1
|
Engeli EJE, Russo AG, Ponticorvo S, Zoelch N, Hock A, Hulka LM, Kirschner M, Preller KH, Seifritz E, Quednow BB, Esposito F, Herdener M. Accumbal-thalamic connectivity and associated glutamate alterations in human cocaine craving: A state-dependent rs-fMRI and 1H-MRS study. Neuroimage Clin 2023; 39:103490. [PMID: 37639901 PMCID: PMC10474092 DOI: 10.1016/j.nicl.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Craving is a core symptom of cocaine use disorder and a major factor for relapse risk. To date, there is no pharmacological therapy to treat this disease or at least to alleviate cocaine craving as a core symptom. In animal models, impaired prefrontal-striatal signalling leading to altered glutamate release in the nucleus accumbens appear to be the prerequisite for cocaine-seeking. Thus, those network and metabolic changes may constitute the underlying mechanisms for cocaine craving and provide a potential treatment target. In humans, there is recent evidence for corresponding glutamatergic alterations in the nucleus accumbens, however, the underlying network disturbances that lead to this glutamate imbalance remain unknown. In this state-dependent randomized, placebo-controlled, double-blinded, cross-over multimodal study, resting state functional magnetic resonance imaging in combination with small-voxel proton magnetic resonance spectroscopy (voxel size: 9.4 × 18.8 × 8.4 mm3) was applied to assess network-level and associated neurometabolic changes during a non-craving and a craving state, induced by a custom-made cocaine-cue film, in 18 individuals with cocaine use disorder and 23 healthy individuals. Additionally, we assessed the potential impact of a short-term challenge of N-acetylcysteine, known to normalize disturbed glutamate homeostasis and to thereby reduce cocaine-seeking in animal models of addiction, compared to a placebo. We found increased functional connectivity between the nucleus accumbens and the dorsolateral prefrontal cortex during the cue-induced craving state. However, those changes were not linked to alterations in accumbal glutamate levels. Whereas we additionally found increased functional connectivity between the nucleus accumbens and a midline part of the thalamus during the cue-induced craving state. Furthermore, obsessive thinking about cocaine and the actual intensity of cocaine use were predictive of cue-induced functional connectivity changes between the nucleus accumbens and the thalamus. Finally, the increase in accumbal-thalamic connectivity was also coupled with craving-related glutamate rise in the nucleus accumbens. Yet, N-acetylcysteine had no impact on craving-related changes in functional connectivity. Together, these results suggest that connectivity changes within the fronto-accumbal-thalamic loop, in conjunction with impaired glutamatergic transmission, underlie cocaine craving and related clinical symptoms, pinpointing the thalamus as a crucial hub for cocaine craving in humans.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Andrea G Russo
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Ponticorvo
- Center for Magnetic Resonance Research, University of Minnesota, Minnesota, United States
| | - Niklaus Zoelch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute of Forensic Medicine, Department of Forensic Medicine and Imaging, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Transdiagnostic and Multimodal Neuroimaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Pharmaco-Neuroimaging and Cognitive-Emotional Processing, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Mikus N, Korb S, Massaccesi C, Gausterer C, Graf I, Willeit M, Eisenegger C, Lamm C, Silani G, Mathys C. Effects of dopamine D2/3 and opioid receptor antagonism on the trade-off between model-based and model-free behaviour in healthy volunteers. eLife 2022; 11:e79661. [PMID: 36468832 PMCID: PMC9721617 DOI: 10.7554/elife.79661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022] Open
Abstract
Human behaviour requires flexible arbitration between actions we do out of habit and actions that are directed towards a specific goal. Drugs that target opioid and dopamine receptors are notorious for inducing maladaptive habitual drug consumption; yet, how the opioidergic and dopaminergic neurotransmitter systems contribute to the arbitration between habitual and goal-directed behaviour is poorly understood. By combining pharmacological challenges with a well-established decision-making task and a novel computational model, we show that the administration of the dopamine D2/3 receptor antagonist amisulpride led to an increase in goal-directed or 'model-based' relative to habitual or 'model-free' behaviour, whereas the non-selective opioid receptor antagonist naltrexone had no appreciable effect. The effect of amisulpride on model-based/model-free behaviour did not scale with drug serum levels in the blood. Furthermore, participants with higher amisulpride serum levels showed higher explorative behaviour. These findings highlight the distinct functional contributions of dopamine and opioid receptors to goal-directed and habitual behaviour and support the notion that even small doses of amisulpride promote flexible application of cognitive control.
Collapse
Affiliation(s)
- Nace Mikus
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
- Interacting Minds Centre, Aarhus UniversityAarhusDenmark
| | - Sebastian Korb
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
- Department of Psychology, University of EssexColchesterUnited Kingdom
| | - Claudia Massaccesi
- Department of Clinical and Health Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Christian Gausterer
- FDZ‐Forensisches DNA Zentrallabor GmbH, Medical University of ViennaViennaAustria
| | - Irene Graf
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
| | - Christoph Eisenegger
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Claus Lamm
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Giorgia Silani
- Department of Clinical and Health Psychology, Faculty of Psychology, University of ViennaViennaAustria
| | - Christoph Mathys
- Interacting Minds Centre, Aarhus UniversityAarhusDenmark
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH ZurichZurichSwitzerland
- Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
| |
Collapse
|
3
|
Zhukovsky P, Morein-Zamir S, Ziauddeen H, Fernandez-Egea E, Meng C, Regenthal R, Sahakian BJ, Bullmore ET, Robbins TW, Dalley JW, Ersche KD. Prefrontal Cortex Activation and Stopping Performance Underlie the Beneficial Effects of Atomoxetine on Response Inhibition in Healthy Volunteers and Those With Cocaine Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1116-1126. [PMID: 34508901 DOI: 10.1016/j.bpsc.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Impaired response inhibition in individuals with cocaine use disorder (CUD) is hypothesized to depend on deficient noradrenergic signaling in corticostriatal networks. Remediation of noradrenergic neurotransmission with selective norepinephrine reuptake inhibitors such as atomoxetine may therefore have clinical utility to improve response inhibitory control in CUD. METHODS We carried out a randomized, double-blind, placebo-controlled, crossover study with 26 participants with CUD and 28 control volunteers investigating the neural substrates of stop-signal inhibitory control. The effects of a single dose of atomoxetine (40 mg) were compared with placebo on stop-signal reaction time performance and functional network connectivity using dynamic causal modeling. RESULTS We found that atomoxetine speeded Go response times in both control participants and those with CUD. Improvements in stopping efficiency on atomoxetine were conditional on baseline (placebo) stopping performance and were directly associated with increased inferior frontal gyrus activation. Further, stopping performance, task-based brain activation, and effective connectivity were similar in the 2 groups. Dynamic causal modeling of effective connectivity of multiple prefrontal and basal ganglia regions replicated and extended previous models of network function underlying inhibitory control to CUD and control volunteers and showed subtle effects of atomoxetine on prefrontal-basal ganglia interactions. CONCLUSIONS These findings demonstrate that atomoxetine improves response inhibition in a baseline-dependent manner in control participants and in those with CUD. Our results emphasize inferior frontal cortex function as a future treatment target owing to its key role in improving response inhibition in CUD.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Sharon Morein-Zamir
- School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom
| | - Emilio Fernandez-Egea
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom
| | - Chun Meng
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Regenthal
- Clinical Pharmacology Department, Leipzig University, Leipzig, Germany; Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom; GlaxoSmithKline, Immuno-Inflammation Therapeutic Area Unit, Stevenage, Hertfordshire, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jeffrey W Dalley
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Institut of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Mavromatis LA, Rosoff DB, Cupertino RB, Garavan H, Mackey S, Lohoff FW. Association Between Brain Structure and Alcohol Use Behaviors in Adults: A Mendelian Randomization and Multiomics Study. JAMA Psychiatry 2022; 79:869-878. [PMID: 35947372 PMCID: PMC9366661 DOI: 10.1001/jamapsychiatry.2022.2196] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
Importance Past studies have identified associations between brain macrostructure and alcohol use behaviors. However, identifying directional associations between these phenotypes is difficult due to the limitations of observational studies. Objective To use mendelian randomization (MR) to identify directional associations between brain structure and alcohol use and elucidate the transcriptomic and cellular underpinnings of identified associations. Design, Setting, and Participants The main source data comprised summary statistics from population-based and case-control genome-wide association studies (GWAS) of neuroimaging, behavioral, and clinical phenotypes (N = 763 874). Using these data, bidirectional and multivariable MR was performed analyzing associations between brain macrostructure and alcohol use. Downstream transcriptome-wide association studies (TWAS) and cell-type enrichment analyses investigated the biology underlying identified associations. The study approach was data driven and did not test any a priori hypotheses. Data were analyzed August 2021 to May 2022. Main Outcomes and Measures Brain structure phenotypes (global cortical thickness [GCT] and global cortical surface area [GCSA] in 33 709 individuals and left-right subcortical volumes in 19 629 individuals) and alcohol use behaviors (alcoholic drinks per week [DPW] in 537 349 individuals, binge drinking frequency in 143 685 individuals, and alcohol use disorder in 8845 individuals vs 20 657 control individuals [total of 29 502]). Results The main bidirectional MR analyses were performed in samples totaling 763 874 individuals, among whom more than 94% were of European ancestry, 52% to 54% were female, and the mean cohort ages were 40 to 63 years. Negative associations were identified between genetically predicted GCT and binge drinking (β, -2.52; 95% CI, -4.13 to -0.91) and DPW (β, -0.88; 95% CI, -1.37 to -0.40) at a false discovery rate (FDR) of 0.05. These associations remained significant in multivariable MR models that accounted for neuropsychiatric phenotypes, substance use, trauma, and neurodegeneration. TWAS of GCT and alcohol use behaviors identified 5 genes at the 17q21.31 locus oppositely associated with GCT and binge drinking or DPW (FDR = 0.05). Cell-type enrichment analyses implicated glutamatergic cortical neurons in alcohol use behaviors. Conclusions and Relevance The findings in this study show that the associations between GCT and alcohol use may reflect a predispositional influence of GCT and that 17q21.31 genes and glutamatergic cortical neurons may play a role in this association. While replication studies are needed, these findings should enhance the understanding of associations between brain structure and alcohol use.
Collapse
Affiliation(s)
- Lucas A. Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- National Institutes of Health–Oxford-Cambridge Scholars Program; Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Renata B. Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Engeli EJE, Zoelch N, Hock A, Nordt C, Hulka LM, Kirschner M, Scheidegger M, Esposito F, Baumgartner MR, Henning A, Seifritz E, Quednow BB, Herdener M. Impaired glutamate homeostasis in the nucleus accumbens in human cocaine addiction. Mol Psychiatry 2021; 26:5277-5285. [PMID: 32601455 DOI: 10.1038/s41380-020-0828-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is characterized by overwhelming craving for the substance, which drives its escalating use despite adverse consequences. Animal models suggest a disrupted glutamate homeostasis in the nucleus accumbens to underlie addiction-like behavior. After chronic administration of cocaine, rodents show decreased levels of accumbal glutamate, whereas drug-seeking reinstatement is associated with enhanced glutamatergic transmission. However, due to technical obstacles, the role of disturbed glutamate homeostasis for cocaine addiction in humans remains only partially understood, and accordingly, no approved pharmacotherapy exists. Here, we applied a tailored proton magnetic resonance spectroscopy protocol that allows glutamate quantification within the human nucleus accumbens. We found significantly reduced basal glutamate concentrations in the nucleus accumbens in cocaine-addicted (N = 26) compared with healthy individuals (N = 30), and increased glutamate levels during cue-induced craving in cocaine-addicted individuals compared with baseline. These glutamatergic alterations, however, could not be significantly modulated by a short-term challenge of N-acetylcysteine (2400 mg/day on 2 days). Taken together, our findings reveal a disturbed accumbal glutamate homeostasis as a key neurometabolic feature of cocaine addiction also in humans. Therefore, we suggest the glutamatergic system as a promising target for the development of novel pharmacotherapies, and in addition, as a potential biomarker for a personalized medicine approach in addiction.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Niklaus Zoelch
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Carlos Nordt
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Markus R Baumgartner
- Centre for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany.,Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Noël X. Les addictions sous l’angle neurocognitif. PSYCHO-ONCOLOGIE 2020. [DOI: 10.3166/pson-2020-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Les principaux modèles neurocognitifs conçoivent l’addiction comme le résultat d’un déséquilibre de trois systèmes cérébraux en constante interaction : un circuit striatoamygdalien qui favorise les comportements automatiques, habituels et saillants, le cortex préfrontal impliqué dans la prise de décision et dans le contrôle inhibiteur. Enfin, la région insulaire permet un traitement proprioceptif à l’origine d’états émotionnels conscients, ce qui exerce une influence sur la prise de décision. L’influence du stress ainsi que les perspectives cliniques sont discutées.
Collapse
|
7
|
Kexel AK, Vonmoos M, Preller KH, Hulka LM, Seifritz E, Quednow BB. Social and Non-Social Cognitive Enhancement in Cocaine Users-A Closer Look on Enhancement Motives for Cocaine Consumption. Front Psychiatry 2020; 11:618. [PMID: 32695032 PMCID: PMC7338788 DOI: 10.3389/fpsyt.2020.00618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cognitive disturbances of chronic cocaine users (CU) have been repeatedly investigated. However, it is yet unknown how CU using cocaine for cognitive or social enhancement differ from stimulant-naïve controls and CU that do not have these motives. More precisely, we assumed that CU with an enhancement motive self-medicate deficits in specific cognitive abilities, i.e., they use cocaine to enhance their performance in either social (social motive) or non-social cognitive situations (cognitive motive). METHODS Forty-two CU were categorized according to their motives for cocaine consumption into social and non-social motive groups as well as cognitive and non-cognitive motive groups, respectively. Subsequently, CU motive groups were compared to 48 stimulant-naïve controls in their social and non-social cognitive functioning applying a comprehensive neuropsychological test battery. RESULTS The social motive group showed deficits in cognitive empathy compared to controls (Cohen's d = 0.65) and the non-social motive group (d = 0.60). No mentionable effects were found for emotional empathy and Theory-of-Mind. Cognitive and non-cognitive motive groups both showed general cognitive deficits but with different patterns of impairments compared to controls: the cognitive motive group had deficits mainly in working memory (d = 0.84) and declarative memory (d = 0.60), whereas the non-cognitive motive group also had deficits in working memory (d = 0.61) but additionally in executive functions (d = 0.67). For the domains declarative memory and executive functions, the respective other CU group displayed intermediate performance. CONCLUSIONS This study demonstrates that cocaine is partially instrumentalized by CU with specific enhancement motives to counteract related cognitive impairments.
Collapse
Affiliation(s)
- Ann-Kathrin Kexel
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Matthias Vonmoos
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Fritz BM, Muñoz B, Atwood BK. Genetic Selection for Alcohol Preference in Mice Alters Dorsal Striatum Neurotransmission. Alcohol Clin Exp Res 2019; 43:2312-2321. [PMID: 31491046 DOI: 10.1111/acer.14187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Although it is widely acknowledged that the risk of developing an alcohol use disorder (AUD) is strongly influenced by genetic factors, very little is known about how this genetic predisposition may alter neurotransmission in a way that promotes AUD susceptibility. The dorsal striatum has garnered increased attention as a brain region of interest in AUD development given its significant roles in goal-directed and habitual behavior. METHODS In the present work, dorsal striatal neurotransmission parameters were measured in preclinical mouse models of high and low AUD risk. We performed brain slice whole-cell patch clamp electrophysiological recordings from medium spiny neurons (MSNs) in the dorsomedial (DMS) and dorsolateral (DLS) striatum of naïve adult male and female selectively bred high- and low-alcohol-preferring lines of mice (HAP and LAP). RESULTS We found that MSNs of HAP mice were significantly more excitable than those of LAP mice, specifically in the DLS. Additionally, the frequencies of spontaneous glutamate- and GABA-mediated currents were both elevated in HAP mice relative to LAP mice in both dorsal striatal subregions, whereas amplitude differences were more variable between lines and subregions. AMPAR/NMDAR current ratios were significantly lower in HAP mice in both DLS and DMS. CONCLUSIONS Collectively, these results suggest that genetic predisposition for high or low alcohol consumption produces significantly different basal functional states within both DLS and DMS which may be important factors in the behavioral phenotypes of HAP and LAP mice.
Collapse
Affiliation(s)
- Brandon M Fritz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Braulio Muñoz
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Higgins C, Smith BH, Matthews K. Substance misuse in patients who have comorbid chronic pain in a clinical population receiving methadone maintenance therapy for the treatment of opioid dependence. Drug Alcohol Depend 2018; 193:131-136. [PMID: 30368067 DOI: 10.1016/j.drugalcdep.2018.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
Abstract
AIMS To compare specific substance misuse in treatment-seeking, opioid-dependent patients with and without comorbid chronic pain, and to assess the respective value of urinalysis and patient reports in assessing substance misuse. METHODS Participants comprised a clinical population in a regional NHS Substance Misuse Service in the East of Scotland (N = 521). The Brief Pain Inventory - Short Form was used to assess pain, and the Maudsley Addiction Profile and urinalysis were used to assess substance misuse at study inception. Urinalysis was used to assess substance misuse during the 5-year follow-up period. Data were hosted, linked, anonymized and analyzed within a national Safe Haven. RESULTS Compared with opioid-dependent patients with no pain, a significantly higher proportion of treatment-seeking, opioid-dependent patients with chronic pain were engaged in non-medical benzodiazepine use (69% versus 58%; p = 0.016) and illicit cannabinoid use (84% versus 65%; p = 0.025) at study inception. Furthermore, a significantly higher proportion of this group was shown to continue non-medical benzodiazepine use (70% versus 42%; p = 0.037) and illicit cannabinoid use (100% versus 31%; p = 0.002) during the 5-year follow-up period. There were significant correlations between drug screen results and patient-reported use of opioids (Tetrachoric ϱ = 0.4944; p < 0.001), benzodiazepines (Tetrachoric ϱ = 0.2641; p = 0.001) and cannabinoids (Tetrachoric ϱ = 0.8384; p < 0.001). CONCLUSIONS Whilst gaining control of illicit opioid use during treatment, opioid-dependent patients with comorbid chronic pain demonstrated persistent problematic use of benzodiazepines and cannabinoids. This pattern of misuse was shown to persist during the 5-year follow-up period.
Collapse
Affiliation(s)
- Cassie Higgins
- Division of Neuroscience, University of Dundee, Mailbox 6, Level 6, Laboratories Block, Ninewells Hospital and Medical School, Dundee, DD1 9SY Scotland, UK.
| | - Blair H Smith
- Division of Population Health Sciences, University of Dundee, Mackenzie Building, Kirsty Semple Way, Ninewells Hospital and Medical School, Dundee, DD2 4RB Scotland, UK.
| | - Keith Matthews
- Division of Neuroscience, University of Dundee, Mailbox 6, Level 6, Laboratories Block, Ninewells Hospital and Medical School, Dundee, DD1 9SY Scotland, UK.
| |
Collapse
|
10
|
Bonnet U, Scherbaum N. How addictive are gabapentin and pregabalin? A systematic review. Eur Neuropsychopharmacol 2017; 27:1185-1215. [PMID: 28988943 DOI: 10.1016/j.euroneuro.2017.08.430] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/16/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
In the last ten years, gabapentin and pregabalin have been becoming dispensed broadly and sold on black markets, thereby, exposing millions to potential side-effects. Meanwhile, several pharmacovigilance-databases have warned for potential abuse liabilities and overdose fatalities in association with both gabapentinoids. To evaluate their addiction risk in more detail, we conducted a systematic review on PubMed/Scopus and included 106 studies. We did not find convincing evidence of a vigorous addictive power of gabapentinoids which is primarily suggested from their limited rewarding properties, marginal notes on relapses, and the very few cases with gabapentinoid-related behavioral dependence symptoms (ICD-10) in patients without a prior abuse history (N=4). In support, there was no publication about people who sought treatment for the use of gabapentinoids. Pregabalin appeared to be somewhat more addictive than gabapentin regarding the magnitude of behavioral dependence symptoms, transitions from prescription to self-administration, and the durability of the self-administrations. The principal population at risk for addiction of gabapentinoids consists of patients with other current or past substance use disorders (SUD), mostly opioid and multi-drug users, who preferred pregabalin. Pure overdoses of gabapentinoids appeared to be relative safe but can become lethal (pregabalin > gabapentin) in mixture with other psychoactive drugs, especially opioids again and sedatives. Based upon these results, we compared the addiction risks of gabapentin and pregabalin with those of traditional psychoactive substances and recommend that in patients with a history of SUD, gabapentinoids should be avoided or if indispensable, administered with caution by using a strict therapeutic and prescription monitoring.
Collapse
Affiliation(s)
- U Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Grutholzallee 21, D-44577 Castrop-Rauxel, Germany; LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany.
| | - N Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
11
|
Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Transl Psychiatry 2016; 6:e850. [PMID: 27378550 PMCID: PMC4969763 DOI: 10.1038/tp.2016.113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/05/2023] Open
Abstract
Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.
Collapse
|
12
|
Wittwer A, Hulka LM, Heinimann HR, Vonmoos M, Quednow BB. Risky Decisions in a Lottery Task Are Associated with an Increase of Cocaine Use. Front Psychol 2016; 7:640. [PMID: 27242574 PMCID: PMC4860409 DOI: 10.3389/fpsyg.2016.00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
Cocaine use disorder is associated with maladaptive decision-making behavior, which strongly contributes to the harmful consequences of chronic drug use. Prior research has shown that cocaine users exhibit impaired neuropsychological test performances, particularly with regard to attention, learning, and memory but also in executive functions such as decision-making and impulse control. However, to what extent cocaine users show impaired decision-making under risk without feedback has not yet been investigated systematically. Therefore, to examine risk-taking behavior, 31 chronic cocaine users and 26 stimulant-naïve healthy controls who were part of the Zurich Cocaine Cognition Study, performed the Randomized Lottery Task (RALT) with winning lotteries consisting of an uncertain and a certain prospect. Results revealed that risky decisions were associated with male sex, increased cocaine use in the past year, higher cocaine concentrations in the hair, and younger age. In addition, higher levels of cocaine in the hair and cumulative lifetime consumption were associated with risky decisions, whereas potentially confounding factors including cognition and psychiatric symptoms had no significant effect. Taken together, our results indicate that cocaine users who increased their consumption over a period of 1 year show deficits in the processing of risky information accompanied with increased risk-taking. Future research should analyse whether risky decisions could potentially serve as a prognostic marker for cocaine use disorder.
Collapse
Affiliation(s)
- Amrei Wittwer
- Collegium Helveticum, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Lea M Hulka
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of ZurichZurich, Switzerland; Center for Addictive Disorders, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of ZurichZurich, Switzerland
| | - Hans R Heinimann
- Future Resilient Systems, Singapore-ETH CentreSingapore, Singapore; Department of Environmental Systems Science, ETH ZurichZurich, Switzerland
| | - Matthias Vonmoos
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of ZurichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology ZurichZurich, Switzerland
| |
Collapse
|