 39132680 DOI: 10.1016/j.gim.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
PURPOSE Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly. METHODS In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test. RESULTS A likely causal variant was identified in 135 families (48.56%). These comprise 135 families that harbor variants spanning 37 genes with established or tentative links to cholestasis. In addition, we propose a novel candidate gene (PSKH1) (HGNC:9529) in 4 families. PSKH1 was particularly compelling because of strong linkage in 3 consanguineous families who shared a novel hepatorenal ciliopathy phenotype. Two of the 4 families shared a founder homozygous variant, whereas the third and fourth had different homozygous variants in PSKH1. PSKH1 encodes a putative protein serine kinase of unknown function. Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. CONCLUSION Our results support the use of genomics in the workup of pediatric cholestasis and reveal PSKH1-related hepatorenal ciliopathy as a novel candidate monogenic form.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ae-Ri Ji
- Translational Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada; The Centre for Phenogenomics, Toronto, ON, Canada
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Lucy J Mather
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Colin McKerlie
- Translational Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Geoffrey Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Paul K Potter
- Department of Biomedical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa AlSheddi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wendy L van der Woerd
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dalal AlBogami
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Kishwer Kumar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ali Syed Muhammad Akhtar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hiba Binomar
- Pediatric Transplant Gastro & Hepatology, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hadeel Almanea
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, Department of Pediatric Subspecialties, Children Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sabine A Fuchs
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Meng Y, Garnish SE, Davies KA, Black KA, Leis AP, Horne CR, Hildebrand JM, Hoblos H, Fitzgibbon C, Young SN, Dite T, Dagley LF, Venkat A, Kannan N, Koide A, Koide S, Glukhova A, Czabotar PE, Murphy JM. Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization. Nat Commun 2023; 14:6804. [PMID: 37884510 PMCID: PMC10603135 DOI: 10.1038/s41467-023-42255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katrina A Black
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Aarya Venkat
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
4
|
Garnish SE, Martin KR, Kauppi M, Jackson VE, Ambrose R, Eng VV, Chiou S, Meng Y, Frank D, Tovey Crutchfield EC, Patel KM, Jacobsen AV, Atkin-Smith GK, Di Rago L, Doerflinger M, Horne CR, Hall C, Young SN, Cook M, Athanasopoulos V, Vinuesa CG, Lawlor KE, Wicks IP, Ebert G, Ng AP, Slade CA, Pearson JS, Samson AL, Silke J, Murphy JM, Hildebrand JM. A common human MLKL polymorphism confers resistance to negative regulation by phosphorylation. Nat Commun 2023; 14:6046. [PMID: 37770424 PMCID: PMC10539340 DOI: 10.1038/s41467-023-41724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-β induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.
Collapse
Affiliation(s)
- Sarah E Garnish
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Katherine R Martin
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Maria Kauppi
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Victoria E Jackson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Rebecca Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Shene Chiou
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Yanxiang Meng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Emma C Tovey Crutchfield
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Parkville, VIC, Australia
| | - Komal M Patel
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Georgia K Atkin-Smith
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Christopher R Horne
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Cathrine Hall
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Samuel N Young
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Matthew Cook
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology and Canberra Clinical Genomics, Australian National University, Canberra, ACT, Australia
- Department of Immunology and Infection, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- The Francis Crick Institute, London, UK
- University College London, London, UK
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Ashley P Ng
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Clinical Haematology Department, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Charlotte A Slade
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - André L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Meng Y, Horne CR, Samson AL, Dagley LF, Young SN, Sandow JJ, Czabotar PE, Murphy JM. Human RIPK3 C-lobe phosphorylation is essential for necroptotic signaling. Cell Death Dis 2022; 13:565. [PMID: 35739084 PMCID: PMC9226014 DOI: 10.1038/s41419-022-05009-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling. Here, we sought to identify phosphorylation sites of RIPK3 and dissect their regulatory functions. Phosphoproteomics identified 21 phosphorylation sites in HT29 cells overexpressing human RIPK3. By comparing cells expressing wild-type and kinase-inactive D142N RIPK3, autophosphorylation sites and substrates of other cellular kinases were distinguished. Of these 21 phosphosites, mutational analyses identified only pT224 and pS227 as crucial, synergistic sites for stable interaction with MLKL to promote necroptosis, while the recently reported activation loop phosphorylation at S164/T165 negatively regulate the kinase activity of RIPK3. Despite being able to phosphorylate MLKL to a similar or higher extent than wild-type RIPK3, mutation of T224, S227, or the RHIM in RIPK3 attenuated necroptosis. This finding highlights the stable recruitment of human MLKL by RIPK3 to the necrosome as an essential checkpoint in necroptosis signaling, which is independent from and precedes the phosphorylation of MLKL.
Collapse
Affiliation(s)
- Yanxiang Meng
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Christopher R. Horne
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Andre L. Samson
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Laura F. Dagley
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Samuel N. Young
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Jarrod J. Sandow
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - Peter E. Czabotar
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| | - James M. Murphy
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|