1
|
Du Y, Huang Z, Wu Y, Xue Y, Che Z. Glymphatic system dysfunction associated with cognitive impairment in chronic tinnitus patients. Front Neurosci 2024; 18:1455294. [PMID: 39308949 PMCID: PMC11412960 DOI: 10.3389/fnins.2024.1455294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background The glymphatic system has been regarded as a pivotal factor in the pathogenesis of neurodegenerative diseases. Given the heightened risk of cognitive impairment in chronic tinnitus patients, the possible alterations of the glymphatic system in tinnitus patients remain elusive. This study was designed to evaluate glymphatic dysfunction in chronic tinnitus patients using the diffusion tensor imaging (DTI) along the perivascular space (DTI-ALPS) approach. Methods Fifty chronic tinnitus patients and 50 age, sex, and education-matched healthy controls (HCs) with normal hearing thresholds were recruited. The DTI-ALPS was calculated from each group. We investigated the differences in the DTI-ALPS index between the tinnitus patients and HCs. The relationships between the DTI-ALPS index and specific cognitive performance were further assessed. Results There were significant differences in the DTI-ALPS index between the two groups. The DTI-ALPS index was significantly lower in the tinnitus group than in HCs group (p < 0.01). In addition, the Dyyproj index was significantly higher in the tinnitus group than in the HC group (p < 0.01). In chronic tinnitus patients, the decreased DTI-ALPS index was negatively associated with worse TMT-B scores (r = -0.309, p = 0.039). Moreover, the increased Dyyproj index was negatively correlated with the reduced AVLT performances (r = -0.413, p = 0.005). Conclusion In this current study, glymphatic system activity in chronic tinnitus was investigated for the first time using DTI-ALPS index. Significant decrease in glymphatic system function was detected in chronic tinnitus, which correlated well with the specific cognitive performance. The current study may provide pivotal imaging markers for chronic tinnitus with cognitive impairment.
Collapse
Affiliation(s)
- Yinjuan Du
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhichun Huang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Zigang Che
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Leaver AM, Chen YJ, Parrish TB. Focal tDCS of auditory cortex in chronic tinnitus: A randomized controlled mechanistic trial. Clin Neurophysiol 2024; 158:79-91. [PMID: 38198874 PMCID: PMC10896454 DOI: 10.1016/j.clinph.2023.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The goal of this pilot study was to understand how focal transcranial direct current stimulation (tDCS) targeting auditory cortex changes brain function in chronic tinnitus using magnetic resonance imaging (MRI). METHODS People with chronic tinnitus were randomized to active or sham tDCS on five consecutive days in this mechanistic trial (n = 10/group). Focal 4x1 tDCS (central anode, surround cathodes) targeted left auditory cortex, with single-blind 2 mA current during twenty-minute sessions. Arterial spin-labeled and blood oxygenation level dependent MRI occurred immediately before and after the first tDCS session, and tinnitus symptoms were measured starting one week before the first tDCS session and through four weeks after the final session. RESULTS Acute increases in cerebral blood flow and functional connectivity were noted in auditory cortex after the first active tDCS session. Reduced tinnitus loudness ratings after the final tDCS session correlated with acute change in functional connectivity between an auditory network and mediodorsal thalamus and prefrontal cortex. Reduced tinnitus intrusiveness also correlated with acute change in connectivity between precuneus and an auditory network. CONCLUSIONS Focal auditory-cortex tDCS can influence function in thalamus, auditory, and prefrontal cortex, which may associate with improved tinnitus. SIGNIFICANCE With future refinement, tDCS targeting auditory cortex could become a viable intervention for tinnitus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA.
| | - Yufen J Chen
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Shao ZD, Gong YJ, Ren J, Wang J. Exploring the arcuate fasciculus from a clinical perspective. Front Neurosci 2023; 17:1307834. [PMID: 38033540 PMCID: PMC10684764 DOI: 10.3389/fnins.2023.1307834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, language function impairment caused by intracranial diseases has gained increasing interest, mainly due to its significant impact on the language and cognitive ability, leading to a serious decline in the quality of life of patients. Consequently, researchers aimed to clarify the quantitative degree of lesions of the arcuate fasciculus and therapeutic targets to promote nerve fiber remodeling. The arcuate fasciculus is extremely prone to damage caused by diseases such as stroke and brain tumor. Hallucinating schizophrenia, autism spectrum disorder, epilepsy, chronic fatigue syndrome, chronic tinnitus, and other diseases can also lead to changes in the fractional anisotropy value of arcuate fasciculus; however, different studies have different conclusions about how this change occurs. To obtain a better understanding, more clinical studies are required. Owing to various advancements in neuroimaging, a better understanding and identification of vital targets for restoration of neurological function are possible. The arcuate fasciculus is stratified into three substructures, each having unique neurological functions. Both diffusion tensor imaging (DTI) sequences and deterministic monitoring techniques render it possible to visually and quantitatively analyze the substructure in three parts. In this review, we examined the progress of the arcuate fasciculus and quantitative DTI technology in recent years.
Collapse
Affiliation(s)
| | | | | | - Ji Wang
- Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
4
|
Dobel C, Junghöfer M, Mazurek B, Paraskevopoulos E, Groß J. Tinnitus and Multimodal Cortical Interaction. Laryngorhinootologie 2023; 102:S59-S66. [PMID: 37130531 PMCID: PMC10184662 DOI: 10.1055/a-1959-3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The term of subjective tinnitus is used to describe a perceived noise without an external sound source. Therefore, it seems to be obvious that tinnitus can be understood as purely auditory, sensory problem. From a clinical point of view, however, this is a very inadequate description, as there are significant comorbidities associated with chronic tinnitus. Neurophysiological investigations with different imaging techniques give a very similar picture, because not only the auditory system is affected in chronic tinnitus patients, but also a widely ramified subcortical and cortical network. In addition to auditory processing systems, networks consisting of frontal and parietal regions are particularly disturbed. For this reason, some authors conceptualize tinnitus as a network disorder rather than a disorder of a circumscribed system. These findings and this concept suggest that tinnitus must be diagnosed and treated in a multidisciplinary and multimodal manner.
Collapse
Affiliation(s)
- Christian Dobel
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Jena, Jena
| | - Markus Junghöfer
- Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
| | - Birgit Mazurek
- Tinnituszentrum, Charité - Universitätsmedizin Berlin, Berlin
| | | | - Joachim Groß
- Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
| |
Collapse
|
5
|
Cardon E, Jacquemin L, Vermeersch H, Joossen I, Moyaert J, Mertens G, Vanderveken OM, Lammers MJW, Van de Heyning P, Van Rompaey V, Gilles A. Dual-site transcranial direct current stimulation to treat tinnitus: a randomized controlled trial. Brain 2022; 145:4222-4231. [PMID: 36450310 PMCID: PMC9762937 DOI: 10.1093/brain/awac263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 12/03/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been proposed as a potential intervention for subjective tinnitus, but supporting evidence remains limited. We aimed to investigate the effect of anodal high-definition tDCS of the left temporal area and right dorsolateral prefrontal cortex on tinnitus severity. This double-blind randomized controlled trial included 77 patients (age range 18-79, 43 male) with chronic subjective tinnitus as their primary complaint. Thirty-eight subjects received six consecutive sessions of dual-site sequential high-definition-tDCS with electrodes positioned over the left temporal area and right dorsolateral prefrontal cortex. Both areas were stimulated for 15 min per session, with total stimulation time amounting to 30 min. Thirty-nine subjects received sham stimulation. The primary outcome measure was the change in tinnitus severity, as evaluated by the Tinnitus Functional Index, from baseline to a follow-up visit at 8 ± 2 weeks after treatment completion. Secondary outcomes included changes in perceived tinnitus loudness, as measured with a visual analogue scale and a tinnitus matching procedure, as well as scores on the Hospital Anxiety and Depression Scale, and the Hyperacusis Questionnaire. No differences in Tinnitus Functional Index change scores were identified between the active treatment and sham control groups (linear regression: P = 0.86). The Tinnitus Functional Index scores decreased significantly over time in both groups (P = 0.0012), indicating the presence of a considerable placebo effect. These change scores were significantly influenced by sex (linear regression: P = 0.037) and baseline symptoms of anxiety (linear regression: P = 0.049) in both groups. In general, Tinnitus Functional Index scores decreased more profoundly in males and in subjects with a higher degree of anxiety at baseline. None of the included secondary measures differed significantly between experimental arms. Our results suggest that dual-site sequential high-definition-tDCS of the left temporal area and right dorsolateral prefrontal cortex does not alleviate tinnitus severity. Interestingly, in our study population, fluctuations in tinnitus severity were influenced by gender and concurrent mental condition. It is therefore important to take these factors into account when conducting or planning randomized controlled trials in tinnitus populations.
Collapse
Affiliation(s)
- Emilie Cardon
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Laure Jacquemin
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Hanne Vermeersch
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Iris Joossen
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Julie Moyaert
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Griet Mertens
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Marc J W Lammers
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Paul Van de Heyning
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Annick Gilles
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- University Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| |
Collapse
|