1
|
Gom RC, George AG, Harris SA, Wickramarachchi P, Bhatt D, Acharjee S, Pittman QJ, Hill MN, Colangeli R, Teskey GC. Emotional comorbidities in epilepsy result from seizure-induced corticosterone activity. Neurobiol Stress 2024; 33:100678. [PMID: 39497812 PMCID: PMC11533717 DOI: 10.1016/j.ynstr.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
People with epilepsy often have psychiatric comorbidities that can significantly impair their quality of life. We previously reported that repeated seizure activity persistently alters endocannabinoid (eCB) signaling in the amygdala which accounts for comorbid emotional dysregulation in rats, however, the mechanism by which these alterations in eCB signaling within the epileptic brain occur is unclear. Endocannabinoid signaling is influenced by corticosterone (CORT) to modulate cognitive and emotional processes and a hyperactive hypothalamic-pituitary-adrenal (HPA) axis occurs in both people with epilepsy and nonhuman animal models of epilepsy. We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, behavioural paradigms and biochemical assays in amygdala kindled adult male Long-Evans rats. We aimed to determine whether seizures induce hypersecretion of CORT and the role this plays in eCB system dysregulation, impaired fear memory, and anxiety-like behaviours associated with seizure activity. Plasma CORT levels were significantly and consistently elevated following seizures over the course of kindling. Pre-seizure administration with the CORT synthesis inhibitor metyrapone prevented this seizure-induced CORT increase, prevented amygdala anandamide downregulation, and synaptic alteration induced by seizure activity. Moreover, treatment with metyrapone or combined glucocorticoid receptor (GR)/mineralocorticoid receptor (MR) antagonists prior to each elicited seizure were equally effective in preventing chronically altered anxiety-like behaviour and fear memory responses. Inhibiting seizure-induced corticosterone synthesis, or directly blocking the effects of CORT at GR/MR prevents deleterious changes in emotional processing and could be a treatment option for emotional comorbidities in epilepsy.
Collapse
Affiliation(s)
- Renaud C. Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Antis G. George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Sydney A. Harris
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Pasindu Wickramarachchi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Shaona Acharjee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Quentin J. Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, 60126, Ancona, Italy
| | - G. Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
2
|
Gom RC, Wickramarachchi P, George AG, Lightfoot SHM, Newton-Gunderson D, Hill MN, Teskey GC, Colangeli R. Phytocannabinoids restore seizure-induced alterations in emotional behaviour in male rats. Neuropsychopharmacology 2024:10.1038/s41386-024-02005-y. [PMID: 39433952 DOI: 10.1038/s41386-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Epilepsy often presents with severe emotional comorbidities including anxiety and abnormal fear responses which impose a significant burden on, and reduce, quality of life in people living with the disease. Our lab has recently shown that kindled seizures lead to changes in emotional processing resulting from the downregulation of anandamide signalling within the amygdala. Phytocannabinoids derived from the Cannabis sativa plant have attracted a lot of interest as a new class of drugs with potential anticonvulsant effects. Among the wide number of compounds occurring in Cannabis sativa, Δ9- tetrahydrocannabinol (THC), the one responsible for its main psychoactive effects, and the nonpsychoactive cannabidiol (CBD) have been extensively examined under pre-clinical and clinical contexts to control seizures, however, neither have been assessed in the context of the management of emotional comorbidities associated with seizure activity. We used two behavioural procedures to assess anxiety- and fear-like responding in adult male Long-Evans rats: elevated plus maze and auditory fear conditioning. In agreement with previous reports, we found seizure-induced increases in anxiety- and fear-like responding. These effects were reversed by either CBD (vaporized) or THC (oral). We also found that antagonism of serotonin 1 A receptors prior to CBD exposure prevented its protective effects. Phytocannabinoids offer a novel and reliable opportunity to treat seizure induced comorbid emotional alterations.
Collapse
Affiliation(s)
- Renaud C Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada.
| | - Pasindu Wickramarachchi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Savannah H M Lightfoot
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dana Newton-Gunderson
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
- Department of Experimental and Clinical Medicine; Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
3
|
Zhang H, Li L, Zhang X, Ru G, Zang W. Role of the Dorsal Raphe Nucleus in Pain Processing. Brain Sci 2024; 14:982. [PMID: 39451996 PMCID: PMC11506261 DOI: 10.3390/brainsci14100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dorsal raphe nucleus (DRN) has gained attention owing to its involvement in various physiological functions, such as sleep-awake, feeding, and emotion, with its analgesic role being particularly significant. It is described as the "pain inhibitory nucleus" in the brain. The DRN has diverse projections from hypothalamus, midbrain, and pons. In turn, the DRN is a major source of projections to diverse cortex, limbic forebrain thalamus, and the midbrain and contains highly heterogeneous neuronal subtypes. The activation of DRN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic inhibition neurons in the DRN are sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain. Recent progress has been made in identifying the neural circuits and cellular mechanisms in the DRN that are responsible for sensory modulation. However, there is still a lack of comprehensive review addressing the specific neuron types in the DRN involved in pain modulation. This review summarizes the function of specific cell types within DRN in the pain regulation, and aims to improve understanding of the mechanisms underlying pain regulation in the DRN, ultimately offering insights for further exploration.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Xujie Zhang
- Department of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Guanqi Ru
- Department of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| |
Collapse
|
4
|
Li Y, Wang L, He Y, Zhu S, He SC, Zhang XY. Genetic polymorphisms in the 5-HT and endocannabinoid systems moderate the association between childhood trauma and burnout in the general occupational population. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111054. [PMID: 38879068 DOI: 10.1016/j.pnpbp.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Interactions between the serotonin (5-HT) and endocannabinoid (eCB) systems have been reported in the psychopathology of stress-related symptoms, while their interplay in regulating the relationship between childhood trauma and burnout remains unclear. In this study, we investigated the interaction of childhood trauma with genetic polymorphisms in these two systems in predicting burnout. METHODS Burnout, childhood trauma, and job stress were assessed using rating scales in 992 general occupational individuals. Genetic polymorphisms including HTR2A rs6313, 5-HTT rs6354 and FAAH rs324420, were genotyped. Linear hierarchical regression analysis and PROCESS macro in SPSS were used to examine two- and three-way interactions. RESULTS There were significant interactions of job stress × HTR2A rs6313 and childhood abuse × FAAH rs324420 on reduced personal accomplishment. Moreover, we found significant three-way interactions of childhood abuse × FAAH rs324420 × HTR2A rs6313 on cynicism and reduced personal accomplishment, childhood abuse × FAAH rs324420 × 5-HTT rs6354 on emotional exhaustion, and childhood neglect × FAAH rs324420 × 5-HTT rs6354 on reduced personal accomplishment. These results suggest that the FAAH rs324420 A allele carriers, when with some specific genetic polymorphisms of 5-HT system, would show more positive associations between childhood trauma and burnout. CONCLUSIONS Genetic polymorphisms in the 5-HT and eCB systems may jointly moderate the impact of childhood trauma on burnout.
Collapse
Affiliation(s)
- Yuling Li
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, China; Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China; School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Lei Wang
- Department of Medical Psychology, Strategic Support Force Medical Center, Beijing, China
| | - Yingyi He
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus 43210, OH, United States
| | - Shuanggen Zhu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| | - Shu-Chang He
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Healthy, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Kouba BR, Altê GA, Rodrigues ALS. Putative Pharmacological Depression and Anxiety-Related Targets of Calcitriol Explored by Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:893. [PMID: 39065743 PMCID: PMC11280388 DOI: 10.3390/ph17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Depression and anxiety disorders, prevalent neuropsychiatric conditions that frequently coexist, limit psychosocial functioning and, consequently, the individual's quality of life. Since the pharmacological treatment of these disorders has several limitations, the search for effective and secure antidepressant and anxiolytic compounds is welcome. Vitamin D has been shown to exhibit neuroprotective, antidepressant, and anxiolytic properties. Therefore, this study aimed to explore new molecular targets of calcitriol, the active form of vitamin D, through integrated bioinformatic analysis. Calcitriol targets were predicted in SwissTargetPrediction server (2019 version). The disease targets were collected by the GeneCards database searching the keywords "depression" and "anxiety". Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the intersections of targets. Network analyses were carried out using GeneMania server (2023 version) and Cytoscape (V. 3.9.1.) software. Molecular docking predicted the main targets of the network and Ligplot predicted the main intermolecular interactions. Our study showed that calcitriol may interact with multiple targets. The main targets found are the vitamin D receptor (VDR), histamine H3 receptor (H3R), endocannabinoid receptors 1 and 2 (CB1 and CB2), nuclear receptor NR1H3, patched-1 (PTCH1) protein, opioid receptor NOP, and phosphodiesterase enzymes PDE3A and PDE5A. Considering the role of these targets in the pathophysiology of depression and anxiety, our findings suggest novel putative mechanisms of action of vitamin D as well as new promising molecular targets whose role in these disorders deserves further investigation.
Collapse
Affiliation(s)
| | | | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88037-000, SC, Brazil; (B.R.K.); (G.A.A.)
| |
Collapse
|
6
|
Wences Chirino T, Rangel López E, Luna Angulo A, Carrillo Mora P, Landa Solis C, Samudio Cruz MA, Fuentes Bello AC, Paniagua Pérez R, Ríos Martínez J, Sánchez Chapul L. Crosstalk between Exercise-Derived Endocannabinoidome and Kynurenines: Potential Target Therapies for Obesity and Depression Symptoms. Pharmaceuticals (Basel) 2023; 16:1421. [PMID: 37895892 PMCID: PMC10609722 DOI: 10.3390/ph16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.
Collapse
Affiliation(s)
- Tiffany Wences Chirino
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Edgar Rangel López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Paul Carrillo Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Carlos Landa Solis
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - María Alejandra Samudio Cruz
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Alim C. Fuentes Bello
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Rogelio Paniagua Pérez
- Biochemistry Laboratory, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Juan Ríos Martínez
- Health Sciences Research Institute, Mexican Navy, Mexico City 04470, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| |
Collapse
|
7
|
Herrera-Imbroda J, Flores-López M, Requena-Ocaña N, Araos P, García-Marchena N, Ropero J, Bordallo A, Suarez J, Pavón-Morón FJ, Serrano A, Mayoral F, Rodríguez de Fonseca F. Antidepressant Medication Does Not Contribute to the Elevated Circulating Concentrations of Acylethanolamides Found in Substance Use Disorder Patients. Int J Mol Sci 2023; 24:14788. [PMID: 37834235 PMCID: PMC10573451 DOI: 10.3390/ijms241914788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Circulating acylethanolamides (NAEs) are bioactive signaling molecules that modulate multiple homeostatic functions including mood and hedonic responses. Variations in their plasma concentrations are associated with substance use disorders (SUD) and recent studies suggest that psychotropic medication might influence its circulating levels, limiting its use as a clinical biomarker of addiction. In addition, they might have a role as mediators of the pharmacological effects of psychotropic drugs. Thus, in mild depression, the response to selective serotonin reuptake inhibitor-type antidepressants (SSRI) is associated with a marked increase in circulating NAEs. To further investigate if antidepressants are able to modify the plasma concentration of NAEs in SUD patients, we analyzed the circulating levels of NAEs in 333 abstinent and 175 healthy controls on the basis of the treatment with SSRI antidepressants. As described previously, SUD patients display higher concentrations of NAEs than those measured in a control population. This increase was not further modified by antidepressant therapy. Only marginal increases in palmitoylethanolamide (PEA), oleoylethanolamide (OEA), or docosatetraenoyl-ethanolamide (DEA) were found, and the net effect was very small. Thus, our study shows that treatment with SSRI-type antidepressants does not modify the clinical utility of monitoring enhanced NAE production as biomarkers of SUD. In addition, the possibility that a blunted NAE response to antidepressant therapy might be related to the loss of efficacy of SSRIs in dual depression emerges as an attractive hypothesis that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento de Psicología Básica, Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento de Psicobiología y Metodología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Jessica Ropero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Juan Suarez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Departamento of Anatomía, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco J. Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Fermín Mayoral
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma Bionand, 29590 Málaga, Spain; (J.H.-I.); (M.F.-L.); (N.R.-O.); (P.A.); (N.G.-M.); (J.R.); (J.S.); (F.J.P.-M.); (F.M.)
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (NEURO-RECA), 29001 Malaga, Spain
| |
Collapse
|
8
|
Salpekar JA, Ma GJ, Mietchen J, Mani J, Jones JE. Treatment of Comorbid Anxiety and Epilepsy. J Neuropsychiatry Clin Neurosci 2023; 35:218-227. [PMID: 36785943 DOI: 10.1176/appi.neuropsych.20220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Objective: Anxiety is among the most common psychiatric illnesses, and it commonly co-occurs with epilepsy. This review of the existing literature on anxiety comorbid with epilepsy aims to generate new insights into strategies for assessment and treatment. Methods: The authors conducted a narrative literature review to select key publications that help clarify the phenomenology and management of comorbid anxiety and epilepsy. Results: Anxiety symptoms may be relevant even if the criteria for a diagnosis of an anxiety disorder are not met. Associating specific seizure types or seizure localization with anxiety symptoms remains difficult; however, the amygdala is a brain region commonly associated with seizure foci and panic or fear sensations. The hypothalamic-pituitary-adrenal axis may also be relevant for anxiety symptoms, particularly for the selection of treatments. Nonpharmacological treatment is appropriate for anxiety comorbid with epilepsy, particularly because relaxation techniques may reduce hypersympathetic states, which improve symptoms. Medication options include antidepressants and anticonvulsants that may have efficacy for anxiety symptoms. Benzodiazepines are a good choice to address this comorbid condition, although side effects may limit utility. Conclusions: Ultimately, there are numerous treatment options, and although there is a limited evidence base, quality of life may be improved with appropriate treatment for individuals experiencing comorbid anxiety and epilepsy.
Collapse
Affiliation(s)
- Jay A Salpekar
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Grace J Ma
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Jonathan Mietchen
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Jeremy Mani
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Jana E Jones
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| |
Collapse
|
9
|
Abela N, Haywood K, Di Giovanni G. Alcohol and cannabinoid binges and daily exposure to nicotine in adolescent/young adult rats induce sex-dependent long-term appetitive instrumental learning impairment. Front Behav Neurosci 2023; 17:1129866. [PMID: 36815183 PMCID: PMC9939753 DOI: 10.3389/fnbeh.2023.1129866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Adolescence is a critical developmental period, concerning anatomical, neurochemical and behavioral changes. Moreover, adolescents are more sensitive to the long-term deleterious effects of drug abuse. Binge-like consumption of alcohol and marijuana, along with tobacco smoking, is a dangerous pattern often observed in adolescents during weekends. Nevertheless, the long-term effect of their adolescent co-exposure has not been yet experimentally investigated. Long-Evans adolescent male (n = 20) and female (n = 20) rats from postnatal day 30 (P30) until P60 were daily treated with nicotine (0.3 mg/kg, i.p.), and, on two consecutive 'binging days' per week (for a total of eight times), received an intragastric ethanol solution (3 g/kg) and an intraperitoneal (i.p.) dose of cannabinoid 1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). These rats were tested after treatment discontinuation at > P90 for associative food-rewarded operant learning in the two-lever conditioning chambers for six consecutive days on a fixed ratio 1 (FR1) schedule followed by another six days of daily FR2 schedule testing, after 42 days rest. We found the main effects of sex x treatment interactions in FR1 but not in FR2 experiments. Treated females show attenuated operant responses for food pellets during all FR1 and the FR2 schedule, whilst the treated males show an impairment in FR2 but not in the FR1 schedule. Moreover, the treated females' percentage of learners was significantly lower than female controls in FR1 while treated males were lower than controls in FR2. Our findings suggest that intermittent adolescent abuse of common drugs, such as alcohol and marijuana, and chronic tobacco exposure can cause significant long-term effects on motivation for natural reinforcers later in adulthood in both sexes. Females appear to be sensitive earlier to the deleterious effects of adolescent polydrug abuse, with both sexes having an increased likelihood of developing lifelong brain alterations.
Collapse
Affiliation(s)
- Norbert Abela
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Katie Haywood
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta,Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta,Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom,*Correspondence: Giuseppe Di Giovanni, ;
| |
Collapse
|
10
|
2-AG-Mediated Control of GABAergic Signaling Is Impaired in a Model of Epilepsy. J Neurosci 2023; 43:571-583. [PMID: 36460464 PMCID: PMC9888507 DOI: 10.1523/jneurosci.0541-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Repeated seizures result in a persistent maladaptation of endocannabinoid (eCB) signaling, mediated part by anandamide signaling deficiency in the basolateral amygdala (BLA) that manifests as aberrant synaptic function and altered emotional behavior. Here, we determined the effect of repeated seizures (kindling) on 2-arachidonoylglycerol (2-AG) signaling on GABA transmission by directly measuring tonic and phasic eCB-mediated retrograde signaling in an in vitro BLA slice preparation from male rats. We report that both activity-dependent and muscarinic acetylcholine receptor (mAChR)-mediated depression of GABA synaptic transmission was reduced following repeated seizure activity. These effects were recapitulated in sham rats by preincubating slices with the 2-AG synthesizing enzyme inhibitor DO34. Conversely, preincubating slices with the 2-AG degrading enzyme inhibitor KML29 rescued activity-dependent 2-AG signaling, but not mAChR-mediated synaptic depression, over GABA transmission in kindled rats. These effects were not attributable to a change in cannabinoid type 1 (CB1) receptor sensitivity or altered 2-AG tonic signaling since the application of the highly selective CB1 receptor agonist CP55,940 provoked a similar reduction in GABA synaptic activity in both sham and kindled rats, while no effect of either DO34 or of the CB1 inverse agonist AM251 was observed on frequency and amplitude of spontaneous IPSCs in either sham or kindled rats. Collectively, these data provide evidence that repeated amygdala seizures persistently alter phasic 2-AG-mediated retrograde signaling at BLA GABAergic synapses, probably by impairing stimulus-dependent 2-AG synthesis/release, which contributes to the enduring aberrant synaptic plasticity associated with seizure activity.SIGNIFICANCE STATEMENT The plastic reorganization of endocannabinoid (eCB) signaling after seizures and during epileptogenesis may contribute to the negative neurobiological consequences associated with seizure activity. Therefore, a deeper understanding of the molecular basis underlying the pathologic long-term eCB signaling remodeling following seizure activity will be crucial to the development of novel therapies for epilepsy that not only target seizure activity, but, most importantly, the epileptogenesis and the comorbid conditions associated with epilepsy.
Collapse
|
11
|
Lack of Association between (AAT)n Polymorphism of the CNR1 Gene Encoding the Cannabinoid Receptor (CB1) and Patient’s Quality of Life. Genes (Basel) 2022; 13:genes13112046. [DOI: 10.3390/genes13112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic factors may predispose persons to decreased pain excitability. One of the interesting modulators affecting pain perception may be polymorphisms of the cannabinoid receptor type 1 (CNR1) gene. In this study, we examined the association between three-nucleotide repeats (AAT) polymorphism located in the 3′UTR non-translational region of CNR1 and the patient’s quality of life after total hip arthroplasty. Our study examined the degree of pain sensation, hip function, and the patient’s performance at defined intervals after elective hip replacement due to degenerative changes. The study included 198 patients (128 women and 70 men). The average age was 67 years. PCR genotyping assay was used to identify the (AAT)n triplet repeat polymorphism in the CNR1 gene. The (AAT)n repeat number was determined by sequencing using a standard sequencing protocol. Our study found no statistically significant association between the degree of pain, hip function, and the change in the degree of disability and the (AAT)n polymorphism in the CNR1 gene, no statistically significant correlations between clinical symptoms, the patient’s age, and the number of AAT repeats, no association between the length of the allele and the degree of pain, hip function, and the change in disability.
Collapse
|
12
|
De Deurwaerdère P, Casarrubea M, Cassar D, Radic M, Puginier E, Chagraoui A, Crescimanno G, Crunelli V, Di Giovanni G. Cannabinoid 1/2 Receptor Activation Induces Strain-Dependent Behavioral and Neurochemical Changes in Genetic Absence Epilepsy Rats From Strasbourg and Non-epileptic Control Rats. Front Cell Neurosci 2022; 16:886033. [PMID: 35677756 PMCID: PMC9169225 DOI: 10.3389/fncel.2022.886033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Childhood absence epilepsy (CAE) is characterized by absence seizures, which are episodes of lack of consciousness accompanied by electrographic spike-wave discharges. About 60% of children and adolescents with absence seizures are affected by major neuropsychological comorbidities, including anxiety. Endocannabinoids and monoamines are likely involved in the pathophysiology of these CAE psychiatric comorbidities. Here, we show that the synthetic cannabinoid receptor type 1/2 (CB1/2R) agonist WIN 55,212-2 (2 mg/kg) has a strain-dependent effect on anxiety-like and motor behavior when assess in the hole board test and cerebral monoaminergic levels in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and their non-epileptic control (NEC) rat strain. Using quantitative and Temporal pattern (T-pattern) analyses, we found that WIN 55,212-2 did not affect the emotional status of GAERS, but it was anxiolytic in NEC. Conversely, WIN 55,212-2 had a sedative effect in GAERS but was ineffective in NEC. Moreover, vehicle-treated GAERS more motivated to explore by implementing more complex and articulated strategies. These behavioral changes correlate with the reduction of 5-HT in the hippocampus and substantia nigra (SN) and noradrenaline (NA) in the entopeduncular nucleus (EPN) in vehicle-treated GAERS compared to NEC rats, which could contribute to their low anxiety status and hypermotility, respectively. On the other hand, the increased level of NA in the EPN and 5-HT in the SN is consistent with an activation of the basal ganglia output-mediated motor suppression observed in WIN 55,212-2-treated GAERS rats. These data support the view of a strain-dependent alteration of the endocannabinoid system in absence epilepsy by adding evidence of a lower emotional responsiveness and a basal ganglia hypersensitivity to cannabinoids in GAERS compared to NEC rats.
Collapse
Affiliation(s)
| | - Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section “Giuseppe Pagano”, University of Palermo, Palermo, Italy
- *Correspondence: Maurizio Casarrubea,
| | - Daniel Cassar
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuela Radic
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Emilie Puginier
- Centre National de la Recherche Scientifique, UMR 5287, Bordeaux Cedex, France
| | - Abdeslam Chagraoui
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Normandie Université, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Crescimanno
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section “Giuseppe Pagano”, University of Palermo, Palermo, Italy
| | - Vincenzo Crunelli
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Giuseppe Di Giovanni,
| |
Collapse
|
13
|
Manzke P, Crippa JADS, Marchioni C, Queiroz MEC, Brito MCM, Pimentel AV, Bosaipo NB, Foss MP, Tumas V. Circulating Endocannabinoids in Huntington's Disease: An Exploratory Cross-Sectional Study. J Huntingtons Dis 2022; 11:91-95. [PMID: 35124656 DOI: 10.3233/jhd-210507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive and behavioral deficits. Some evidence suggests that the endocannabinoid system participates in the pathophysiology of HD. We conducted a cross-sectional study comparing plasma levels of anandamide and 2-arachidonoylglycerol in manifest HD gene-expansion carriers (HDGEC) and healthy controls, finding no difference in endocannabinoid levels between the groups. Correlations between endocannabinoid levels and clinical scales (Mini-Mental State Examination, Hospital Anxiety and Depression Scale, Unified Huntington Disease Rating Scale) were non-significant. We found a significant association between body mass index and anandamide levels in healthy controls but not in HDGEC.
Collapse
Affiliation(s)
- Pedro Manzke
- Hospital de Base do Distrito Federal, Brasilia, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Camila Marchioni
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Manuelina C M Brito
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Angela V Pimentel
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nayanne B Bosaipo
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Paula Foss
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vitor Tumas
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Cassar D, Radic M, Casarrubea M, Crunelli V, Di Giovanni G. The effect of cannabinoid receptor agonist WIN 55,212-2 on anxiety-like behavior and locomotion in a genetic model of absence seizures in the elevated plus-maze. CNS Neurosci Ther 2022; 28:1268-1270. [PMID: 35470960 PMCID: PMC9253729 DOI: 10.1111/cns.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Daniel Cassar
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuela Radic
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Human Physiology Section "Giuseppe Pagano", Department of Biomedicine, Neuroscience and Advanced Diagnosistics (BIND), University of Palermo, Palermo, Italy
| | - Vincenzo Crunelli
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
16
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|