1
|
Ceci C, Ruffini F, Falconi M, Atzori MG, Falzon A, Lozzi F, Iacovelli F, D'Atri S, Graziani G, Lacal PM. Pharmacological inhibition of PDGF-C/neuropilin-1 interaction: A novel strategy to reduce melanoma metastatic potential. Biomed Pharmacother 2024; 176:116766. [PMID: 38788599 DOI: 10.1016/j.biopha.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Activation of neuropilin-1 (NRP-1) by platelet derived growth factor (PDGF)-C sustains melanoma invasiveness. Therefore, in the search of novel agents capable of reducing melanoma spreading, PDGF-C/NRP-1 interaction was investigated as a potential druggable target. Since the PDGF-C region involved in NRP-1 binding is not yet known, based on the sequence and structural homology between PDGF-C and vascular endothelial growth factor-A (VEGF-A), we hypothesized that the NRP-1 b1 domain region involved in the interaction with VEGF-A might also be required for PDGF-C binding. Hence, this region was selected from the protein crystal structure and used as target in the molecular docking procedure. In the following virtual screening, compounds from a DrugBank database were used as query ligands to identify agents potentially capable of disrupting NRP-1/PDGF-C interaction. Among the top 45 candidates with the highest affinity, five drugs were selected based on the safety profile, lack of hormonal effects, and current availability in the market: the antipsychotic pimozide, antidiabetic gliclazide, antiallergic cromolyn sodium, anticancer tyrosine kinase inhibitor entrectinib, and antihistamine azelastine. Analysis of drug influence on PDGF-C in vitro binding to NRP-1 and PDGF-C induced migration of human melanoma cells expressing NRP-1, indicated gliclazide and entrectinib as the most specific agents that were active at clinically achievable and non-toxic concentrations. Both drugs also reverted PDGF-C ability to stimulate extracellular matrix invasion by melanoma cells resistant to BRAF inhibitors. The inhibitory effect on tumor cell motility involved a decrease of p130Cas phosphorylation, a signal transduction pathway activated by PDGF-C-mediated stimulation of NRP-1.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Andrea Falzon
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Lozzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
2
|
Gedawy A, Al-Salami H, Dass CR. Polydimethylsiloxane Organic-Inorganic Composite Drug Reservoir with Gliclazide. Int J Mol Sci 2024; 25:3991. [PMID: 38612802 PMCID: PMC11012350 DOI: 10.3390/ijms25073991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
A novel organic-inorganic gliclazide-loaded composite bead was developed by an ionic gelation process using acidified CaCl2, chitosan and tetraethylorthosilicate (TEOS) as a crosslinker. The beads were manufactured by crosslinking an inorganic silicone elastomer (-OH terminated polydimethylsiloxane, PDMS) with TEOS at different ratios before grafting onto an organic backbone (Na-alginate) using a 32 factorial experimental design. Gliclazide's encapsulation efficiency (EE%) and drug release over 8 h (% DR 8 h) were set as dependent responses for the optimisation of a pharmaceutical formula (herein referred to as 'G op') by response surface methodology. EE % and %DR 8 h of G op were 93.48% ± 0.19 and 70.29% ± 0.18, respectively. G op exhibited a controlled release of gliclazide that follows the Korsmeyer-Peppas kinetic model (R2 = 0.95) with super case II transport and pH-dependent swelling behaviour. In vitro testing of G op showed 92.17% ± 1.18 cell viability upon testing on C2C12 myoblasts, indicating the compatibility of this novel biomaterial platform with skeletal muscle drug delivery.
Collapse
Affiliation(s)
- Ahmed Gedawy
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| |
Collapse
|
3
|
Structural Insights and Supramolecular Description of Gliclazide and its Impurity F. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, Schiöth HB. Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Front Pharmacol 2022; 12:807548. [PMID: 35126141 PMCID: PMC8807560 DOI: 10.3389/fphar.2021.807548] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Giovanna Dashi
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ivan Maslov
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Misty M. Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir Trukhan
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Russia Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Jahan S, Aqil M, Ahad A, Imam SS, Waheed A, Qadir A, Ali A. Nanostructured lipid carrier for transdermal gliclazide delivery: development and optimization by Box-Behnken design. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Mohd. Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| |
Collapse
|
6
|
Adiwidjaja J, Sasongko L. Effect of Nigella sativa oil on pharmacokinetics and pharmacodynamics of gliclazide in rats. Biopharm Drug Dispos 2021; 42:359-371. [PMID: 34327715 DOI: 10.1002/bdd.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Nigella sativa oil (NSO) has been used widely for its putative anti-hyperglycemic activity. However, little is known about its potential effect on the pharmacokinetics and pharmacodynamics of antidiabetic drugs, including gliclazide. This study aimed to investigate herb-drug interactions between gliclazide and NSO in rats. Plasma concentrations of gliclazide (single oral and intravenous dose of 33 and 26.4 mg/kg, respectively) in the presence and absence of co-administration with NSO (52 mg/kg per oral) were quantified in healthy and insulin resistant rats (n = 5 for each group). Physiological and treatment-related factors were evaluated as potential influential covariates using a population pharmacokinetic modeling approach (NONMEM version 7.4). Clearance, volume of distribution and bioavailability of gliclazide were unaffected by disease state (healthy or insulin resistant). The concomitant administration of NSO resulted in higher systemic exposures of gliclazide by modulating bioavailability (29% increase) and clearance (20% decrease) of the drug. A model-independent analysis highlighted that pre-treatment with NSO in healthy rats was associated with a higher glucose lowering effect by up to 50% compared with that of gliclazide monotherapy, but not of insulin resistant rats. Although a similar trend in glucose reductions was not observed in insulin resistant rats, co-administration of NSO improved the sensitivity to insulin of this rat population. Natural product-drug interaction between gliclazide and NSO merits further evaluation of its clinical importance.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.,Sydney Pharmacy School, The University of Sydney, Sydney, Australia
| | - Lucy Sasongko
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
7
|
Zhao C, Li X, Ma J, Zhu Z, Li H, Lou F, Zhai Y, Chen H, Xiao S, Peng Q, Hua H, Zhang Q, Lou F. Effects of liraglutide combined with metformin and Diamicron on glucose–lipid metabolism and islet β-cell function in elderly patients with type 2 diabetes mellitus. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1917457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Chunzhi Zhao
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Xing Li
- Department of Endocrinology, The Second Affiliated Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianhua Ma
- Department of Endocrinology, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhengtai Zhu
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Hua Li
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Fangli Lou
- Nursing School of Guizhou University of Traditional Chinese Medicine, Guiyang, People’s Republic of China
| | - Yuefang Zhai
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Hui Chen
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Shujun Xiao
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Qinhui Peng
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Huilian Hua
- Department of Pharmacy, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Qing Zhang
- Department of Geriatrics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| | - Fangyong Lou
- Department of Orthopaedics, Taizhou Peoples Hospital, Taizhou, People’s Republic of China
| |
Collapse
|
8
|
Afifi M, Alkaladi A, Abomughaid MM, Abdelazim AM. Nanocurcumin improved glucose metabolism in streptozotocin-induced diabetic rats: a comparison study with Gliclazide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25271-25277. [PMID: 32347481 DOI: 10.1007/s11356-020-08941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the present study, the biochemical effect of nanocurcumin (nanoCUR) compared with Gliclazide (GLZ) on the diabetic rats was studied. Forty male albino rats (Sprague Dawley) weighted 110 ± 20 g were used. Rats were randomly separated into two groups. Control, received no treatment. Streptozotocin (STZ)-induced diabetic groups take 5 ml/kg of STZ in normal saline daily for 30 days, further divided into diabetic non-treated group, did not receive any treatment: diabetic group treated by nanoCUR, received 15 mg/kg/day of nanoCUR orally for 30 days; diabetic group treated by GLZ, received 2 mg/kg/day of GLZ for 30 days. The mean body weights of all rats were registered and serum samples were collected for determination of fasting blood glucose (FBG), insulin concentration, liver glucokinase (GK), and glycogen synthase (GS) activities. Liver tissues were collected for determination of mRNA expression of insulin (INS), insulin receptor A (IRA), glucokinase (GK), and glucose transporter 2 (GLUT2). The results revealed a significant reduction of body weight in diabetic rats, with no significant differences in nanoCUR and GLZ groups. There was a decline in FBG levels and significant elevation of INS levels, GK, and GS activities in diabetic rats received nanoCUR and GLZ. mRNA expression of INS, IRA, GK, and GLUT2 significantly upregulated in diabetic rats received nanoCUR and GLZ. The amazing observation was a non-significant difference in all measured parameters between nanoCUR and GLZ groups. In conclusion, nanoCUR is able to improve cellular uptake of glucose, the hepatic insulin signaling, and insulin sensitivity in diabetic rats. Its effect was similar to standard hypoglycemic drug (GLZ).
Collapse
Affiliation(s)
- Mohamed Afifi
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia.
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Ali Alkaladi
- College of Science, Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Aaser M Abdelazim
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
9
|
Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng LB, Patnaik S. Fabrication of Second Generation Smarter PLGA Based Nanocrystal Carriers for Improvement of Drug Delivery and Therapeutic Efficacy of Gliclazide in Type-2 Diabetes Rat Model. Sci Rep 2019; 9:17331. [PMID: 31758056 PMCID: PMC6874704 DOI: 10.1038/s41598-019-53996-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Drug delivery and therapeutic challenges of gliclazide, a BCS class II drug used in type 2 diabetes mellitus (T2DM) can be overcome by exploring smarter carriers of second-generation nanocrystals (SGNCs). A combined method of emulsion diffusion, high-pressure homogenization and solvent evaporation method were employed in the preparation of gliclazide loaded poly (D, L-lactide-co-glycolide) (PLGA) SGNCs. Taguchi experimental design was adopted in fabrication of Gliclazide SGNc using Gliclazide -PLGA ratio at 1:0.5, 1:0.75, 1:1 with stabilizer (Poloxamer-188, PEG 4000, HPMC E15 at 0.5, 0.75, 1% w/v). The formulated gliclazide of SGNCs were investigated for physicochemical properties, in vitro drug release, and in vivo performance studies using type-2 diabetes rat model. The formulation (SGNCF1) with Drug: PLGA 1: 0.5 ratio with 0.5% w/v Poloxamer-188 produced optimized gliclazide SGNCs. SGNCF1 showed spherical shape, small particle size (106.3 ± 2.69 nm), good zeta potential (−18.2 ± 1.30 mV), small PDI (0.222 ± 0.104) and high entrapment efficiency (86.27 ± 0.222%). The solubility, dissolution rate and bioavailability of gliclazide SGNCs were significantly improved compared to pure gliclazide. The findings emphasize gliclazide SGNCs produce faster release initially, followed by delayed release with improved bioavailability, facilitate efficient delivery of gliclazide in T2DM with better therapeutic effect.
Collapse
Affiliation(s)
- Bibhu Prasad Panda
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Rachna Krishnamoorthy
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | | | - Low Bin Seng
- School of Medicine, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Sujata Patnaik
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| |
Collapse
|
10
|
Adibkia K, Ghajar S, Osouli-Bostanabad K, Balaei N, Emami S, Barzegar-Jalali M. Novel Gliclazide Electrosprayed Nano-Solid Dispersions: Physicochemical Characterization and Dissolution Evaluation. Adv Pharm Bull 2019; 9:231-240. [PMID: 31380248 PMCID: PMC6664122 DOI: 10.15171/apb.2019.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/11/2019] [Accepted: 04/14/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.
Collapse
Affiliation(s)
- Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Ghajar
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Osouli-Bostanabad
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Balaei
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Emami
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Wen W, Gong J, Wu P, Zhao M, Wang M, Chen H, Sun J. Mutations in gliclazide-associated genes may predict poor bladder cancer prognosis. FEBS Open Bio 2019; 9:457-467. [PMID: 30868054 PMCID: PMC6396154 DOI: 10.1002/2211-5463.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/22/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023] Open
Abstract
In recent years, an increasing number of patients have had diabetes and cancer simultaneously; thus, it is crucial for physicians to select hypoglycemic drugs with the lowest risk of inducing cancer. Gliclazide is a widely used sulfonylurea hypoglycemic drug, but its cancer risk remains controversial. Here, we explored the primary targets of gliclazide and its associated genes by querying an available database to construct a biological network. By using DrugBank and STRING, we found two primary targets of gliclazide and 50 gliclazide-associated genes, which were then enrolled for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using WebGestalt. From this analysis, we obtained the top 15 KEGG pathways. Accurate analysis of these KEGG pathways revealed that two pathways, one linked to bladder cancer and the other linked to the phosphoinositide 3-kinase-AKT signaling pathway, are functionally associated with gliclazide, and from these we identified four overlapping genes. Finally, genomic analysis using cBioPortal showed that genomic alterations of these four overlapping genes predict poor prognosis for patients with bladder cancer. In conclusion, gliclazide should be used with caution as a hypoglycemic drug for diabetic patients with cancer, especially bladder cancer. In addition, this study provides a functional network analysis to flexibly explore drug interaction systems and estimate their safety.
Collapse
Affiliation(s)
- Weiheng Wen
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Jinru Gong
- State Key Laboratory of Respiratory Disease The First Affiliated Hospital of Guangzhou Medical University China
| | - Peili Wu
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Min Zhao
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Ming Wang
- Department of Traditional Chinese Medicine Zhujiang Hospital Southern Medical University Guangzhou China
| | - Hong Chen
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| | - Jia Sun
- Department of Endocrinology Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|