1
|
Hayes JE, Baker AN. Flavor science in the context of research on electronic cigarettes. Front Neurosci 2022; 16:918082. [PMID: 35968379 PMCID: PMC9365686 DOI: 10.3389/fnins.2022.918082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Thousands start smoking or vaping daily, despite long-standing efforts by public health authorities to curb initiation and use of nicotine containing products. Over the last 15 years, use of electronic nicotine delivery systems has increased dramatically, with a diverse range of products on the market, including pod-based, disposable, and refillable electronic cigarettes (eCigs). Originally intended for harm reduction and smoking cessation, eCigs may encourage nicotine use among never smokers, given the vast range of appealing flavors that are available. To better understand abuse liability and to facilitate appropriate regulations, it is crucial to understand the science of flavor, and flavor perception within the context of eCig use. Here, we (a) provide a brief primer on chemosensory perception and flavor science for addiction and nicotine researchers, and (b) highlight existing some literature regarding flavor and nicotine use, with specific attention given to individual differences in perception, and interaction between different sensory modalities that contribute to flavor. Dramatic increases in use of eCigs highlights the importance of flavor science in contemporary addiction research, both with regards to public health and regulatory efforts. Other recent work summarizes findings on flavored e-liquids and eCig use, but none have focused explicitly on chemosensory processes or flavor perception as they relate to appeal and use of such products. We argue flavor science needs to be considered as perceptual and behavioral phenomena, and not merely from analytical, toxicological and pharmacological perspectives; we help address this gap here.
Collapse
Affiliation(s)
- John E. Hayes
- Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, State College, PA, United States
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, State College, PA, United States
- Interdepartmental Neuroscience Program, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Allison N. Baker
- Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, State College, PA, United States
- Interdepartmental Neuroscience Program, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
2
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
The Structural Properties of Odorants Modulate Their Association to Human Odorant Binding Protein. Biomolecules 2021; 11:biom11020145. [PMID: 33499295 PMCID: PMC7912024 DOI: 10.3390/biom11020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
The binding of known odorant molecules to the human odorant-binding protein (hOBP) was evaluated in silico. Docking experiments elucidate the preferable binding site and binding affinity of odorant molecules to hOBP. The physicochemical properties molecular weight (MW), vapor pressure (Vp), hydrophobicity level (logP), number of double bonds (NºDB), degree of unsaturation (DoU) and the chemical classification, were selected for the study of odorant modulation. Here, these properties were analyzed concerning 30 pleasant and 30 unpleasant odorants, chosen to represent a wide variety of compounds and to determine their influence on the binding energy to hOBP. Our findings indicate that MW, logP and Vp are the most important odorant variables, directly correlated to odorant-binding energies (ΔGbinding) towards hOBP. Understanding how the odorants behave when complexed with the OBP in human olfaction opens new possibilities for the development of future biotechnological applications, including sensory devices, medical diagnosis, among others.
Collapse
|
4
|
Duroux R, Mandeau A, Guiraudie-Capraz G, Quesnel Y, Loing E. A Rose Extract Protects the Skin against Stress Mediators: A Potential Role of Olfactory Receptors. Molecules 2020; 25:molecules25204743. [PMID: 33081083 PMCID: PMC7587601 DOI: 10.3390/molecules25204743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Olfactory receptors (ORs) are expressed and active in various human tissues, including the skin. Although the sense of smell plays an important physiological role in the regulation of mood and stress, a link between olfactive compounds, ORs, and skin stress has yet to be established. This study aims to investigate the role of newly identified skin ORs and agonists in the modulation of skin stress. Screening for odorant molecules was done with cAMP functional assay to identify OR agonists. RT-qPCR and immunofluorescence microscopy were conducted to identify and quantify ORs in epidermal keratinocytes (NHEKs) and human skin explants, as well as to evaluate specific markers (G6PDH, loricrin, and γH2AX) of stress-induced skin alterations. A randomized double-blinded, split-face clinical study was performed on a panel of stressed women to measure the benefits of OR agonist treatment for skin. Three new ORs (OR10A6, OR2AG2, and OR11H4) were identified in skin. A specific Rose extract and its major constituent (phenylethyl alcohol) were found to activate these ORs. The extract composition was revealed by both GC/FID and GC/MS analyses simultaneously and showed the presence of 34 volatiles molecules. Moreover, epinephrine induces a skin stress response characterized by increased expression of G6PD, loricrin, and γH2AX biomarkers, and a decrease of OR expression. These effects were prevented in the presence of rose extract and its benefits were confirmed clinically by a decrease in the appearance of under-eye dark circles. Altogether, our findings suggest that ORs may represent a new, promising way to treat stress-associated skin disorders.
Collapse
Affiliation(s)
- Romain Duroux
- Department of Research and Development, International Flavors and Fragrances-Lucas Meyer Cosmetics, 31036 Toulouse CEDEX, France;
- Correspondence:
| | - Anne Mandeau
- Department of Research and Development, International Flavors and Fragrances-Lucas Meyer Cosmetics, 31036 Toulouse CEDEX, France;
| | - Gaelle Guiraudie-Capraz
- Institute of Neurophysiopathology, CNRS, Aix-Marseille University, UMR 7051, CEDEX 15, F-13344 Marseille, France;
| | | | - Estelle Loing
- Department of Research and Development, International Flavors and Fragrances-Lucas Meyer Cosmetics, Quebec, QC G1V 4M6, Canada;
| |
Collapse
|
5
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
6
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
7
|
Lundeen IK, Kirk EC. Internal nasal morphology of the Eocene primate Rooneyia viejaensis and extant Euarchonta: Using μCT scan data to understand and infer patterns of nasal fossa evolution in primates. J Hum Evol 2019; 132:137-173. [PMID: 31203844 DOI: 10.1016/j.jhevol.2019.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/18/2022]
Abstract
Primates have historically been viewed as having a diminished sense of smell compared to other mammals. In haplorhines, olfactory reduction has been inferred partly based on the complexity of the bony turbinals within the nasal cavity. Some turbinals are covered in olfactory epithelium, which contains olfactory receptor neurons that detect odorants. Accordingly, turbinal number and complexity has been used as a rough anatomical proxy for the relative importance of olfactory cues for an animal's behavioral ecology. Unfortunately, turbinals are delicate and rarely preserved in fossil specimens, limiting opportunities to make direct observations of the olfactory periphery in extinct primates. Here we describe the turbinal morphology of Rooneyia viejaensis, a late middle Eocene primate of uncertain phylogenetic affinities from the Tornillo Basin of West Texas. This species is currently the oldest fossil primate for which turbinals are preserved with minimal damage or distortion. Microcomputed tomography (μCT) reveals that Rooneyia possessed 1 nasoturbinal, 4 bullar ethmoturbinals, 1 frontoturbinal, 1 interturbinal, and an olfactory recess. This pattern is broadly similar to the condition seen in some extant strepsirrhine primates but differs substantially from the condition seen in extant haplorhines. Crown haplorhines possess only two ethmoturbinals and lack frontoturbinals, interturbinals, and an olfactory recess. Additionally, crown anthropoids have ethmoturbinals that are non-bullar. These observations reinforce the conclusion that Rooneyia is not a stem tarsiiform or stem anthropoid. However, estimated olfactory turbinal surface area in Rooneyia is greater than that of similar-sized haplorhines but smaller than that of similar-sized lemuriforms and lorisiforms. This finding suggests that although Rooneyia was broadly plesiomorphic in retaining a large complement of olfactory turbinals as in living strepsirrhines, Rooneyia may have evolved somewhat diminished olfactory abilities as in living haplorhines.
Collapse
Affiliation(s)
- Ingrid K Lundeen
- Department of Anthropology, University of Texas at Austin, SAC 4.102, 2201 Speedway Stop C3200, Austin, TX 78712, USA.
| | - E Christopher Kirk
- Department of Anthropology, University of Texas at Austin, SAC 4.102, 2201 Speedway Stop C3200, Austin, TX 78712, USA; Jackson School Museum of Earth History, University of Texas at Austin, J. J. Pickle Research Campus, 10100 Burnet Road, PRC 6-VPL, R7600, Austin, TX 78758, USA
| |
Collapse
|
8
|
Abstract
Olfactory receptors are expressed by different cell types throughout the body and regulate physiological cell functions beyond olfaction. In particular, the olfactory receptor OR2AT4 has been shown to stimulate keratinocyte proliferation in the skin. Here, we show that the epithelium of human hair follicles, particularly the outer root sheath, expresses OR2AT4, and that specific stimulation of OR2AT4 by a synthetic sandalwood odorant (Sandalore®) prolongs human hair growth ex vivo by decreasing apoptosis and increasing production of the anagen-prolonging growth factor IGF-1. In contrast, co-administration of the specific OR2AT4 antagonist Phenirat® and silencing of OR2AT4 inhibit hair growth. Together, our study identifies that human hair follicles can engage in olfactory receptor-dependent chemosensation and require OR2AT4-mediated signaling to sustain their growth, suggesting that olfactory receptors may serve as a target in hair loss therapy. Increasing evidence suggest that olfactory receptors can carry additional functions besides olfaction. Here, Chéret et al. show that stimulation of the olfactory receptor ORT2A4 by the odorant Sandalore® stimulates growth of human scalp hair follicles ex vivo, suggesting the use of ORT2A4-targeting odorants as hair growth-promoting agents.
Collapse
|
9
|
Son M, Park TH. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment. Biotechnol Adv 2017; 36:371-379. [PMID: 29289691 DOI: 10.1016/j.biotechadv.2017.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/27/2017] [Accepted: 12/27/2017] [Indexed: 01/14/2023]
Abstract
Food intake is the primary method for obtaining energy and component materials in the human being. Humans evaluate the quality of food by combining various facets of information, such as an item of food's appearance, smell, taste, and texture in the mouth. Recently, bioelectronic noses and tongues have been reported that use human olfactory and taste receptors as primary recognition elements, and nanoelectronics as secondary signal transducers. Bioelectronic sensors that mimic human olfaction and gustation have sensitively and selectively detected odor and taste molecules from various food samples, and have been applied to food quality assessment. The portable and multiplexed bioelectronic nose and tongue are expected to be used as next-generation analytical tools for rapid on-site monitoring of food quality. In this review, we summarize recent progress in the bioelectronic nose and tongue using olfactory and taste receptors, and discuss the potential applications and future perspectives in the food industry.
Collapse
Affiliation(s)
- Manki Son
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
10
|
Wieczorek MN, Walczak M, Skrzypczak-Zielińska M, Jeleń HH. Bitter taste of Brassica vegetables: The role of genetic factors, receptors, isothiocyanates, glucosinolates, and flavor context. Crit Rev Food Sci Nutr 2017; 58:3130-3140. [PMID: 28718657 DOI: 10.1080/10408398.2017.1353478] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is well known that consumption of Brassica vegetables has beneficial effect on human's health. The greatest interest is focused on glucosinolates and their hydrolysis products isothiocyanates, due to their potential as cancer preventing compounds. Brassica vegetables are also rich in flavor compounds belonging to many chemical groups. The main sensory sensation related to these vegetable is their characteristic sharp and bitter taste, and unique aroma. Because of these features this group of vegetables is often rejected by consumers. Interestingly, for some people unpleasant sensations are not perceived, suggesting a potential role of inter-individual variability in bitter taste perception and sensibility. Receptors responsible for bitter sensation with the emphasis on Brassica are reviewed, as well as genetic predisposition for bitterness perception by consumers. Also the role of glucosinolates and isothiocyanates as compounds responsible for bitter taste is discussed based on data from the field of food science and molecular biology. Isothiocyanates are shown in broaded context of flavor compounds also contributing to the aroma of Brassica vegetables.
Collapse
Affiliation(s)
- Martyna N Wieczorek
- a Faculty of Food Science and Nutrition , Poznan University of Life Sciences , Poznan , Poland
| | - Michał Walczak
- b Institute of Human Genetics , Polish Academy of Science , Poznan , Poland
| | | | - Henryk H Jeleń
- a Faculty of Food Science and Nutrition , Poznan University of Life Sciences , Poznan , Poland
| |
Collapse
|
11
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
12
|
Kim DC. Brain Wave Control Effect of Smart-wave via Docking into the Odorant-binding Protein. ACTA ACUST UNITED AC 2016. [DOI: 10.5352/jls.2016.26.3.346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|