1
|
Holmes ST, Wiscons RA, Parks K, Nickel S, Ankeny HS, Viggiano AM, Bedillion D, Shoup D, Iuliucci RJ, Wang Q, Schurko RW, Quiñones R. A Novel Solid Form of Erlotinib: Synthesis by Heterogeneous Complexation and Characterization by NMR Crystallography. CRYSTAL GROWTH & DESIGN 2025; 25:3219-3228. [PMID: 40352754 PMCID: PMC12063053 DOI: 10.1021/acs.cgd.5c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
We describe the synthesis of a novel complex of the anticancer "active pharmaceutical ingredient erlotinib (ERL) via heterogeneous nucleation on polished zinc tiles. The resulting product, ERL 2 ·ZnCl 2 , is characterized by single-crystal X-ray diffraction, multinuclear solid-state NMR (ssNMR) spectroscopy, and density functional theory (DFT) calculations. Also characterized are the hydrochloride salt (ERL·HCl) and monohydrate free base (ERL·H 2 O) forms of erlotinib. 13C ssNMR spectroscopy is useful for site-by-site assignment and rapid fingerprinting, while also providing preliminary structural interpretations, such as the number of molecules in the asymmetric unit. 35Cl ssNMR can readily differentiate between the chloride ions in ERL·HCl and the covalently bonded chlorine in ERL 2 ·ZnCl 2 . 15N ssNMR proves to be critical here because of the large isotropic chemical shift differences between ERL·H 2 O, ERL·HCl, and ERL 2 ·ZnCl 2 . The 15N chemical shift tensors are linked directly to differences in structure and bonding with the aid of DFT calculations. Together, these results demonstrate the utility of multinuclear NMR crystallography for the characterization of solid forms of APIs, especially when other analytical techniques face significant challenges.
Collapse
Affiliation(s)
- Sean T. Holmes
- Department
of Chemistry & Biochemistry, Florida
State University, Tallahassee, Florida 32306, United States
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Ren A. Wiscons
- Department
of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| | - Kerrigan Parks
- Department
of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Sarah Nickel
- Department
of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Halie S. Ankeny
- Department
of Chemistry, Washington & Jefferson
College, Washington, Pennsylvania 15301, United States
| | - Aaron M. Viggiano
- Department
of Chemistry, Washington & Jefferson
College, Washington, Pennsylvania 15301, United States
| | - Derek Bedillion
- Department
of Chemistry, Washington & Jefferson
College, Washington, Pennsylvania 15301, United States
| | - Deben Shoup
- Department
of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| | - Robbie J. Iuliucci
- Department
of Chemistry, Washington & Jefferson
College, Washington, Pennsylvania 15301, United States
| | - Qiang Wang
- Shared Research
Facilities, West Virginia University, Morgantown, West Virginia 25606, United States
| | - Robert W. Schurko
- Department
of Chemistry & Biochemistry, Florida
State University, Tallahassee, Florida 32306, United States
- National
High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Rosalynn Quiñones
- Department
of Chemistry, Marshall University, Huntington, West Virginia 25755, United States
| |
Collapse
|
2
|
Eissa IH, Elkady H, Elgammal WE, Mahdy HA, Elshennawy HS, Husein DZ, Amin FG, Ibrahim IM, Alsfouk BA, Elkaeed EB, Metwaly AM. Development of new anticancer thiadiazole-sulfonamides as dual EGFR/carbonic anhydrase inhibitors. Future Med Chem 2025; 17:1023-1038. [PMID: 40337848 DOI: 10.1080/17568919.2025.2498879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Thiadiazole-sulfonamide derivatives were synthesized as dual inhibitors of epidermal growth factor receptor (EGFR) and carbonic anhydrase IX (CA-IX) to develop selective anticancer agents. METHODS Cytotoxicity was evaluated against MDA-MB-231 and MCF-7 breast cancer cells, with selectivity tested on Vero cells. Enzymatic inhibition studies were conducted against EGFR and CA-IX, using erlotinib and acetazolamide as reference drugs. Apoptosis was assessed through gene expression analysis of BAX/Bcl-2, caspase-8, and caspase-9, alongside flow cytometry for apoptosis and cell cycle analysis. Molecular docking and 200 ns molecular dynamics (MD) simulations evaluated binding interactions. Density Functional Theory (DFT) calculations and in silico ADMET predictions assessed stability, electronic properties, and safety. RESULTS Compound 14 exhibited potent cytotoxicity (IC₅₀ = 5.78 μM, MDA-MB-231; 8.05 μM, MCF-7) and high selectivity (IC₅₀ = 313.08 μM, Vero). It inhibited EGFR (IC₅₀ = 5.92 nM) and CA-IX (IC₅₀ = 63 nM), surpassing reference drugs. Apoptosis induction was confirmed by a 13.97-fold increase in BAX/Bcl-2, caspase upregulation, and G1-phase arrest. Computational analyses confirmed stable binding and favorable safety. CONCLUSIONS Compound 14 represents a promising dual EGFR/CA-IX inhibitor with selective anticancer activity. Further in vivo studies are warranted.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | | | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Fatma G Amin
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Hunt S, Thyagarajan A, Sahu RP. Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer. Med Sci (Basel) 2025; 13:47. [PMID: 40407542 PMCID: PMC12101198 DOI: 10.3390/medsci13020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Despite the available treatment options, a majority of cancer patients develop drug resistance, indicating the need for alternative approaches. Repurposed drugs, such as antiglycolytic and anti-microbial agents, have gained substantial attention as potential alternative strategies against different disease pathophysiologies, including lung cancer. To that end, multiple studies have suggested that the antiglycolytic dichloroacetate (DCA) and the antibiotic salinomycin (SAL) possess promising anticarcinogenic activity, attributed to their abilities to target the key metabolic enzymes, ion transport, and oncogenic signaling pathways involved in regulating cancer cell behavior, including cell survival and proliferation. We used the following searches and selection criteria. (1) Biosis and PubMed were used with the search terms dichloroacetate; salinomycin; dichloroacetate as an anticancer agent; salinomycin as an anticancer agent; dichloroacetate side effects; salinomycin side effects; salinomycin combination therapy; dichloroacetate combination therapy; and dichloroacetate or salinomycin in combination with other agents, including chemotherapy and tyrosine kinase inhibitors. (2) The exclusion criteria included not being related to the mechanisms of DCA and SAL or not focusing on their anticancer properties. (3) All the literature was sourced from peer-reviewed journals within a timeframe of 1989 to 2024. Importantly, experimental studies have demonstrated that both DCA and SAL exert promising anticarcinogenic properties, as well as having synergistic effects in combination with other therapeutic agents, against multiple cancer models. The goal of this review is to highlight the mechanistic workings and efficacy of DCA and SAL as monotherapies, and their combination with other therapeutic agents in various cancer models, with a major emphasis on non-small-cell lung cancer (NSCLC) treatment.
Collapse
Affiliation(s)
- Sunny Hunt
- Department of Chemistry and Biochemistry, Oberlin College, 173 W Lorain St, Oberlin, OH 44074, USA;
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Dayton, OH 45435, USA;
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Dayton, OH 45435, USA;
| |
Collapse
|
4
|
Rysz MA, Schäfer AM, Kinzi J, Paloumpis N, In-Albon K, Schmidlin S, Seibert I, Ricklin D, Meyer Zu Schwabedissen HE. Erlotinib-A substrate and inhibitor of OATP2B1: pharmacokinetics and CYP3A-mediated metabolism in rSlco2b1 -/- and SLCO2B1 +/+ rats. Drug Metab Dispos 2025; 53:100069. [PMID: 40239314 DOI: 10.1016/j.dmd.2025.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
The tyrosine kinase inhibitor erlotinib is recognized as a substrate of cytochrome P450 enzymes and drug transporters. Indeed, erlotinib's extensive metabolism to the active metabolite OSI-420 (desmethyl erlotinib) mainly involves CYP3A enzymes. Additionally, erlotinib is assumed to interact with the organic anion transporting polypeptide (OATP)2B1. In this study, we aimed to investigate the role of human OATP2B1 in erlotinib's metabolism through in vitro and in vivo experiments. Using Madin-Darby canine kidney cells expressing human OATP2B1 for competitive counterflow experiments, we confirmed erlotinib as inhibitor and substrate of the transporter. Moreover, in vitro transport experiments revealed higher cellular accumulation of erlotinib at pH 5.5 than that at pH 7.4. Pharmacokinetic evaluation of orally administered erlotinib in male SLCO2B1+/+ and rSlco2b1-/- rats revealed that the human OATP2B1 does not significantly alter serum levels of erlotinib or its main metabolite OSI-420, although we observed a longer mean residence time of the metabolite in humanized rats. Although there was no difference in the OSI-420:erlotinib ratio over time in SLCO2B1+/+ and rSlco2b1-/- rats, we assessed the role of CYP3A1 and CYP3A2 in the metabolism of erlotinib. In vitro experiments showed a contribution of both enzymes to the formation of OSI-420. For CYP3A1, we found significantly higher expression in liver microsomes of male SLCO2B1+/+ rats, while the knockout genotype showed significantly higher levels of CYP3A2. However, these differences did not affect the systemic exposure of erlotinib or OSI-420 in the rats. Our findings provide further insight into the role of OATP2B1 in the disposition of orally administered erlotinib. SIGNIFICANCE STATEMENT: This study confirms that erlotinib is a substrate of the human organic anion transporting polypeptide 2B1 transporter in vitro. In vivo experiments in rat models, however, showed no significant impact of organic anion transporting polypeptide 2B1 on the systemic exposure of erlotinib or its metabolite, OSI-420. Despite variations in CYP3A enzyme expression in SLCO2B1+/+ rats, the OSI-420:erlotinib ratio remained unchanged. Although SLCO2B1+/+ rats exhibited a longer mean residence time for OSI-420, this did not significantly alter overall exposure in orally treated animals.
Collapse
Affiliation(s)
- Marta A Rysz
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nikolaos Paloumpis
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
5
|
Wang M, Li W, Zhou F, Wang Z, Jia X, Han X. A nicotinamide metabolism-related gene signature for predicting immunotherapy response and prognosis in lung adenocarcinoma patients. PeerJ 2025; 13:e18991. [PMID: 40034678 PMCID: PMC11874940 DOI: 10.7717/peerj.18991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Background Nicotinamide (NAM) metabolism fulfills crucial functions in tumor progression. The present study aims to establish a NAM metabolism-correlated gene (NMRG) signature to assess the immunotherapy response and prognosis of lung adenocarcinoma (LUAD). Methods The training set and validation set (the GSE31210 dataset) were collected The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Molecular subtypes of LUAD were classified by consensus clustering. Mutation landscape of the top 20 somatic genes was visualized by maftools package. Subsequently, differential expression analysis was conducted using the limma package, and univariate, multivariate and LASSO regression analyses were performed on the screened genes to construct a risk model for LUAD. Next, the MCP-counter, TIMER and ESTIMATE algorithms were utilized to comprehensively assess the immune microenvironmental profile of LUAD patients in different risk groups. The efficacy of immunotherapy and chemotherapy drugs was evaluated by TIDE score and pRRophetic package. A nomogram was created by integrating RiskScore and clinical features. The mRNA expressions of independent prognostic NMRGs and the migration and invasion of LUAD cells were measured by carrying out cellular assays. Results Two subtypes (C1 and C2) of LUAD were classified, with C1 subtype showing a worse prognosis than C2. The top three genes with a high mutation frequency in C1 and C2 subtypes were TTN (45.25%), FLG (25.25%), and ZNF536 (19.8%). Four independent prognostic NMRGs (GJB3, CPA3, DKK1, KRT6A) were screened and used to construct a RiskScore model, which exhibited a strong predictive performance. High-risk group showed low immune cell infiltration, high TIDE score, and worse prognosis, and the patients in this group exhibited a high drug sensitivity to Cisplatin, Erlotinib, Paclitaxel, Saracatini, and CGP_082996. A nomogram was established with an accurate predictive and diagnostic performance. GJB3, DKK1, CPA3, and KRT6A were all high- expressed in LUAD cells, and silencing GJB3 inhibited the migration and invasion of LUAD cells. Conclusion A novel NMRG signature was developed, contributing to the prognostic evaluation and personalized treatment for LUAD patients.
Collapse
Affiliation(s)
- Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Wei Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| | - Xiaoteng Jia
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Xingpeng Han
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
- Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Zhao YC, Yan LQ, Xu Y. Recent advances of selenized tubulin inhibitors in cancer therapy. Bioorg Med Chem Lett 2025; 116:130037. [PMID: 39581555 DOI: 10.1016/j.bmcl.2024.130037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Cancer treatment always a huge challenge amidst the resistance and relapse caused by the various treatments. Inhibitors targeting mitosis have been considered as promising therapeutic drugs in clinic, of which tubulins play an important role. Selenium (Se) as an essential microelement in humans and animals, playing a crucial role in the formation of anti-oxidase (glutathione peroxidase) and selenoprotein, also attracted broad attention in cancer therapy. Because the introduction of Se atom could change the length and angle of chemical bond and alter their functional properties, regulating selenized chemotherapeutics has become one of the hot spots. However, little attention has been paid to studying the combination of Se and tubulin inhibitors. Herein, we review the latest research results of selenized tubulin inhibitors in cancer therapy, including its mechanisms, categories and biological activities, providing a theoretical basis for different selenized microtubules inhibitors therapies.
Collapse
Affiliation(s)
- Yong-Chang Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Liang-Qing Yan
- Department of Radiology, The People's Hospital of Yuhuan, Taizhou 317600, China
| | - Yuan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| |
Collapse
|
7
|
Zhang C, Huo Y, Fu J, Liu Y, Zhou Q, Hou M, Duan X, Lv Y, Hu J. Design, synthesis and antitumour activity of pyrimidine derivatives as novel selective EGFR kinase inhibitors. Mol Divers 2025:10.1007/s11030-024-11048-8. [PMID: 39832084 DOI: 10.1007/s11030-024-11048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, often linked to overexpression or abnormal activation of the epidermal growth factor receptor (EGFR). The issue of developing resistance to third-generation EGFR kinase inhibitors, such as osimertinib, underscores the urgent need for new therapies to overcome this resistance. Our findings revealed that compound A8 exhibits 88.01% kinase inhibition efficacy against the EGFRL858R/T790M mutation at a concentration of 0.1 μM, with an IC50 value of 5.0 nM. Moreover, its selectivity for this double mutation is 29.5, surpassing that of osimertinib. Most notably, A8 demonstrates an inhibitory activity of 2.9 nM against the EGFRL858R/T790M/C797S triple mutation, outperforming the benchmark drug osimertinib. Furthermore, compound A8 has demonstrated strong antiproliferative effects against H1975 cells, and its activity was better than osimertinib. The mechanism by which compound A8 operates as a selective EGFRL858R/T790M inhibitor was confirmed through a series of cell migration, apoptosis, and cell cycle assays. This lays the foundation for the development of a new structural type of EGFR kinase inhibitors.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yiwen Huo
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jianfang Fu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yue Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Qinjiang Zhou
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Mingyue Hou
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Xiaoxuan Duan
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yanna Lv
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
| | - Jinxing Hu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Iyer VJ, Donahue JE, Osman MA. Role of scaffold proteins in the heterogeneity of glioblastoma. Cell Commun Signal 2024; 22:477. [PMID: 39375741 PMCID: PMC11457365 DOI: 10.1186/s12964-024-01809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous type of incurable brain cancer with a low survival rate. Intensive ongoing research has identified several potential targets; however, GB is marred by the activation of multiple pathways, and thus common targets are highly sought. The signal regulatory scaffold IQGAP1 is an oncoprotein implicated in GB. IQGAP1 nucleates a myriad of pathways in a contextual manner and modulates many of the targets altered in GB like MAPK, NF-κB, and mTOR/PI3K/Akt1, thus positioning it as a plausible common therapeutic target. Here, we review the targets that are subjects of GB treatment clinical trials and the commonly used animal models that facilitate target identification. We propose a model in which the dysfunction of various IQGAP1 pathways can explain to a larger extent some of the GB heterogeneity and offer a platform for personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - John E Donahue
- Division of Neuropathology, Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mahasin A Osman
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
9
|
Hawash M. Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors. Cells 2024; 13:1656. [PMID: 39404419 PMCID: PMC11476325 DOI: 10.3390/cells13191656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
10
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
11
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Aya A. Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan;
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
| |
Collapse
|
12
|
Sun X, Li J, Gao X, Huang Y, Pang Z, Lv L, Li H, Liu H, Zhu L. Disulfidptosis‑related lncRNA prognosis model to predict survival therapeutic response prediction in lung adenocarcinoma. Oncol Lett 2024; 28:342. [PMID: 38855504 PMCID: PMC11157670 DOI: 10.3892/ol.2024.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, and disulfidptosis is a newly discovered mechanism of programmed cell death. However, the effects of disulfidptosis-related lncRNAs (DR-lncRNAs) in LUAD have yet to be fully elucidated. The aim of the present study was to identify and validate a novel lncRNA-based prognostic marker that was associated with disulfidptosis. RNA-sequencing and associated clinical data were obtained from The Cancer Genome Atlas database. Univariate Cox regression and lasso algorithm analyses were used to identify DR-lncRNAs and to establish a prognostic model. Kaplan-Meier curves, receiver operating characteristic curves, principal component analysis, Cox regression, nomograms and calibration curves were used to assess the reliability of the prognostic model. Functional enrichment analysis, immune infiltration analysis, somatic mutation analysis, tumor microenvironment and drug predictions were applied to the risk model. Reverse transcription-quantitative PCR was subsequently performed to validate the mRNA expression levels of the lncRNAs in normal cells and tumor cells. These analyses enabled a DR-lncRNA prognosis signature to be constructed, consisting of nine lncRNAs; U91328.1, LINC00426, MIR1915HG, TMPO-AS1, TDRKH-AS1, AL157895.1, AL512363.1, AC010615.2 and GCC2-AS1. This risk model could serve as an independent prognostic tool for patients with LUAD. Numerous immune evaluation algorithms indicated that the low-risk group may exhibit a more robust and active immune response against the tumor. Moreover, the tumor immune dysfunction exclusion algorithm suggested that immunotherapy would be more effective in patients in the low-risk group. The drug-sensitivity results showed that patients in the high-risk group were more sensitive to treatment with crizotinib, erlotinib or savolitinib. Finally, the expression levels of AL157895.1 were found to be lower in A549. In summary, a novel DR-lncRNA signature was constructed, which provided a new index to predict the efficacy of therapeutic interventions and the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Jia Li
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xuedi Gao
- Department of Ophthamology, Jinan Mingshui Eye Hospital, Jinan, Shandong 250200, P.R. China
| | - Yubin Huang
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Zhanyue Pang
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Lin Lv
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Hao Li
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
13
|
Siegman A, Shaykevich A, Chae D, Silverman I, Goel S, Maitra R. Erlotinib Treatment in Colorectal Cancer Suppresses Autophagy Based on KRAS Mutation. Curr Issues Mol Biol 2024; 46:7530-7547. [PMID: 39057088 PMCID: PMC11276370 DOI: 10.3390/cimb46070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS gene is mutated in approximately 45% of colorectal cancer patients. There are currently very few targeted treatments or therapies equipped to directly inhibit KRAS due to its unusual structural intricacies. Erlotinib, an EGFR inhibitor, has previously been demonstrated to reduce cell viability by inducing autophagy in lung cancer cell lines with varying EGFR mutations. In contrast to lung cancer cells, evidence is provided herein for the first time that erlotinib treatment in colorectal cancer (CRC) cell lines reduces autophagy and still results in decreased cell viability. However, the effects of erlotinib in CRC cell lines containing a wildtype KRAS gene were different than in cells carrying a mutant KRAS gene. We show that there is significantly more downregulation of autophagy in KRAS mutant CRC cells compared to KRAS wildtype cells, both at transcriptional and translational levels, suggesting that the KRAS mutation is advantageous for cancer growth, even in the presence of erlotinib. Cell viability results determined that KRAS wildtype CRC cells had significantly more cell death compared to KRAS mutant cells. Using patient mRNA datasets, we showed that there was a significant correlation between the presence of the KRAS mutation and the expression of autophagy proteins. Additionally, through molecular dynamics simulations, we develop a blueprint for KRAS and autophagy protein interaction and the impact of the KRAS mutation on autophagy protein regulation. Overall, this is the first report of erlotinib treatment in CRC cells that assesses autophagy, and we demonstrate that autophagy activity is downregulated in these cells. This effect is not only greater in cells carrying a KRAS mutation compared to wildtype cells, but the KRAS mutant cells also have increased cell viability compared to wildtype cells. We hypothesize that the difference in cell viability and autophagy expression between KRAS mutant and KRAS wildtype cells after treatment with erlotinib can be of therapeutic value to treat CRC patients carrying KRAS mutations.
Collapse
Affiliation(s)
- Alexander Siegman
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Aaron Shaykevich
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Danbee Chae
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Isaac Silverman
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| | - Sanjay Goel
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, NY 10033, USA (D.C.)
| |
Collapse
|
14
|
Liang Y, Li Y, Song L, Zhen X, Peng J, Li H. Quantification and analyses of seven tyrosine kinase inhibitors targeting hepatocellular carcinoma in human plasma by QuEChERS and UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124217. [PMID: 38924946 DOI: 10.1016/j.jchromb.2024.124217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are commonly used to treat various cancers. Literature suggests that the blood concentration of TKIs strongly correlates with their efficacy and adverse effects. Therefore, establishing a Therapeutic Drug Monitoring (TDM) methodology for TKI drugs is crucial to improving their clinical efficacy and minimizing the treatment-related adverse effects. However, quantifying their concentrations in the plasma using existing methods to avoid potential toxicity is challenging. Herein, seven TKIs, namely sorafenib tosylate, axitinib, erlotinib, cediranib, brivanib, linifanib, and golvatinib, were successfully analyzed in human plasma by following a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Briefly, biological samples were extracted using 1 mL of methanol, followed by the sequential addition of 250 mg of anhydrous magnesium sulfate and 25 mg of N-propylethylenediamine (PSA) for salinization and purification by adsorption, respectively. In this study, dovitinib was used as the internal standard. The seven TKIs were detected by the gradient elution method for 4 min in the positive ion electrospray mode. The mobile phase comprised methanol (phase A) and 0.1 % aqueous formic acid solution (phase B) on the Agilent Zorbax RRHD Stablebond Aq, (2.1 × 50 mm; 1.8 μm). Brivanib, linifanib, axitinib, sorafenib tosylate, and golvatinib exhibited good linearity in the range of 5-500 ng/mL, and erlotinib and cediranib exhibited good linearity in the range of 10-1000 ng/mL, with linear correlation coefficients (R2) ≥ 0.99. The limits of detection and quantification were 0.60-0.18 ng/mL and 5-10 ng/mL, respectively. The intraday and interday accuracy values ranged from -6.12 % to 7.31 %, with a precision (RSD) of ≤ 10.57 %. The method was rapid, accurate, specific, simple, reproducible, and suitable for the quantitative determination of the seven TKIs in human plasma.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
| | - Yilin Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Li Song
- College of Chemistry and Materials Science, Hebei University, Baoding 071000, China
| | - Xiaolan Zhen
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China
| | - Jiangning Peng
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
| | - Hui Li
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China; Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China.
| |
Collapse
|
15
|
Ferenczi E, Keglevich P, Tayeb BA, Minorics R, Papp D, Schlosser G, Zupkó I, Hazai L, Csámpai A. Synthesis and Antiproliferative Effect of New Alkyne-Tethered Vindoline Hybrids Containing Pharmacophoric Fragments. Int J Mol Sci 2024; 25:7428. [PMID: 39000534 PMCID: PMC11242353 DOI: 10.3390/ijms25137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
In the frame of our diversity-oriented research on multitarget small molecule anticancer agents, utilizing convergent synthetic sequences terminated by Sonogashira coupling reactions, a preliminary selection of representative alkyne-tethered vindoline hybrids was synthesized. The novel hybrids with additional pharmacophoric fragments of well-documented anticancer agents, including FDA-approved tyrosine-kinase inhibitors (imatinib and erlotinib) or ferrocene or chalcone units, were evaluated for their antiproliferative activity on malignant cell lines MDA-MB-231 (triple negative breast cancer), A2780 (ovarian cancer), HeLa (human cervical cancer), and SH-SY5Y (neuroblastoma) as well as on human embryonal lung fibroblast cell line MRC-5, which served as a reference non-malignant cell line for the assessment of the therapeutic window of the tested hybrids. The biological assays identified a trimethoxyphenyl-containing chalcone-vindoline hybrid (36) as a promising lead compound exhibiting submicromolar activity on A2780 cells with a marked therapeutic window.
Collapse
Affiliation(s)
- Etelka Ferenczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
- Hevesy György PhD School of Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.K.); (L.H.)
| | - Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.A.T.); (R.M.); (I.Z.)
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.A.T.); (R.M.); (I.Z.)
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.A.T.); (R.M.); (I.Z.)
| | - László Hazai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.K.); (L.H.)
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
| |
Collapse
|
16
|
Bazaei M, Honarvar B, Esfandiari N, Sajadian SA, Arab Aboosadi Z. Preparation of Erlotinib hydrochloride nanoparticles (anti-cancer drug) by RESS-C method and investigating the effective parameters. Sci Rep 2024; 14:14955. [PMID: 38942802 PMCID: PMC11213895 DOI: 10.1038/s41598-024-64477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/10/2024] [Indexed: 06/30/2024] Open
Abstract
The size of the drug particles is one of the essential factors for the proper absorption of the drug compared to the dose of the drug. When particle size is decreased, drug uptake into the body increases. Recent studies have revealed that the rapid expansion of supercritical solution with cosolvent plays a significant role in preparing micron and submicron particles. This paper examines the preparation of Erlotinib hydrochloride nanoparticles using a supercritical solution through the cosolvent method for the first time. An examination of the parameters of temperature (318-338 K), pressures (15-25 MPa) and nozzle diameter (300-700 μm) was investigated by Box-Behnken design, and their respective effects on particle size revealed that the nozzle diameter has a more significant impact on particle size than the other parameters. The smallest particles were produced at temperature 338 K, pressure 20 MPa, and nozzle diameter 700 μm. Besides, the ERL nanoparticles were characterized using SEM, DLS, XRD, FTIR, and DSC analyses. Finally, the results showed that the average size of the ERL particles decreased from 31.6 μm to 200-1100 nm.
Collapse
Affiliation(s)
- Majid Bazaei
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
- South Zagros Oil and Gas Production, National Iranian Oil Company, Shiraz, 7135717991, Iran.
| | - Zahra Arab Aboosadi
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
17
|
Wang Y, Qiu Q, Deng X, Wan M. EGFR-TKIs - induced cardiotoxicity in NSCLC: incidence, evaluation, and monitoring. Front Oncol 2024; 14:1426796. [PMID: 38983928 PMCID: PMC11232364 DOI: 10.3389/fonc.2024.1426796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The advent of targeted drug therapy has greatly changed the treatment landscape of advanced non-small cell lung cancer(NSCLC), but the cardioxic side effects of targeted drug anti-cancer therapy seriously affect the prognosis of NSCLC, and it has become the second leading cause of death in cancer patients. Therefore, early identification of the cardiotoxic side effects of targeted drugs is crucial for the prevention and treatment of cardiovascular diseases. The cardiotoxic side effects that may be caused by novel targeted drugs epidermal growth factor receptor inhibitors, including thromboembolic events, heart failure, cardiomyopathy, arrhythmia and hypertension, are discussed, and the mechanisms of their respective adverse cardiovascular reactions are summarized, to provide useful recommendations for cardiac management of patients with advanced lung cancer to maximize treatment outcomes for lung cancer survivors. Clinicians need to balance the risk-benefit ratio between targeted therapy for malignant tumors and drug-induced cardiotoxicity, and evaluate and monitor TKIs-induced cardiotoxicity through electrocardiogram, cardiac imaging, biomarkers, etc., so as to remove the susceptibility risk factors as soon as possible and provide a reference for the clinical use of such drugs in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yunlong Wang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qinggui Qiu
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xuan Deng
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Mengchao Wan
- Department of Outpatient, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Wang YT, Yang PC, Zhang JY, Sun JF. Synthetic Routes and Clinical Application of Representative Small-Molecule EGFR Inhibitors for Cancer Therapy. Molecules 2024; 29:1448. [PMID: 38611728 PMCID: PMC11012680 DOI: 10.3390/molecules29071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in cancer therapeutics, with small-molecule EGFR inhibitors emerging as significant agents in combating this disease. This review explores the synthesis and clinical utilization of EGFR inhibitors, starting with the indispensable role of EGFR in oncogenesis and emphasizing the intricate molecular aspects of the EGFR-signaling pathway. It subsequently provides information on the structural characteristics of representative small-molecule EGFR inhibitors in the clinic. The synthetic methods and associated challenges pertaining to these compounds are thoroughly examined, along with innovative strategies to overcome these obstacles. Furthermore, the review discusses the clinical applications of FDA-approved EGFR inhibitors such as erlotinib, gefitinib, afatinib, and osimertinib across various cancer types and their corresponding clinical outcomes. Additionally, it addresses the emergence of resistance mechanisms and potential counterstrategies. Taken together, this review aims to provide valuable insights for researchers, clinicians, and pharmaceutical scientists interested in comprehending the current landscape of small-molecule EGFR inhibitors.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
| | - Peng-Cheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China;
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China;
| |
Collapse
|
19
|
Rysz M, Schäfer AM, Paloumpis N, Kinzi J, Brecht K, Seibert I, Schmidlin S, In-Albon K, Ricklin D, Meyer Zu Schwabedissen HE. Humanization of SLCO2B1 in Rats Increases rCYP3A1 Protein Expression but Not the Metabolism of Erlotinib to OSI-420. J Pharmacol Exp Ther 2024; 389:87-95. [PMID: 38448247 DOI: 10.1124/jpet.123.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
The organic anion transporting polypeptide (OATP)2B1 [(gene: solute carrier organic anion transporter family member 2B1 (SLCO2B1)] is an uptake transporter that facilitates cellular accumulation of its substrates. Comparison of SLCO2B1+/+ knockin and rSlco2b1-/- knockout rats showed a higher expression of rCYP3A1 in the humanized animals. We hypothesize that humanization of OATP2B1 not only affects cellular uptake but also metabolic activity. To further investigate this hypothesis, we used SLCO2B1+/+ and rSlco2b1-/ - rats and the OATP2B1 and rCYP3A1 substrate erlotinib, which is metabolized to OSI-420, for in vivo and ex vivo experiments. One hour after administration of a single dose of erlotinib, the knockin rats exhibited significantly lower erlotinib serum levels, but no change was observed in metabolite concentration or the OSI-420/erlotinib ratio. Similar results were obtained for liver tissue levels comparing SLCO2B1+/+ and rSlco2b1-/- rats. Liver microsomes isolated from the erlotinib-treated animals were characterized ex vivo for rCYP3A activity using testosterone, showing higher activity in the knockin rats. The contrary was observed when microsomes isolated from treatment-naïve animals were assessed for the metabolism of erlotinib to OSI-420. The latter is in contrast to the higher rCYP3A1 protein amount observed by western blot analysis in rat liver lysates and liver microsomes isolated from untreated rats. In summary, rats humanized for OATP2B1 showed higher expression of rCYP3A1 in liver and reduced serum levels of erlotinib but no change in the OSI-420/erlotinib ratio despite a lower OSI-420 formation in isolated liver microsomes. Studies with CYP3A-specific substrates are warranted to evaluate whether humanization affects not only rCYP3A1 expression but also metabolic activity in vivo. SIGNIFICANCE STATEMENT: Humanization of rats for the organic anion transporting polypeptide (OATP)2B1 increases rCYP3A1 expression and activity in liver. Using the OATP2B1/CYP3A-substrate erlotinib to assess the resulting phenotype, we observed lower erlotinib serum and liver concentrations but no impact on the liver/serum ratio. Moreover, there was no difference in the OSI-420/erlotinib ratio comparing humanized and knockout rats, suggesting that OSI-420 is not applicable to monitor differences in rCYP3A1 expression as supported by data from ex vivo experiments with rat liver microsomes.
Collapse
Affiliation(s)
- Marta Rysz
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Nikolaos Paloumpis
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Karin Brecht
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences (M.R., A.M.S., N.P., J.K., K.B., I.S., S.S., K.I.-A., H.E.M.Z.S.) and Molecular Pharmacy, Department of Pharmaceutical Sciences (D.R.), University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
21
|
Ge W, Wang Y, Quan M, Mao T, Bischof EY, Xu H, Zhang X, Li S, Yue M, Ma J, Yang H, Wang L, Yu Z, Wang L, Cui J. Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib. Mol Cancer 2024; 23:48. [PMID: 38459558 PMCID: PMC10921723 DOI: 10.1186/s12943-024-01965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PC) is an aggressive malignancy with limited treatment options. The poor prognosis primarily stems from late-stage diagnosis and when the disease has become therapeutically challenging. There is an urgent need to identify specific biomarkers for cancer subtyping and early detection to enhance both morbidity and mortality outcomes. The addition of the EGFR tyrosine kinase inhibitor (TKI), erlotinib, to gemcitabine chemotherapy for the first-line treatment of patients with advanced pancreatic cancer slightly improved outcomes. However, restricted clinical benefits may be linked to the absence of well-characterized criteria for stratification and dependable biomarkers for the prediction of treatment effectiveness. METHODS AND RESULTS We examined the levels of various cancer hallmarks and identified glycolysis as the primary risk factor for overall survival in PC. Subsequently, we developed a glycolysis-related score (GRS) model to accurately distinguish PC patients with high GRS. Through in silico screening of 4398 compounds, we discovered that erlotinib had the strongest therapeutic benefits for high-GRS PC patients. Furthermore, we identified ARNTL2 as a novel prognostic biomarker and a predictive factor for erlotinib treatment responsiveness in patients with PC. Inhibition of ARNTL2 expression reduced the therapeutic efficacy, whereas increased expression of ARNTL2 improved PC cell sensitivity to erlotinib. Validation in vivo using patient-derived xenografts (PDX-PC) with varying ARNTL2 expression levels demonstrated that erlotinib monotherapy effectively halted tumor progression in PDX-PC models with high ARNTL2 expression. In contrast, PDX-PC models lacking ARNTL2 did not respond favorably to erlotinib treatment. Mechanistically, we demonstrated that the ARNTL2/E2F1 axis-mediated cellular glycolysis sensitizes PC cells to erlotinib treatment by activating the PI3K/AKT signaling pathway. CONCLUSIONS Our investigations have identified ARNTL2 as a novel prognostic biomarker and predictive indicator of sensitivity. These results will help to identify erlotinib-responsive cases of PC and improve treatment outcomes. These findings contribute to the advancement of precision oncology, enabling more accurate and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Weiyu Ge
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yanling Wang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Quan
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Tiebo Mao
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Evelyne Y Bischof
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Xu
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shumin Li
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Yue
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jingyu Ma
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Yang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Jiangsu, China
| | - Zhengyuan Yu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Liwei Wang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Jiujie Cui
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
22
|
Leung PY, Chen W, Sari AN, Sitaram P, Wu PK, Tsai S, Park JI. Erlotinib combination with a mitochondria-targeted ubiquinone effectively suppresses pancreatic cancer cell survival. World J Gastroenterol 2024; 30:714-727. [PMID: 38515951 PMCID: PMC10950623 DOI: 10.3748/wjg.v30.i7.714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a leading cause of cancer-related deaths. Increased activity of the epidermal growth factor receptor (EGFR) is often observed in pancreatic cancer, and the small molecule EGFR inhibitor erlotinib has been approved for pancreatic cancer therapy by the food and drug administration. Nevertheless, erlotinib alone is ineffective and should be combined with other drugs to improve therapeutic outcomes. We previously showed that certain receptor tyrosine kinase inhibitors can increase mitochondrial membrane potential (Δψm), facilitate tumor cell uptake of Δψm-sensitive agents, disrupt mitochondrial homeostasis, and subsequently trigger tumor cell death. Erlotinib has not been tested for this effect. AIM To determine whether erlotinib can elevate Δψm and increase tumor cell uptake of Δψm-sensitive agents, subsequently triggering tumor cell death. METHODS Δψm-sensitive fluorescent dye was used to determine how erlotinib affects Δψm in pancreatic adenocarcinoma (PDAC) cell lines. The viability of conventional and patient-derived primary PDAC cell lines in 2D- and 3D cultures was measured after treating cells sequentially with erlotinib and mitochondria-targeted ubiquinone (MitoQ), a Δψm-sensitive MitoQ. The synergy between erlotinib and MitoQ was then analyzed using SynergyFinder 2.0. The preclinical efficacy of the two-drug combination was determined using immune-compromised nude mice bearing PDAC cell line xenografts. RESULTS Erlotinib elevated Δψm in PDAC cells, facilitating tumor cell uptake and mitochondrial enrichment of Δψm-sensitive agents. MitoQ triggered caspase-dependent apoptosis in PDAC cells in culture if used at high doses, while erlotinib pretreatment potentiated low doses of MitoQ. SynergyFinder suggested that these drugs synergistically induced tumor cell lethality. Consistent with in vitro data, erlotinib and MitoQ combination suppressed human PDAC cell line xenografts in mice more effectively than single treatments of each agent. CONCLUSION Our findings suggest that a combination of erlotinib and MitoQ has the potential to suppress pancreatic tumor cell viability effectively.
Collapse
Affiliation(s)
- Pui-Yin Leung
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Anissa N Sari
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Poojitha Sitaram
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
23
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
24
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
25
|
Singh S, Kaushik AC, Gupta H, Jhinjharia D, Sahi S. Identification of Prognostic Markers and Potential Therapeutic Targets using Gene Expression Profiling and Simulation Studies in Pancreatic Cancer. Curr Comput Aided Drug Des 2024; 20:955-973. [PMID: 37711100 DOI: 10.2174/1573409920666230914100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a 5-year relative survival rate of less than 10% making it one of the most fatal cancers. A lack of early measures of prognosis, challenges in molecular targeted therapy, ineffective adjuvant chemotherapy, and strong resistance to chemotherapy cumulatively make pancreatic cancer challenging to manage. OBJECTIVE The present study aims to enhance understanding of the disease mechanism and its progression by identifying prognostic biomarkers, potential drug targets, and candidate drugs that can be used for therapy in pancreatic cancer. METHODS Gene expression profiles from the GEO database were analyzed to identify reliable prognostic markers and potential drug targets. The disease's molecular mechanism and biological pathways were studied by investigating gene ontologies, KEGG pathways, and survival analysis to understand the strong prognostic power of key DEGs. FDA-approved anti-cancer drugs were screened through cell line databases, and docking studies were performed to identify drugs with high affinity for ARNTL2 and PIK3C2A. Molecular dynamic simulations of drug targets ARNTL2 and PIK3C2A in their native state and complex with nilotinib were carried out for 100 ns to validate their therapeutic potential in PDAC. RESULTS Differentially expressed genes that are crucial regulators, including SUN1, PSMG3, PIK3C2A, SCRN1, and TRIAP1, were identified. Nilotinib as a candidate drug was screened using sensitivity analysis on CCLE and GDSC pancreatic cancer cell lines. Molecular dynamics simulations revealed the underlying mechanism of the binding of nilotinib with ARNTL2 and PIK3C2A and the dynamic perturbations. It validated nilotinib as a promising drug for pancreatic cancer. CONCLUSION This study accounts for prognostic markers, drug targets, and repurposed anti-cancer drugs to highlight their usefulness for translational research on developing novel therapies. Our results revealed potential and prospective clinical applications in drug targets ARNTL2, EGFR, and PI3KC2A for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Samvedna Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | - Himanshi Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Divya Jhinjharia
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
26
|
Al-Hamaly MA, Cox AH, Haney MG, Zhang W, Arvin EC, Sampathi S, Wimsett M, Liu C, Blackburn JS. Zebrafish drug screening identifies Erlotinib as an inhibitor of Wnt/β-catenin signaling and self-renewal in T-cell acute lymphoblastic leukemia. Biomed Pharmacother 2024; 170:116013. [PMID: 38104416 PMCID: PMC10833092 DOI: 10.1016/j.biopha.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
The Wnt/β-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential. However, the clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex cross-talk of Wnt signaling with other pathways. In this study, we leveraged a zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/β-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/β-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which rely on active β-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Majd A Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, United States; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States
| | - Anna H Cox
- College of Medicine, University of Kentucky, Lexington, KY 40536, United States; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Meghan G Haney
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Wen Zhang
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Emma C Arvin
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Shilpa Sampathi
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Mary Wimsett
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Jessica S Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States.
| |
Collapse
|
27
|
Yu Y, Zhao J, Xu J, Bai R, Gu Z, Chen X, Wang J, Jin X, Gu G. Research Progress on the Cardiotoxicity of EGFR-TKIs in Non-Small Cell Lung Cancer. Curr Treat Options Oncol 2023; 24:1935-1947. [PMID: 38153687 DOI: 10.1007/s11864-023-01150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/29/2023]
Abstract
OPINION STATEMENT With the development of molecular biology and histology techniques, targeted therapy for non-small cell lung cancer (NSCLC) has emerged, which is highly effective and has marginal side effects. Epidermal growth factor receptor (EGFR) was the first driver gene discovered, whose three generations of therapeutic use have its characteristics and benefits in clinical practice. However, cardiovascular complications by EGFR-tyrosine kinase inhibitors (EGFR-TKIs) in preclinical studies have been increasingly reported, including heart failure, cardiomyopathy, and QT prolongation, among others. Cardiotoxicity of targeted drugs significantly affects the therapeutic effect of NSCLC and has become the second leading cause of death in NSCLC. The aim of the present review was to recognize the potential cardiotoxicity of third-generation targeted drugs in the treatment of NSCLC and their associated mechanisms to help clinicians identify and prevent it early in the treatment, minimize the cardiotoxicity of targeted drugs, and improve the therapeutic effect of patients.
Collapse
Affiliation(s)
- Yinan Yu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Jianguo Zhao
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Jiaona Xu
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Rui Bai
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zewei Gu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Xialin Chen
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Jianfang Wang
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Xueying Jin
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Gaoyang Gu
- Department of Cardiology, the First People's Hospital of Huzhou, 158 Plaza Back Road, Wuxing District, , Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
28
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
29
|
Senrung A, Lalwani S, Janjua D, Tripathi T, Kaur J, Ghuratia N, Aggarwal N, Chhokar A, Yadav J, Chaudhary A, Joshi U, Bharti AC. 3D tumor spheroids: morphological alterations a yardstick to anti-cancer drug response. IN VITRO MODELS 2023; 2:219-248. [PMID: 39872501 PMCID: PMC11756486 DOI: 10.1007/s44164-023-00059-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 01/30/2025]
Abstract
Tumor spheroids are one of the well-characterized 3D culture systems bearing close resemblance to the physiological tissue organization and complexity of avascular solid tumor stage with hypoxic core. They hold a wide-spread application in the field of pharmaceutical science and anti-cancer drug research. However, the difficulty in determining optimal technique for the generation of spheroids with uniform size and shape, evaluation of experimental outputs, or mass production often limits their usage in anti-cancer research and in high-throughput drug screening. In recent times, several studies have demonstrated various simple techniques for generating uniform-size 3D spheroids, including the hanging drop (HD), liquid overlay technique (LOT), and microfluidic approaches. Morphological alterations apart from biochemical assays, and staining techniques are suitably employed for the evaluation of experimental outcomes within 3D spheroid models. Morphological alterations in response to effective anti-cancer drug treatment in 3D tumor spheroids such as reduced spheroid size, loss of spheroid compactness and integrity or smooth surface, are highly reliable. These alterations can significantly reduce the need for biochemical assays and staining techniques, resulting in both time and cost savings. The present article specifically covers a variety of available procedures in spheroid generation. For practical applicability, we have supplemented our review study with the generation of glioblastoma U87 spheroids using HD and LOT methods. Additionally, we have also incorporated the outcome of U87 spheroid treatment with doxorubicin on spheroid morphology.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Sakshi Lalwani
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Jasleen Kaur
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Netra Ghuratia
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| |
Collapse
|
30
|
Rysz MA, Kinzi J, Schäfer AM, In-Albon K, Zürcher S, Schmidlin S, Seibert I, Schwardt O, Ricklin D, Meyer Zu Schwabedissen HE. Simultaneous quantification of atorvastatin, erlotinib and OSI-420 in rat serum and liver microsomes using a novel liquid chromatography-mass spectrometry method. J Pharm Biomed Anal 2023; 236:115716. [PMID: 37722165 DOI: 10.1016/j.jpba.2023.115716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Erlotinib is an epidermal growth factor receptor tyrosine kinase inhibitor used in the treatment of cancer. Atorvastatin is a statin commonly applied to treat hypercholesterolemia. In humans, both compounds are metabolized by CYP3A4 and are transported by OATP2B1, ABCB1 and ABCG2. We aimed to generate and validate a bioanalytical method for simultaneous determination of atorvastatin, erlotinib and its major metabolite OSI-420 applicable to biological samples. Quantification of erlotinib, OSI-420, and atorvastatin was achieved with an Agilent high-performance liquid chromatography system 1100/1200 coupled to a triple quadrupole G6410B. The method involved separation over the column Kinetex C8 (100 × 3 mm, 2.6 µm) using 2 mM ammonium acetate (pH 4.0) and acetonitrile as eluent. The method was assessed for selectivity, accuracy, recovery, matrix effect, and stability over a range from 1 to 4,000 ng/mL according to the respective guidelines. We applied the bioanalytical method to quantify the formation of OSI-420 in liver microsomes isolated from male and female Wistar rats. The optimized experiment revealed slower formation in microsomes of female compared to male rats, in which we observed lower amounts of CYP3A1 by Western blot analysis. Moreover, the presence of atorvastatin inhibited the CYP3A-mediated metabolism of erlotinib. Serum obtained from a drug-drug interaction study performed in male rats was also analyzed using the validated method. Non-compartmental pharmacokinetic analysis revealed a lower clearance of erlotinib when atorvastatin was co-administered. However, for atorvastatin we observed a lower systemic exposure in presence of erlotinib. In summary, we report a method to detect OSI-420, erlotinib and atorvastatin applicable to samples from ex vivo and in vivo studies.
Collapse
Affiliation(s)
- Marta A Rysz
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simone Zürcher
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
31
|
Al-Wahaibi LH, Hisham M, Abou-Zied HA, Hassan HA, Youssif BGM, Bräse S, Hayallah AM, Abdel-Aziz M. Quinazolin-4-one/3-cyanopyridin-2-one Hybrids as Dual Inhibitors of EGFR and BRAF V600E: Design, Synthesis, and Antiproliferative Activity. Pharmaceuticals (Basel) 2023; 16:1522. [PMID: 38004388 PMCID: PMC10674657 DOI: 10.3390/ph16111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
A novel series of hybrid compounds comprising quinazolin-4-one and 3-cyanopyridin-2-one structures has been developed, with dual inhibitory actions on both EGFR and BRAFV600E. These hybrid compounds were tested in vitro against four different cancer cell lines. Compounds 8, 9, 18, and 19 inhibited cell proliferation significantly in the four cancer cells, with GI50 values ranging from 1.20 to 1.80 µM when compared to Doxorubicin (GI50 = 1.10 µM). Within this group of hybrids, compounds 18 and 19 exhibited substantial inhibition of EGFR and BRAFV600E. Molecular docking investigations provided confirmation that compounds 18 and 19 possess the capability to inhibit EGFR and BRAFV600E. Moreover, computational ADMET prediction indicated that most of the newly synthesized hybrids have low toxicity and minimal side effects.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mohamed Hisham
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt; (M.H.); (H.A.A.-Z.)
| | - Hesham A. Abou-Zied
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt; (M.H.); (H.A.A.-Z.)
| | - Heba A. Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| |
Collapse
|
32
|
Hagar FF, Abbas SH, Gomaa HAM, Youssif BGM, Sayed AM, Abdelhamid D, Abdel-Aziz M. Chalcone/1,3,4-Oxadiazole/Benzimidazole hybrids as novel anti-proliferative agents inducing apoptosis and inhibiting EGFR & BRAFV 600E. BMC Chem 2023; 17:116. [PMID: 37716963 PMCID: PMC10504751 DOI: 10.1186/s13065-023-01003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 09/18/2023] Open
Abstract
INTRODUCTION One of the most robust global challenges and difficulties in the 21st century is cancer. Treating cancer is a goal which continues to motivate researchers to innovate in design and development of new treatments to help battle the disease. OBJECTIVES Our objective was developing new antiapoptotic hybrids based on biologically active heterocyclic motifs "benzimidazole?oxadiazole-chalcone hybrids'' that had shown promising ability to inhibit EGFR and induce apoptosis. We expected these scaffolds to display anticancer activity via inhibition of BRAF, EGFR, and Bcl-2 and induction of apoptosis through activation of caspases. METHODS The new hybrids 7a-x were evaluated for their anti-proliferative, EGFR & BRAFV600E inhibitory, and apoptosis induction activities were detected. Docking study & dynamic stimulation into EGFR and BRAFV600E were studied. RESULTS All hybrids exhibited remarkable cell growth inhibition on the four tested cell lines with IC50 ranging from 0.95 μM to 12.50 μM. which was comparable to Doxorubicin. Compounds 7k-m had the most potent EGFR inhibitory activity. While, compounds 7e, 7g, 7k and 7l showed good inhibitory activities against BRAFV600E. Furthermore, Compounds 7k, 7l, and 7m increased Caspases 3,8 & 9, Cytochrome C and Bax levels and decreased Bcl-2 protein levels. Compounds 7k-m received the best binding scores and showed binding modes that were almost identical to each other and comparable with that of the co-crystalized Erlotinib in EGFR and BRAF active sites. CONCLUSION Compounds 7k-m could be used as potential apoptotic anti-proliferative agents upon further optimization.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, 72314, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
33
|
Padakanti AP, Pawar SD, Kumar P, Chella N. Development and validation of HPLC method for simultaneous estimation of erlotinib and niclosamide from liposomes optimized by screening design. J Liposome Res 2023; 33:268-282. [PMID: 36594184 DOI: 10.1080/08982104.2022.2162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
The emerging drug resistance to the approved first-line drug therapy leads to clinical failure in cancer. Drug repurposing studies lead to the identification of many old drugs to be used for cancer treatment. Combining the repurposed drugs (niclosamide) with first-line therapy agents like erlotinib HCl showed improved efficacy by inhibiting erlotinib HCl acquired resistance. But there is a need to develop a sensitive, accurate, and excellent analytical method and drug delivery system for successfully delivering drug combinations. In the current study, an HPLC method was developed and validated for the simultaneous estimation of niclosamide and erlotinib HCl. The retention time of niclosamide and erlotinib hydrochloride was 6.48 and 7.65 min at 333 nm. The developed method was rapid and sensitive to separating the two drugs with reasonable accuracy, precision, robustness, and ruggedness. A Plackett-Burman (PBD) screening design was used to identify the critical parameters affecting liposomal formulation development using particle size, size distribution, zeta potential, and entrapment efficiency as the response. Lipid concentration, drug concentration, hydration temperature, and media volume were critical parameters affecting the particle size, polydispersity index (PDI), ZP, and %EE of the liposomes. The optimized NCM-ERL liposomes showed the particle size (126.05 ± 2.1), PDI (0.498 ± 0.1), ZP (-16.2 ± 0.3), and %EE of NCM and ERL (50.04 ± 2.8 and 05.42 ± 1.3). In vitro release studies indicated the controlled release of the drugs loaded liposomes (87.06 ± 9.93% and 42.33 ± 0.89% in 24 h).
Collapse
Affiliation(s)
- Amruta Prabhakar Padakanti
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| | - Sachin Dattaram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Sila village, Changsari, Assam, India
| |
Collapse
|
34
|
Al-Hamaly MA, Cox AH, Haney MG, Zhang W, Arvin EC, Sampathi S, Wimsett M, Liu C, Blackburn JS. Zebrafish Drug Screening Identifies Erlotinib as an Inhibitor of Wnt/β-Catenin Signaling and Self-Renewal in T-cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555200. [PMID: 37693603 PMCID: PMC10491167 DOI: 10.1101/2023.08.28.555200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Wnt/β-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential, yet clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex crosstalk with other pathways. In this study, we leveraged the zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/β-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/β-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which are known to rely on active β-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing, and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/β-catenin signaling. Highlights Zebrafish-based drug screening offers an inexpensive and robust platform for identifying compounds with high efficacy and low toxicity in vivo . Erlotinib, an Epidermal Growth Factor Receptor (EGFR) inhibitor, emerged as a potent and promising Wnt inhibitor with effects in both zebrafish and human cell-based Wnt reporter assays.The identification of Erlotinib as a Wnt inhibitor underscores the value of repurposed drugs in developing targeted therapies to disrupt cancer stemness and improve clinical outcomes.
Collapse
|
35
|
Fudalej M, Kwaśniewska D, Nurzyński P, Badowska-Kozakiewicz A, Mękal D, Czerw A, Sygit K, Deptała A. New Treatment Options in Metastatic Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082327. [PMID: 37190255 DOI: 10.3390/cancers15082327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer death across the world. Poor prognosis of PC is associated with several factors, such as diagnosis at an advanced stage, early distant metastases, and remarkable resistance to most conventional treatment options. The pathogenesis of PC seems to be significantly more complicated than originally assumed, and findings in other solid tumours cannot be extrapolated to this malignancy. To develop effective treatment schemes prolonging patient survival, a multidirectional approach encompassing different aspects of the cancer is needed. Particular directions have been established; however, further studies bringing them all together and connecting the strengths of each therapy are needed. This review summarises the current literature and provides an overview of new or emerging therapeutic strategies for the more effective management of metastatic PC.
Collapse
Affiliation(s)
- Marta Fudalej
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Daria Kwaśniewska
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Paweł Nurzyński
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | | | - Dominika Mękal
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
36
|
Leone GM, Candido S, Lavoro A, Vivarelli S, Gattuso G, Calina D, Libra M, Falzone L. Clinical Relevance of Targeted Therapy and Immune-Checkpoint Inhibition in Lung Cancer. Pharmaceutics 2023; 15:1252. [PMID: 37111737 PMCID: PMC10142433 DOI: 10.3390/pharmaceutics15041252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer (LC) represents the second most diagnosed tumor and the malignancy with the highest mortality rate. In recent years, tremendous progress has been made in the treatment of this tumor thanks to the discovery, testing, and clinical approval of novel therapeutic approaches. Firstly, targeted therapies aimed at inhibiting specific mutated tyrosine kinases or downstream factors were approved in clinical practice. Secondly, immunotherapy inducing the reactivation of the immune system to efficiently eliminate LC cells has been approved. This review describes in depth both current and ongoing clinical studies, which allowed the approval of targeted therapies and immune-checkpoint inhibitors as standard of care for LC. Moreover, the present advantages and pitfalls of new therapeutic approaches will be discussed. Finally, the acquired importance of human microbiota as a novel source of LC biomarkers, as well as therapeutic targets to improve the efficacy of available therapies, was analyzed. Therapy against LC is increasingly becoming holistic, taking into consideration not only the genetic landscape of the tumor, but also the immune background and other individual variables, such as patient-specific gut microbial composition. On these bases, in the future, the research milestones reached will allow clinicians to treat LC patients with tailored approaches.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| |
Collapse
|
37
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
38
|
Jin N, Xia Y, Gao Q. Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review). Int J Oncol 2023; 62:28. [PMID: 36601757 PMCID: PMC9851129 DOI: 10.3892/ijo.2023.5476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP‑ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.
Collapse
Affiliation(s)
- Ning Jin
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Xia
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qinglei Gao
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
39
|
A New Anticancer Semisynthetic Theobromine Derivative Targeting EGFR Protein: CADDD Study. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010191. [PMID: 36676140 PMCID: PMC9867533 DOI: 10.3390/life13010191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
A new lead compound has been designed as an antiangiogenic EGFR inhibitor that has the pharmacophoric characteristics to bind with the catalytic pocket of EGFR protein. The designed lead compound is a (para-chloro)acetamide derivative of the alkaloid, theobromine, (T-1-PCPA). At first, we started with deep density functional theory (DFT) calculations for T-1-PCPA to confirm and optimize its 3D structure. Additionally, the DFT studies identified the electrostatic potential, global reactive indices and total density of states expecting a high level of reactivity for T-1-PCPA. Secondly, the affinity of T-1-PCPA to bind and inhibit the EGFR protein was studied and confirmed through detailed structure-based computational studies including the molecular docking against EGFRWT and EGFRT790M, Molecular dynamics (MD) over 100 ns, MM-GPSA and PLIP experiments. Before the preparation, the computational ADME and toxicity profiles of T-1-PCPA have been investigated and its safety and the general drug-likeness predicted. Accordingly, T-1-PCPA was semi-synthesized to scrutinize the proposed design and the obtained in silico results. Interestingly, T-1-PCPA inhibited in vitro EGFRWT with an IC50 value of 25.35 nM, comparing that of erlotinib (5.90 nM). Additionally, T-1-PCPA inhibited the growth of A549 and HCT-116 malignant cell lines with IC50 values of 31.74 and 20.40 µM, respectively, comparing erlotinib that expressed IC50 values of 6.73 and 16.35 µM, respectively.
Collapse
|
40
|
Nugawela D, Gorringe KL. Targeted therapy for mucinous ovarian carcinoma: evidence from clinical trials. Int J Gynecol Cancer 2023; 33:102-108. [PMID: 36603894 PMCID: PMC9811085 DOI: 10.1136/ijgc-2022-003658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 01/10/2023] Open
Abstract
Mucinous ovarian carcinoma is a rare subtype of epithelial ovarian cancer. Despite being a chemoresistant tumour type, surgical resection and chemotherapy are still the current standard for management. This narrative review aims to explore the current evidence for targeted therapies in mucinous ovarian carcinoma. A review of the literature was performed to identify clinical trials and case reports of targeted therapy in patients with mucinous ovarian carcinoma. The databases and registers (PubMed, MEDLINE, Embase, Europe PMC, Cochrane Central Register of Clinical Trials, clinicaltrials.gov) were searched for articles published between January 2009 to June 2021 using keywords specific for mucinous ovarian carcinoma and targeted therapy. Records were screened and assessed for eligibility based on inclusion and exclusion criteria. From 684 records, 21 studies met the criteria to be included in the review. A total of 11 different targeted therapies were identified, each demonstrating varying degrees of clinical evidence supporting further investigation in patients with mucinous ovarian carcinoma. Targeted therapies identified in this review that warrant further investigations are bevacizumab, trastuzumab, nintedanib, AZD1775, sunitinib, cediranib and pazopanib. Many of the therapeutic agents may be investigated further in combination with other targeted therapies or chemotherapy. More clinical trials focusing on targeted therapy specifically in patients with mucinous ovarian cancer are required to inform clinical use. Multinational efforts are likely to be required to successfully conduct trials in this rare tumor type.
Collapse
Affiliation(s)
| | - Kylie L Gorringe
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
García-Cuellar CM, Hernández-Delgadillo R, Torres-Betancourt JA, Solis-Soto JM, Meester I, Sánchez-Pérez Y, Pineda-Aguilar N, Nakagoshi-Cepeda SE, Sánchez-Nájera RI, Nakagoshi-Cepeda MAA, Chellam S, Cabral-Romero C. Cumulative antitumor effect of bismuth lipophilic nanoparticles and cetylpyridinium chloride in inhibiting the growth of lung cancer. J Appl Biomater Funct Mater 2023; 21:22808000231161177. [PMID: 36942951 DOI: 10.1177/22808000231161177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE To determine the combined antitumor effect of bismuth lipophilic nanoparticles (BisBAL NP) and cetylpyridinium chloride (CPC) on human lung tumor cells. MATERIAL AND METHODS The human lung tumor cells A549 were exposed to 1-100 µM BisBAL NP or CPC, either separately or in a 1:1 combination. Cell viability was measured with the PrestoBlue assay, the LIVE/DEAD assay, and fluorescence microscopy. The integrity and morphology of cellular microtubules were analyzed by immunofluorescence. RESULTS A 24-h exposure to 1 µM solutions reduced A549 growth with 21.5% for BisBAL NP, 70.5% for CPC, and 92.4% for the combination (p < 0.0001), while a 50 µM BisBAL NP/CPC mixture inhibited cell growth with 99% (p < 0.0001). BisBAL NP-curcumin conjugates were internalized within 30 min of exposure and could be traced within the nucleus of tumor cells within 2 h. BisBAL NP, but not CPC, interfered with microtubule organization, thus interrupting cell replication, similar to the action mechanism of docetaxel. CONCLUSION The growth inhibition of A549 human tumor cells by BisBAL NP and CPC was cumulative as of 1 µM. The BisBAL NP/CPC combination may constitute an innovative and cost-effective alternative for treating human lung cancer.
Collapse
Affiliation(s)
| | - Rene Hernández-Delgadillo
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | - Juan Manuel Solis-Soto
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Irene Meester
- Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Nayely Pineda-Aguilar
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Nuevo León, México
| | - Sergio Eduardo Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Rosa Isela Sánchez-Nájera
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | | | - Claudio Cabral-Romero
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| |
Collapse
|
42
|
Zhang CY, Liu S, Yang M. Clinical diagnosis and management of pancreatic cancer: Markers, molecular mechanisms, and treatment options. World J Gastroenterol 2022; 28:6827-6845. [PMID: 36632312 PMCID: PMC9827589 DOI: 10.3748/wjg.v28.i48.6827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) is the third-leading cause of cancer deaths. The overall 5-year survival rate of PC is 9%, and this rate for metastatic PC is below 3%. However, the PC-induced death cases will increase about 2-fold by 2060. Many factors such as genetic and environmental factors and metabolic diseases can drive PC development and progression. The most common type of PC in the clinic is pancreatic ductal adenocarcinoma, comprising approximately 90% of PC cases. Multiple pathogenic processes including but not limited to inflammation, fibrosis, angiogenesis, epithelial-mesenchymal transition, and proliferation of cancer stem cells are involved in the initiation and progression of PC. Early diagnosis is essential for curable therapy, for which a combined panel of serum markers is very helpful. Although some mono or combined therapies have been approved by the United States Food and Drug Administration for PC treatment, current therapies have not shown promising outcomes. Fortunately, the development of novel immunotherapies, such as oncolytic viruses-mediated treatments and chimeric antigen receptor-T cells, combined with therapies such as neoadjuvant therapy plus surgery, and advanced delivery systems of immunotherapy will improve therapeutic outcomes and combat drug resistance in PC patients. Herein, the pathogenesis, molecular signaling pathways, diagnostic markers, prognosis, and potential treatments in completed, ongoing, and recruiting clinical trials for PC were reviewed.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
43
|
Wang C, Wang Z, Zhao Y, Jia R. Tumor mutation burden-related long non-coding RNAs is predictor for prognosis and immune response in pancreatic cancer. BMC Gastroenterol 2022; 22:495. [PMID: 36451085 PMCID: PMC9710014 DOI: 10.1186/s12876-022-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant tumors with extremely poor prognosis. It is urgent to identify promising prognostic biomarkers for pancreatic cancer. METHODS A total of 266 patients with pancreatic adenocarcinoma (PAAD) in the Cancer Genome Atlas (TCGA)-PAAD cohort and the PACA-AU cohort were enrolled in this study. Firstly, prognostic tumor mutation burden (TMB)-related long non-coding RNAs (lncRNAs) were identified by DESeq2 and univariate analysis in the TCGA-PAAD cohort. And then, the TCGA-PAAD cohort was randomized into the training set and the testing set. Least absolute shrinkage and selection operator (LASSO) was used to construct the model in the training set. The testing set, the TCGA-PAAD cohort and the PACA-AU cohort was used as validation. The model was evaluated by multiple methods. Finally, functional analysis and immune status analysis were applied to explore the potential mechanism of our model. RESULTS A prognostic model based on fourteen TMB-related lncRNAs was established in PAAD. Patients with High risk score was associated with worse prognosis compared to those with low risk score in all four datasets. Besides, the model had great performance in the prediction of 5-year overall survival in four datasets. Multivariate analysis also indicated that the risk score based on our model was independent prognostic factor in PAAD. Additionally, our model had the best predictive efficiency in PAAD compared to typical features and other three published models. And then, our findings also showed that high risk score was also associated with high TMB, microsatellite instability (MSI) and homologous recombination deficiency (HRD) score. Finally, we indicated that high risk score was related to low immune score and less infiltration of immune cells in PAAD. CONCLUSION we established a 14 TMB-related lncRNAs prognostic model in PAAD and the model had excellent performance in the prediction of prognosis in PAAD. Our findings provided new strategy for risk stratification and new clues for precision treatment in PAAD.
Collapse
Affiliation(s)
- Chunjing Wang
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhen Wang
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Zhao
- grid.412463.60000 0004 1762 6325Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruichun Jia
- grid.412463.60000 0004 1762 6325Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, 150001 Harbin, China
| |
Collapse
|
44
|
Zhong Z, Xu M, Tan J. Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma. Pathol Oncol Res 2022; 28:1610670. [PMID: 36277962 PMCID: PMC9579291 DOI: 10.3389/pore.2022.1610670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022]
Abstract
Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Department of Experimental Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
45
|
NCAPG2 Maintains Cancer Stemness and Promotes Erlotinib Resistance in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184395. [PMID: 36139554 PMCID: PMC9497119 DOI: 10.3390/cancers14184395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary This study investigated the relationship between erlotinib resistance and stemness in lung adenocarcinoma. NCAPG2 was identified as an erlotinib resistance gene and maintained the stemness of lung adenocarcinoma. Abstract Erlotinib is a highly specific and reversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), but resistance inevitably develops as the disease progresses. Erlotinib resistance and cancer stem cells (CSCs) are poor factors hindering the prognosis of patients with lung adenocarcinoma (LUAD). Although studies have shown that erlotinib resistance and CSCs can jointly promote cancer development, the mechanism is currently unclear. Here, we investigated the potential biomarker and molecular mechanism of erlotinib resistance and cancer stemness in LUAD. An erlotinib resistance model based on four genes was constructed from The Cancer Genome Atlas (TCGA), the GEO database, the Cancer Cell Line Encyclopedia (CCLE), and the Genomics of Drug Sensitivity in Cancer (GDSC). Through multiple bioinformatic analyses, NCAPG2 was identified as a key gene for erlotinib resistance and stemness in LUAD. Further in vitro experiments demonstrated that NCAPG2 maintains stemness and contributes to erlotinib resistance in LUAD. In summary, NCAPG2 plays a vital role in stemness and erlotinib resistance in LUAD.
Collapse
|
46
|
A physicochemical and spectroscopic characterization of novel erlotinib conjugates with platinum nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Chen H, Zhang J, Sun X, Wang Y, Qian Y. Mitophagy-mediated molecular subtypes depict the hallmarks of the tumour metabolism and guide precision chemotherapy in pancreatic adenocarcinoma. Front Cell Dev Biol 2022; 10:901207. [PMID: 35938160 PMCID: PMC9353335 DOI: 10.3389/fcell.2022.901207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mitophagy is closely related to cancer initiation and progression. However, heterogeneity with reference to mitophagy remains unexplored in pancreatic adenocarcinoma (PAAD). Materials and methods: We used Reactome database to download the mitophagy-related, glycolysis-related and cholesterol biosynthesis-related signaling pathways. Unsupervised clustering using the “ConsensusClusterPlus” R package was performed to identify molecular subtypes related to mitophagy and metabolism. Prognosis-related mitophagy regulators were identified by univariate Cox regression analysis. Receiver operating characteristics (ROC) and Kaplan-Meier (K-M) survival analyses were used to assess the diagnostic and prognostic role of the hub genes and prognosis risk model. Weighted gene co-expression network analysis (WGCNA) was utilized for screening the mitophagy subtype-related hub genes. Metascape was utilized to carry out functional enrichment analysis. The “glmnet” R package was utilised for LASSO, and the “e1071” R package was utilised for SVM. Chemotherapeutic drug sensitivity was estimated using the R package “pRRophetic” and Genomics of Drug Sensitivity in Cancer (GDSC) database. The nomogram was established by the “rms” R package. Results: Three distinct mitophagy subtypes (low, high and intermediate) of PAAD were identified based on the landscape of mitophagy regulators. The high mitophagy subtype had the worst prognosis, highest mRNA expression-based stemness index scores and most hypoxic environment compared to the other subtypes. Additionally, glycolysis and cholesterol biosynthesis were significantly elevated. Three mitophagy subtype-specific gene signatures (CAST, CCDC6, and ERLIN1) were extracted using WGCNA and machine learning. Moreover, PAAD tumours were insensitive to Erlotinib, Sunitinib and Imatinib in the high mitophagy subtype and high CAST, CCDC6, and ERLIN1 expressed subtypes. Furthermore, CAST, CCDC6, and ERLIN1 affected immune cell infiltration (M1 and CD8Tcm), resulting in the altered prognosis of patients with PAAD. A nomogram was constructed to screen patients with the low mitophagy subtype, which showed a higher sensitivity to chemotherapeutic agents. Conclusion: Based on various bioinformatics tools and databases, the PAAD heterogeneity regarding mitophagy was systematically examined. Three different PAAD subtypes having different outcomes, metabolism patterns and chemosensitivity were observed. Moreover, three novel biomarkers that are closely associated with mitophagy and have the potential to guide individualised treatment regimens in PAAD were obtained.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianlin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuehu Sun
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yeben Qian, ; Yao Wang,
| | - Yeben Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yeben Qian, ; Yao Wang,
| |
Collapse
|
48
|
Yadav TT, Moin Shaikh G, Kumar MS, Chintamaneni M, YC M. A Review on Fused Pyrimidine Systems as EGFR Inhibitors and Their Structure–Activity Relationship. Front Chem 2022; 10:861288. [PMID: 35769445 PMCID: PMC9234326 DOI: 10.3389/fchem.2022.861288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) belongs to the family of tyrosine kinase that is activated when a specific ligand binds to it. The EGFR plays a vital role in the cellular proliferation process, differentiation, and apoptosis. In the case of cancer, EGFR undergoes uncontrolled auto-phosphorylation that results in increased cellular proliferation and decreased apoptosis, causing cancer promotion. From the literature, it shows that pyrimidine is one of the most commonly studied heterocycles for its antiproliferative activity against EGFR inhibition. The authors have collated some interesting results in the heterocycle-fused pyrimidines that have been studied using different cell lines (sensitive and mutational) and in animal models to determine their activity and potency. It is quite clear that the fused systems are highly effective in inhibiting EGFR activity in cancer cells. Therefore, the structure–activity relationship (SAR) comes into play in determining the nature of the heterocycle and the substituents that are responsible for the increased activity and toxicity. Understanding the SAR of heterocycle-fused pyrimidines will help in getting a better overview of the molecules concerning their activity and potency profile as future EGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Mayur YC
- *Correspondence: Mayur YC, mayur
| |
Collapse
|
49
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
50
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|