1
|
Haggie L, Besier T, McMorland A. Circuits in the motor cortex explain oscillatory responses to transcranial magnetic stimulation. Netw Neurosci 2024; 8:96-118. [PMID: 38562291 PMCID: PMC10861165 DOI: 10.1162/netn_a_00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular method used to investigate brain function. Stimulation over the motor cortex evokes muscle contractions known as motor evoked potentials (MEPs) and also high-frequency volleys of electrical activity measured in the cervical spinal cord. The physiological mechanisms of these experimentally derived responses remain unclear, but it is thought that the connections between circuits of excitatory and inhibitory neurons play a vital role. Using a spiking neural network model of the motor cortex, we explained the generation of waves of activity, so called 'I-waves', following cortical stimulation. The model reproduces a number of experimentally known responses including direction of TMS, increased inhibition, and changes in strength. Using populations of thousands of neurons in a model of cortical circuitry we showed that the cortex generated transient oscillatory responses without any tuning, and that neuron parameters such as refractory period and delays influenced the pattern and timing of those oscillations. By comparing our network with simpler, previously proposed circuits, we explored the contributions of specific connections and found that recurrent inhibitory connections are vital in producing later waves that significantly impact the production of motor evoked potentials in downstream muscles (Thickbroom, 2011). This model builds on previous work to increase our understanding of how complex circuitry of the cortex is involved in the generation of I-waves.
Collapse
Affiliation(s)
- Lysea Haggie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angus McMorland
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Zrenner C, Kozák G, Schaworonkow N, Metsomaa J, Baur D, Vetter D, Blumberger DM, Ziemann U, Belardinelli P. Corticospinal excitability is highest at the early rising phase of sensorimotor µ-rhythm. Neuroimage 2023; 266:119805. [PMID: 36513289 DOI: 10.1016/j.neuroimage.2022.119805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha oscillations are thought to reflect alternating cortical states of excitation and inhibition. Studies of perceptual thresholds and evoked potentials have shown the scalp EEG negative phase of the oscillation to correspond to a short-lasting low-threshold and high-excitability state of underlying visual, somatosensory, and primary motor cortex. The negative peak of the oscillation is assumed to correspond to the state of highest excitability based on biophysical considerations and considerable effort has been made to improve the extraction of a predictive signal by individually optimizing EEG montages. Here, we investigate whether it is the negative peak of sensorimotor µ-rhythm that corresponds to the highest corticospinal excitability, and whether this is consistent between individuals. In 52 adult participants, a standard 5-channel surface Laplacian EEG montage was used to extract sensorimotor µ-rhythm during transcranial magnetic stimulation (TMS) of primary motor cortex. Post-hoc trials were sorted from 800 TMS-evoked motor potentials (MEPs) according to the pre-stimulus EEG (estimated instantaneous phase) and MEP amplitude (as an index of corticospinal excitability). Different preprocessing transformations designed to improve the accuracy by which µ-alpha phase predicts excitability were also tested. By fitting a sinusoid to the MEP amplitudes, sorted according to pre-stimulus EEG-phase, we found that excitability was highest during the early rising phase, at a significant delay with respect to the negative peak by on average 45° or 10 ms. The individual phase of highest excitability was consistent across study participants and unaffected by two different EEG-cleaning methods that utilize 64 channels to improve signal quality by compensating for individual noise level and channel covariance. Personalized transformations of the montage did not yield better prediction of excitability from µ-alpha phase. The relationship between instantaneous phase of a brain oscillation and fluctuating cortical excitability appears to be more complex than previously hypothesized. In TMS of motor cortex, a standard surface Laplacian 5-channel EEG montage is effective in extracting a predictive signal and the phase corresponding to the highest excitability appears to be consistent between individuals. This is an encouraging result with respect to the clinical potential of therapeutic personalized brain interventions in the motor system. However, it remains to be investigated, whether similar results can be obtained for other brain areas and brain oscillations targeted with EEG and TMS.
Collapse
Affiliation(s)
- Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Neurology & Stroke, University of Tübingen, Germany.
| | - Gábor Kozák
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Johanna Metsomaa
- Department of Neurology & Stroke, University of Tübingen, Germany; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - David Baur
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - David Vetter
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
3
|
Kesselheim J, Takemi M, Christiansen L, Karabanov AN, Siebner HR. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. J Neurophysiol 2023; 129:410-420. [PMID: 36629338 DOI: 10.1152/jn.00263.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Single-pulse transcranial magnetic stimulation (TMS) of the precentral hand representation (M1HAND) can elicit indirect waves in the corticospinal tract at a periodicity of ∼660 Hz, called I-waves. These descending volleys are produced by transsynaptic excitation of fast-conducting corticospinal axons in M1HAND. Paired-pulse TMS can induce short-interval intracortical facilitation (SICF) of motor evoked potentials (MEPs) at interpulse intervals that match I-wave periodicity. This study examined whether short-latency corticospinal facilitation engages additional mechanisms independently of I-wave periodicity. In 19 volunteers, one to four biphasic TMS pulses were applied to left M1HAND with interpulse intervals adjusted to the first peak or trough of the individual SICF curve at different intensities to probe the intensity-response relationship. Multipulse TMSHAND at individual peak latency facilitated MEP amplitudes and reduced resting motor threshold (RMT) compared with single pulses. Multipulse TMSHAND at individual trough latency also produced a consistent facilitation of MEPs and a reduction of RMT. Short-latency facilitation at trough latency was less pronounced, but the relative difference in facilitation decreased with increasing stimulus intensity. Increasing the pulse number had only a modest effect. Two mechanisms underlie short-latency facilitation caused by biphasic multipulse TMSHAND. One intracortical mechanism is related to I-wave periodicity and engages fast-conducting direct projections to spinal motoneurons. A second corticospinal mechanism does not rely on I-wave rhythmicity and may be mediated by slower-conducting indirect pyramidal tract projections from M1HAND to spinal interneurons. The latter mechanism deserves more attention in studies of the corticomotor system and its link to manual motor control using the MEP.NEW & NOTEWORTHY TMS pairs evoke SICF at interpulse intervals (IPIs) that match I-wave periodicity. Biphasic bursts with IPIs at the latency of the first peak facilitate MEPs and reduce corticomotor threshold. Bursts at the latency of the first trough facilitate MEPs and reduce corticomotor threshold to a lesser extent. TMS bursts facilitate corticomotor excitability via two mechanisms: SICF-dependently via fast-conducting direct projections from M1HAND to spinal motoneurons and SICF-independently, probably through slower-conducting indirect pyramidal tract projections.
Collapse
Affiliation(s)
- Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Mitsuaki Takemi
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Bunkyo City, Tokyo, Japan
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Section for Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen NV, Denmark.,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
4
|
Numssen O, Zier AL, Thielscher A, Hartwigsen G, Knösche TR, Weise K. Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression. Neuroimage 2021; 245:118654. [PMID: 34653612 DOI: 10.1016/j.neuroimage.2021.118654] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to investigate causal structure-function relationships in the human brain. However, a precise delineation of the effectively stimulated neuronal populations is notoriously impeded by the widespread and complex distribution of the induced electric field. Here, we propose a method that allows rapid and feasible cortical localization at the individual subject level. The functional relationship between electric field and behavioral effect is quantified by combining experimental data with numerically modeled fields to identify the cortical origin of the modulated effect. Motor evoked potentials (MEPs) from three finger muscles were recorded for a set of random stimulations around the primary motor area. All induced electric fields were nonlinearly regressed against the elicited MEPs to identify their cortical origin. We could distinguish cortical muscle representation with high spatial resolution and localized them primarily on the crowns and rims of the precentral gyrus. A post-hoc analysis revealed exponential convergence of the method with the number of stimulations, yielding a minimum of about 180 random stimulations to obtain stable results. Establishing a functional link between the modulated effect and the underlying mode of action, the induced electric field, is a fundamental step to fully exploit the potential of TMS. In contrast to previous approaches, the presented protocol is particularly easy to implement, fast to apply, and very robust due to the random coil positioning and therefore is suitable for practical and clinical applications.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Anna-Leah Zier
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Technical University of Denmark, Center for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Thomas R Knösche
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, Germany
| | - Konstantin Weise
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693 Ilmenau, Germany
| |
Collapse
|
5
|
Sasaki R, Otsuru N, Miyaguchi S, Kojima S, Watanabe H, Ohno K, Sakurai N, Kodama N, Sato D, Onishi H. Influence of Brain-Derived Neurotrophic Factor Genotype on Short-Latency Afferent Inhibition and Motor Cortex Metabolites. Brain Sci 2021; 11:brainsci11030395. [PMID: 33804682 PMCID: PMC8003639 DOI: 10.3390/brainsci11030395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The Met allele of the brain-derived neurotrophic factor (BDNF) gene confers reduced cortical BDNF expression and associated neurobehavioral changes. BDNF signaling influences the survival, development, and synaptic function of cortical networks. Here, we compared gamma-aminobutyric acid (GABA)ergic network activity in the human primary motor cortex (M1) between the Met (Val/Met and Met/Met) and non-Met (Val/Val) genotype groups. Short- and long-interval intracortical inhibition, short-latency afferent inhibition (SAI), and long-latency afferent inhibition were measured using transcranial magnetic stimulation (TMS) as indices of GABAergic activity. Furthermore, the considerable inter-individual variability in inhibitory network activity typically measured by TMS may be affected not only by GABA but also by other pathways, including glutamatergic and cholinergic activities; therefore, we used 3-T magnetic resonance spectroscopy (MRS) to measure the dynamics of glutamate plus glutamine (Glx) and choline concentrations in the left M1, left somatosensory cortex, and right cerebellum. All inhibitory TMS conditions produced significantly smaller motor-evoked potentials than single-pulses. SAI was significantly stronger in the Met group than in the Val/Val group. Only the M1 Glx concentration was significantly lower in the Met group, while the BDNF genotype did not affect choline concentration in any region. Further, a positive correlation was observed between SAI and Glx concentrations only in M1. Our findings provide evidence that the BDNF genotype regulates both the inhibitory and excitatory circuits in human M1. In addition, lower Glx concentration in the M1 of Met carriers may alter specific inhibitory network on M1, thereby influencing the cortical signal processing required for neurobehavioral functions.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Correspondence: ; Tel.: +81-25-257-4445
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
| | - Ken Ohno
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Noriko Sakurai
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (K.O.); (N.S.)
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan; (N.O.); (S.M.); (S.K.); (H.W.); (N.K.); (D.S.); (H.O.)
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
6
|
Calvert GHM, McMackin R, Carson RG. Probing interhemispheric dorsal premotor-primary motor cortex interactions with threshold hunting transcranial magnetic stimulation. Clin Neurophysiol 2020; 131:2551-2560. [PMID: 32927210 DOI: 10.1016/j.clinph.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterise the effect of altering transcranial magnetic stimulation parameters on the magnitude of interhemispheric inhibition (IHI) from dorsal premotor (PMd) to primary motor cortex (M1). METHOD We used a fully automated adaptive threshold hunting paradigm to quantify PMd-M1 IHI across a range of conditioning stimulus (CS) intensities (90%, 110%, 130% of resting motor threshold, rMT) and interstimulus intervals (ISIs) (8, 10, 40 ms). M1-M1 IHI was examined with CS intensities of 110%, 120%, and 130% rMT and ISIs of 10 and 40 ms. Two test coil orientations (inducing posterior-anterior or anterior-posterior current) were used. RESULTS PMd-M1 IHI was obtained consistently with posterior-anterior (but not anterior-posterior) test stimuli and increased with CS intensity. M1-M1 IHI was expressed across all conditions and increased with CS intensity when posterior-anterior but not anterior-posterior induced current was used. CONCLUSIONS The expression of PMd-M1 IHI is contingent on test coil orientation (requiring posterior-anterior induced current) and increases as a function of CS intensity. The expression of M1-M1 IHI is not dependent on test coil orientation. SIGNIFICANCE We defined a range of parameters that elicit reliable PMd-M1 IHI. This (threshold hunting) methodology may provide a means to quantify premotor-motor pathology and reveal novel quantitative biomarkers.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Queen's University Belfast, David Keir Building, 18-30 Malone Road, Belfast BT9 5BN, Northern Ireland, UK
| | - Roisin McMackin
- Academic Unit of Neurology, 152-160 Pearse St., Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; School of Psychology, Queen's University Belfast, David Keir Building, 18-30 Malone Road, Belfast BT9 5BN, Northern Ireland, UK.
| |
Collapse
|
7
|
D'Amico JM, Dongés SC, Taylor JL. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. J Neurophysiol 2020; 123:1969-1978. [PMID: 32292098 DOI: 10.1152/jn.00607.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paired corticospinal-motoneuronal stimulation (PCMS) is the repeated pairing of transcranial magnetic stimulation (TMS) with peripheral nerve stimulation to modify corticospinal synapses; however, it has yet to be determined whether PCMS modulates cortical excitability in a manner similar to paired-associative stimulation protocols. In this study, we first examined the effects of PCMS on adductor pollicis motor evoked potentials (MEPs). In experiment 1, on 2 separate days PCMS (repetitive, high-intensity TMS and ulnar nerve stimulation pairs; 1.5-ms interstimulus interval; 0.1 Hz) was compared with control conditioning of repetitive high-intensity TMS-only stimuli (0.1 Hz). Before and after conditioning, adductor pollicis MEPs were elicited using low-intensity TMS in three different coil orientations to preferentially activate corticospinal axons directly (thus bypassing cortical effects) or indirectly (cortical effects present). Unexpectedly, similar MEP increases were seen for all orientations on both PCMS (129 to 136% of baseline) and control days (108 to 129% of baseline). Given the common factor between conditioning protocols was repeated, high-intensity TMS, further experiments were performed to characterize this repetitive TMS (rTMS) protocol. In experiment 2, an intensity dependence of the rTMS protocol was revealed by a lack of change in MEPs elicited after repetitive low-intensity TMS (0.1 Hz; P = 0.37). In experiment 3, MEP recruitment curve and paired pulse analyses showed that the high-intensity rTMS protocol increased MEPs over a range of stimulus intensities but that effects were not accompanied by changes in intracortical inhibition or facilitation (P > 0.12). These experiments reveal a novel high-intensity, low-frequency rTMS protocol for enhancing corticospinal excitability.NEW & NOTEWORTHY In this study, we present a novel, intensity-dependent repetitive transcranial magnetic stimulation (rTMS) protocol that induces lasting, plastic changes within the corticospinal tract. High-intensity rTMS at a frequency of 0.1 Hz induces facilitation of motor evoked potentials (MEPs) lasting at least 35 min. Additionally, these changes are not limited only to small MEPs but occur throughout the recruitment curve. Finally, facilitation of MEPs following high-intensity rTMS does not appear to be due to changes in intracortical inhibition or facilitation.
Collapse
Affiliation(s)
| | | | - Janet L Taylor
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Rossini P, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, Ilmoniemi R, Miraglia F, Nitsche M, Pestilli F, Rosanova M, Shirota Y, Tesoriero C, Ugawa Y, Vecchio F, Ziemann U, Hallett M. Methods for analysis of brain connectivity: An IFCN-sponsored review. Clin Neurophysiol 2019; 130:1833-1858. [DOI: 10.1016/j.clinph.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/08/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
|
9
|
Moezzi B, Schaworonkow N, Plogmacher L, Goldsworthy MR, Hordacre B, McDonnell MD, Iannella N, Ridding MC, Triesch J. Simulation of electromyographic recordings following transcranial magnetic stimulation. J Neurophysiol 2018; 120:2532-2541. [PMID: 29975165 DOI: 10.1152/jn.00626.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a technique that enables noninvasive manipulation of neural activity and holds promise in both clinical and basic research settings. The effect of TMS on the motor cortex is often measured by electromyography (EMG) recordings from a small hand muscle. However, the details of how TMS generates responses measured with EMG are not completely understood. We aim to develop a biophysically detailed computational model to study the potential mechanisms underlying the generation of EMG signals following TMS. Our model comprises a feed-forward network of cortical layer 2/3 cells, which drive morphologically detailed layer 5 corticomotoneuronal cells, which in turn project to a pool of motoneurons. EMG signals are modeled as the sum of motor unit action potentials. EMG recordings from the first dorsal interosseous muscle were performed in four subjects and compared with simulated EMG signals. Our model successfully reproduces several characteristics of the experimental data. The simulated EMG signals match experimental EMG recordings in shape and size, and change with stimulus intensity and contraction level as in experimental recordings. They exhibit cortical silent periods that are close to the biological values and reveal an interesting dependence on inhibitory synaptic transmission properties. Our model predicts several characteristics of the firing patterns of neurons along the entire pathway from cortical layer 2/3 cells down to spinal motoneurons and should be considered as a viable tool for explaining and analyzing EMG signals following TMS. NEW & NOTEWORTHY A biophysically detailed model of EMG signal generation following transcranial magnetic stimulation (TMS) is proposed. Simulated EMG signals match experimental EMG recordings in shape and amplitude. Motor-evoked potential and cortical silent period properties match experimental data. The model is a viable tool to analyze, explain, and predict EMG signals following TMS.
Collapse
Affiliation(s)
- Bahar Moezzi
- Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide , Australia.,Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia
| | | | | | - Mitchell R Goldsworthy
- Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia.,Discipline of Psychiatry, School of Medicine, University of Adelaide , Adelaide , Australia
| | - Brenton Hordacre
- Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia.,Division of Health Sciences, University of South Australia , Adelaide , Australia
| | - Mark D McDonnell
- Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide , Australia
| | - Nicolangelo Iannella
- Computational and Theoretical Neuroscience Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide , Australia.,School of Mathematical Sciences, University of Nottingham , Nottingham , United Kingdom
| | - Michael C Ridding
- Robinson Research Institute, School of Medicine, University of Adelaide , Adelaide , Australia
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies , Frankfurt , Germany
| |
Collapse
|
10
|
Wilson MT, Fulcher BD, Fung PK, Robinson P, Fornito A, Rogasch NC. Biophysical modeling of neural plasticity induced by transcranial magnetic stimulation. Clin Neurophysiol 2018; 129:1230-1241. [DOI: 10.1016/j.clinph.2018.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
11
|
A precision medicine approach to repetitive Transcranial Magnetic Stimulation (rTMS). Brain Stimul 2018; 11:463-464. [DOI: 10.1016/j.brs.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 11/19/2022] Open
|
12
|
Schaworonkow N, Triesch J. P078 Modeling the effect of phase-triggered transcranial magnetic stimulation on cortical excitability. Clin Neurophysiol 2017. [DOI: 10.1016/j.clinph.2016.10.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017; 128:843-857. [PMID: 28233641 DOI: 10.1016/j.clinph.2017.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 01/31/2023]
Abstract
Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Til Ole Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Institute for Medical Psychology and Behavioral Neurobiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Flavio Fröhlich
- Department of Psychiatry & Department of Biomedical Engineering & Department of Cell Biology and Physiology & Neuroscience Center & Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy & MEG Center, University Hospital of Tübingen, Tübingen, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, Charles Wolfson Neuroscience Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Institut du Cerveau et la Moelle (ICM), CNRS UMR 7225-INSERM U-117, Université Pierre et Marie Curie, Paris, France
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC University of Trento, Rovereto, Italy & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Center for Excellence "Hearing4all", European Medical School, Carl von Ossietzky University & Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. RECENT FINDINGS Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to 'standardize' the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified rules. In contrast, adaptive closed-loop stimulation dynamically adjusts stimulation settings based on the occurrence of stimulation-induced state changes. SUMMARY Approaches that take into account trait-related and state-related determinants of stimulation-induced plasticity bear considerable potential to establish noninvasive transcranial brain stimulation as interventional therapeutic tool.
Collapse
|
15
|
Bestmann S. Computational neurostimulation in basic and translational research. PROGRESS IN BRAIN RESEARCH 2015; 222:xv-xx. [PMID: 26541385 DOI: 10.1016/s0079-6123(15)00159-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|