1
|
Lin X, Peng C, Liu S, Xiang J, Lin B, Zhan Q, Cao P, Cao T. Modular Assembly of Heterotrifunctional Molecules Enabled by Iodosulfonylation of Allenes and Subsequent Amination. J Med Chem 2024. [PMID: 39565161 DOI: 10.1021/acs.jmedchem.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Beyond the rapid achievements of therapeutic heterobifunctional molecules, some recent efforts have focused on constructing heterotrifunctional molecules, aiming at developing more potent and selective therapeutic agents or emerging additional functions to heterobifunctional molecules. However, the synthesis of these complex molecules requires a specific design and lengthy steps. We have developed a two-step strategy for the modular construction of heterotrifunctional molecules, enabled by the sustainable and convenient iodosulfonylation of allenes followed by SN2'-selective amination. This strategy successfully incorporates a broad range of biologically active molecules, labeling them with a fluorescent group. The applications of the obtained compounds in selective protein labeling, subcellular imaging, and targeted inhibition of tumor cells make this strategy highly appealing.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Chuxiong Peng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Shijie Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jianpin Xiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Binyan Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Qichen Zhan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, Zhejiang, China
- Gaoyou Hospital of Traditional Chinese Medicine, Yangzhou 225600, Jiangsu, China
| | - Tao Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
2
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
3
|
Martin PL, Pérez-Areales FJ, Rao SV, Walsh SJ, Carroll JS, Spring DR. Towards the Targeted Protein Degradation of PRMT1. ChemMedChem 2024; 19:e202400269. [PMID: 38724444 DOI: 10.1002/cmdc.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Indexed: 07/21/2024]
Abstract
Targeting the protein arginine methyltransferase 1 (PRMT1) has emerged as a promising therapeutic strategy in cancer treatment. The phase 1 clinical trial for GSK3368715, the first PRMT1 inhibitor to enter the clinic, was terminated early due to a lack of clinical efficacy, extensive treatment-emergent effects, and dose-limiting toxicities. The incidence of the latter two events may be associated with inhibition-driven pharmacology as a high and sustained concentration of inhibitor is required for therapeutic effect. The degradation of PRMT1 using a proteolysis targeting chimera (PROTAC) may be superior to inhibition as proceeds via event-driven pharmacology where a PROTAC acts catalytically at a low dose. PROTACs containing the same pharmacophore as GSK3368715, combined with a motif that recruits the VHL or CRBN E3-ligase, were synthesised. Suitable cell permeability and target engagement were shown for selected candidates by the detection of downstream effects of PRMT1 inhibition and by a NanoBRET assay for E3-ligase binding, however the candidates did not induce PRMT1 degradation. This paper is the first reported investigation of PRMT1 for targeted protein degradation and provides hypotheses and insights to assist the design of PROTACs for PRMT1 and other novel target proteins.
Collapse
Affiliation(s)
- Poppy L Martin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | | | - Shalini V Rao
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, CH2 ORE, United Kingdom
| | - Stephen J Walsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, CH2 ORE, United Kingdom
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
4
|
Keen AC, Jörg M, Halls ML. The application of targeted protein degradation technologies to G protein-coupled receptors. Br J Pharmacol 2024; 181:2351-2358. [PMID: 36965004 DOI: 10.1111/bph.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023] Open
Abstract
The ubiquitin-proteasome system is one of the major pathways for the degradation of cellular proteins. In recent years, methods have been developed to exploit the ubiquitin-proteasome system to artificially degrade target proteins. Targeted protein degraders are extremely useful as biological tools for discovery research. They have also been developed as novel therapeutics with several targeted protein degraders currently in clinical trials. However, almost all targeted protein degrader technologies have been developed for cytosolic proteins. The G protein-coupled receptor (GPCR) superfamily is one of the most important classes of drug targets, yet only limited examples of GPCR degradation exist. Here, we review these examples and provide a perspective on the different strategies that have been used to apply targeted protein degradation to GPCRs. We also discuss whether alternative approaches that have been used to degrade other integral membrane proteins could be applied to the degradation of GPCRs. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Manuela Jörg
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052, Victoria, Australia
- Newcastle University Centre for Cancer, Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052, Victoria, Australia
| |
Collapse
|
5
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
6
|
Mishra V, Crespo-Puig A, McCarthy C, Masonou T, Glegola-Madejska I, Dejoux A, Dow G, Eldridge MJG, Marinelli LH, Meng M, Wang S, Bennison DJ, Morrison R, Shenoy AR. IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation. Nat Commun 2023; 14:4385. [PMID: 37474493 PMCID: PMC10359330 DOI: 10.1038/s41467-023-40054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1β turnover in macrophages, leading to excessive mature IL-1β production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1β. We show that precursor abundance determines mature IL-1β production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1β. Our study uncovers fundamental processes governing IL-1β homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.
Collapse
Affiliation(s)
- Vishwas Mishra
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Crespo-Puig
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Callum McCarthy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Tereza Masonou
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Izabela Glegola-Madejska
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Alice Dejoux
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Gabriella Dow
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Matthew J G Eldridge
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Luciano H Marinelli
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Meihan Meng
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Shijie Wang
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel J Bennison
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Morrison
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
7
|
Xiao Z, Gray JL, Tate EW. Weaponizing the proteasome to overcome antimalarial drug resistance. Cell Chem Biol 2023; 30:415-417. [PMID: 37207629 DOI: 10.1016/j.chembiol.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
In this issue of Cell Chemical Biology, Zhan et al. report dual-pharmacophore molecules ("artezomibs"), combining an artemisinin and proteasome inhibitor that exhibit potent activity against both wild-type and drug-resistant malarial parasites.1 This study indicates that artezomibs offer a promising approach to combat drug resistance encountered by current antimalarial therapies.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Janine L Gray
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
8
|
Sobhia ME, Kumar H, Kumari S. Bifunctional robots inducing targeted protein degradation. Eur J Med Chem 2023; 255:115384. [PMID: 37119667 DOI: 10.1016/j.ejmech.2023.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
The gaining importance of Targeted Protein Degradation (TPD) and PROTACs (PROteolysis-TArgeting Chimeras) have drawn the scientific community's attention. PROTACs are considered bifunctional robots owing to their avidity for the protein of interest (POI) and E3-ligase, which induce the ubiquitination of POI. These molecules are based on event-driven pharmacology and are applicable in different conditions such as oncology, antiviral, neurodegenerative disease, acne etc., offering tremendous scope to researchers. In this review, primarily, we attempted to compile the recent works available in the literature on PROTACs for various targeted proteins. We summarized the design and development strategies with a focus on molecular information of protein residues and linker design. Rationalization of the ternary complex formation using Artificial Intelligence including machine & deep learning models and traditionally followed computational tools are also included in this study. Moreover, details describing the optimization of PROTACs chemistry and pharmacokinetic properties are added. Advanced PROTAC designs and targeting complex proteins, is summed up to cover the wide spectrum.
Collapse
Affiliation(s)
- M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India.
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector - 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
9
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Haid RTU, Reichel A. A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs). Pharmaceutics 2023; 15:pharmaceutics15010195. [PMID: 36678824 PMCID: PMC9865105 DOI: 10.3390/pharmaceutics15010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
The field of targeted protein degradation is growing exponentially. Yet, there is an unmet need for pharmacokinetic/pharmacodynamic models that provide mechanistic insights, while also being practically useful in a drug discovery setting. Therefore, we have developed a comprehensive modeling framework which can be applied to experimental data from routine projects to: (1) assess PROTACs based on accurate degradation metrics, (2) guide compound optimization of the most critical parameters, and (3) link degradation to downstream pharmacodynamic effects. The presented framework contains a number of first-time features: (1) a mechanistic model to fit the hook effect in the PROTAC concentration-degradation profile, (2) quantification of the role of target occupancy in the PROTAC mechanism of action and (3) deconvolution of the effects of target degradation and target inhibition by PROTACs on the overall pharmacodynamic response. To illustrate applicability and to build confidence, we have employed these three models to analyze exemplary data on various compounds from different projects and targets. The presented framework allows researchers to tailor their experimental work and to arrive at a better understanding of their results, ultimately leading to more successful PROTAC discovery. While the focus here lies on in vitro pharmacology experiments, key implications for in vivo studies are also discussed.
Collapse
Affiliation(s)
- Robin Thomas Ulrich Haid
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Andreas Reichel
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
11
|
Banerjee S, Sharma S, Thakur A, Sachdeva R, Sharma R, Nepali K, Liou JP. N-Heterocycle based Degraders (PROTACs) Manifesting Anticancer Efficacy: Recent Advances. Curr Drug Targets 2023; 24:1184-1208. [PMID: 37946353 DOI: 10.2174/0113894501273969231102095615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.
Collapse
Affiliation(s)
- Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ritika Sachdeva
- College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Wang XR, Wang S, Mu HX, Xu KY, Wang XT, Shi JT, Cui QH, Zhang LW, Chen SW. Discovery of novel VEGFR-2-PROTAC degraders based on the localization of lysine residues via recruiting VHL for the treatment of gastric cancer. Eur J Med Chem 2022; 244:114821. [DOI: 10.1016/j.ejmech.2022.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
13
|
Moein S, Tenen DG, Amabile G, Chai L. SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells 2022; 11:cells11162601. [PMID: 36010677 PMCID: PMC9406946 DOI: 10.3390/cells11162601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.
Collapse
Affiliation(s)
- Shiva Moein
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Giovanni Amabile
- Believer Pharmaceuticals, Inc., Wilmington, DE 19801, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Li Chai
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| |
Collapse
|
14
|
Sasso J, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2022; 62:601-623. [PMID: 35856839 PMCID: PMC9910052 DOI: 10.1021/acs.biochem.2c00245] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation is a rapidly exploding drug discovery strategy that uses small molecules to recruit disease-causing proteins for rapid destruction mainly via the ubiquitin-proteasome pathway. It shows great potential for treating diseases such as cancer and infectious, inflammatory, and neurodegenerative diseases, especially for those with "undruggable" pathogenic protein targets. With the recent rise of the "molecular glue" type of protein degraders, which tighten and simplify the connection of an E3 ligase with a disease-causing protein for ubiquitination and subsequent degradation, new therapies for unmet medical needs are being designed and developed. Here we use data from the CAS Content Collection and the publication landscape of recent research on targeted protein degraders to provide insights into these molecules, with a special focus on molecular glues. We also outline the advantages of the molecular glues and summarize the advances in drug discovery practices for molecular glue degraders. We further provide a thorough review of drug candidates in targeted protein degradation through E3 ligase recruitment. Finally, we highlight the progression of molecular glues in drug discovery pipelines and their targeted diseases. Overall, our paper provides a comprehensive reference to support the future development of molecular glues in medicine.
Collapse
|
15
|
Abstract
Many kinases use reversible docking interactions to augment the specificity of their catalytic domains. Such docking interactions are often structurally independent of the catalytic domain, which allow for a flexible combination of modules in evolution and in bioengineering. The affinity of docking interactions spans several orders of magnitude. This led us to ask how the affinity of the docking interaction affects enzymatic activity and how to pick the optimal interaction module to complement a given substrate. Here, we develop equations that predict the optimal binding strength of a kinase docking interaction and validate it using numerical simulations and steady-state phosphorylation kinetics for tethered protein kinase A. We show that a kinase-substrate pair has an optimum docking strength that depends on their enzymatic constants, the tether architecture, the substrate concentration, and the kinetics of the docking interactions. We show that a reversible tether enhances phosphorylation rates most when 1) the docking strength is intermediate, 2) the substrate is nonoptimal, 3) the substrate concentration is low, 4) the docking interaction has rapid exchange kinetics, and 5) the tether optimizes the effective concentration of the intramolecular reaction. This work serves as a framework for interpreting mutations in kinase docking interactions and as a design guide for engineering enzyme scaffolds.
Collapse
|
16
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
17
|
Bano I, Malhi M, Zhao M, Giurgiulescu L, Sajjad H, Kieliszek M. A review on cullin neddylation and strategies to identify its inhibitors for cancer therapy. 3 Biotech 2022; 12:103. [PMID: 35463041 PMCID: PMC8964847 DOI: 10.1007/s13205-022-03162-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/29/2022] [Indexed: 11/01/2022] Open
Abstract
The cullin-RING E3 ligases (CRLs) are the biggest components of the E3 ubiquitin ligase protein family, and they represent an essential role in various diseases that occur because of abnormal activation, particularly in tumors development. Regulation of CRLs needs neddylation, a post-translational modification involving an enzymatic cascade that transfers small, ubiquitin-like NEDD8 protein to CRLs. Many previous studies have confirmed neddylation as an enticing target for anticancer drug discoveries, and few recent studies have also found a significant increase in advancement in protein neddylation, including preclinical and clinical target validation to discover the neddylation inhibitor compound. In the present review, we first presented briefly the essence of CRLs' neddylation and its control, systematic analysis of CRLs, followed by the description of a few recorded chemical inhibitors of CRLs neddylation enzymes with recent examples of preclinical and clinical targets. We have also listed various structure-based pointing of protein-protein dealings in the CRLs' neddylation reaction, and last, the methods available to discover new inhibitors of neddylation are elaborated. This review will offer a concentrated, up-to-date, and detailed description of the discovery of neddylation inhibitors.
Collapse
|
18
|
Bricelj A, Dora Ng YL, Ferber D, Kuchta R, Müller S, Monschke M, Wagner KG, Krönke J, Sosič I, Gütschow M, Steinebach C. Influence of Linker Attachment Points on the Stability and Neosubstrate Degradation of Cereblon Ligands. ACS Med Chem Lett 2021; 12:1733-1738. [PMID: 34795861 PMCID: PMC8591746 DOI: 10.1021/acsmedchemlett.1c00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) hijacking the cereblon (CRBN) E3 ubiquitin ligase have emerged as a novel paradigm in drug development. Herein we found that linker attachment points of CRBN ligands highly affect their aqueous stability and neosubstrate degradation features. This work provides a blueprint for the assembly of future heterodimeric CRBN-based degraders with tailored properties.
Collapse
Affiliation(s)
- Aleša Bricelj
- Faculty of
Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Yuen Lam Dora Ng
- Department
of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Dominic Ferber
- Pharmaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Robert Kuchta
- Pharmaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sina Müller
- Department
of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marius Monschke
- Pharmaceutical
Institute, Pharmaceutical Technology, University
of Bonn, Gerhard-Domagk-Straße
3, 53121 Bonn, Germany
| | - Karl G. Wagner
- Pharmaceutical
Institute, Pharmaceutical Technology, University
of Bonn, Gerhard-Domagk-Straße
3, 53121 Bonn, Germany
| | - Jan Krönke
- Department
of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Izidor Sosič
- Faculty of
Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Michael Gütschow
- Pharmaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Steinebach
- Pharmaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
19
|
Goya Grocin A, Kallemeijn WW, Tate EW. Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci 2021; 42:870-882. [PMID: 34446297 DOI: 10.1016/j.tips.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022]
Abstract
For over three decades, methionine aminopeptidase 2 (MetAP2) has been a tentative drug target for the treatment of cancer, obesity, and autoimmune diseases. Currently, no MetAP2 inhibitors (MetAP2i) have reached the clinic yet, despite considerable investment by major pharmaceutical companies. Here, we summarize the key series of MetAP2i developed to date and discuss their clinical development, progress, and issues. We coalesce the currently disparate knowledge regarding MetAP2i mechanism of action and discuss discrepancies across varied studies. Finally, we highlight the current knowledge gaps that need to be addressed to enable successful development of MetAP2 inhibitors in clinical settings.
Collapse
Affiliation(s)
- Andrea Goya Grocin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
20
|
De Vita E, Lucy D, Tate EW. Beyond targeted protein degradation: LD·ATTECs clear cellular lipid droplets. Cell Res 2021; 31:945-946. [PMID: 34354256 PMCID: PMC8410825 DOI: 10.1038/s41422-021-00546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elena De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Daniel Lucy
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|