1
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
2
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Almeida-Pinto F, Pinto R, Rocha J. Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches. Infect Dis Ther 2024; 13:21-55. [PMID: 38240994 PMCID: PMC10828234 DOI: 10.1007/s40121-023-00913-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
In 1976 Ebola revealed itself to the world, marking the beginning of a series of localized outbreaks. However, it was the Ebola outbreak that began in 2013 that incited fear and anxiety around the globe. Since then, our comprehension of the virus has been steadily expanding. Ebola virus (EBOV), belonging to the Orthoebolavirus genus of the Filoviridae family, possesses a non-segmented, negative single-stranded RNA genome comprising seven genes that encode multiple proteins. These proteins collectively orchestrate the intricate process of infecting host cells. It is not possible to view each protein as monofunctional. Instead, they synergistically contribute to the pathogenicity of the virus. Understanding this multifaceted replication cycle is crucial for the development of effective antiviral strategies. Currently, two antibody-based therapeutics have received approval for treating Ebola virus disease (EVD). In 2022, the first evidence-based clinical practice guideline dedicated to specific therapies for EVD was published. Although notable progress has been made in recent years, deaths still occur. Consequently, there is an urgent need to enhance the therapeutic options available to improve the outcomes of the disease. Emerging therapeutics can target viral proteins as direct-acting antivirals or host factors as host-directed antivirals. They both have advantages and disadvantages. One way to bypass some disadvantages is to repurpose already approved drugs for non-EVD indications to treat EVD. This review offers detailed insight into the role of each viral protein in the replication cycle of the virus, as understanding how the virus interacts with host cells is critical to understanding how emerging therapeutics exert their activity. Using this knowledge, this review delves into the intricate mechanisms of action of current and emerging therapeutics.
Collapse
Affiliation(s)
| | - Rui Pinto
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
- Dr. Joaquim Chaves, Medicine Laboratory, Joaquim Chaves Saúde (JCS), Carnaxide, Portugal
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
| |
Collapse
|
4
|
Yao H, Wang H, Zhang Z, Lu Y, Zhang Z, Zhang Y, Xiong X, Wang Y, Wang Z, Yang H, Zhao J, Xu W. A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses, including all major Omicron strains. MedComm (Beijing) 2023; 4:e397. [PMID: 37901798 PMCID: PMC10600506 DOI: 10.1002/mco2.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
SARS-CoV-2 viruses are highly transmissible and immune evasive. It is critical to develop broad-spectrum prophylactic and therapeutic antibodies for potential future pandemics. Here, we used the phage display method to discover nanobodies (Nbs) for neutralizing SARS-CoV-2 viruses especially Omicron strains. The leading nanobody (Nb), namely, Nb4, with excellent physicochemical properties, can neutralize Delta and Omicron subtypes, including BA.1, BA.1.1 (BA.1 + R346K), BA.2, BA.5, BQ.1, and XBB.1. The crystal structure of Nb4 in complex with the receptor-binding domain (RBD) of BA.1 Spike protein reveals that Nb4 interacts with an epitope on the RBD overlapping with the receptor-binding motif, and thus competes with angiotensin-converting enzyme 2 (ACE2) binding. Nb4 is expected to be effective for neutralizing most recent Omicron variants, since the epitopes are evolutionarily conserved among them. Indeed, trivalent Nb4 interacts with the XBB1.5 Spike protein with low nM affinity and competes for ACE2 binding. Prophylactic and therapeutic experiments in mice indicated that Nb4 could reduce the Omicron virus loads in the lung. In particular, in prophylactic experiments, intranasal administration of multivalent Nb4 completely protected mice from Omicron infection. Taken together, these results demonstrated that Nb4 could serve as a potent and broad-spectrum prophylactic and therapeutic Nb for COVID-19.
Collapse
Affiliation(s)
- Hebang Yao
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Hongyang Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yuchi Lu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Zhiying Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xinyi Xiong
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yanqun Wang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhizhi Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Haitao Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
- Guangzhou LaboratoryBio‐IslandGuangzhouGuangdongChina
- Institute of Infectious DiseaseGuangzhou Eighth People's Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Institute for HepatologyNational Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Wenqing Xu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
5
|
Akhvlediani T, Bernard-Valnet R, Dias SP, Eikeland R, Pfausler B, Sellner J. Neurological side effects and drug interactions of antiviral compounds against SARS-CoV-2. Eur J Neurol 2023; 30:3904-3912. [PMID: 37526048 DOI: 10.1111/ene.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND AND PURPOSE The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), rapidly spread across the globe. Tremendous efforts have been mobilized to create effective antiviral treatment options to reduce the burden of the disease. This article summarizes the available knowledge about the antiviral drugs against SARS-CoV-2 from a neurologist's perspective. METHODS We summarize neurological aspects of antiviral compounds against SARS-CoV-2 with full, conditional, or previous marketing authorization by the European Medicines Agency (EMA). RESULTS Nirmatrelvir/ritonavir targets the SARS-CoV-2 3c-like protease using combinatorial chemistry. Nirmatrelvir/ritonavir levels are affected by medications metabolized by or inducing CYP3A4, including those used in neurological diseases. Dysgeusia with a bitter or metallic taste is a common side effect of nirmatrelvir/ritonavir. Molnupiravir is a nucleotide analog developed to inhibit the replication of viruses. No clinically significant interactions with other drugs have been identified, and no specific considerations for people with neurological comorbidity are required. In the meantime, inconsistent results from clinical trials regarding efficacy have led to the withdrawal of marketing authorization by the EMA. Remdesivir is a viral RNA polymerase inhibitor and interferes with the production of viral RNA. The most common side effect in patients with COVID-19 is nausea. Remdesivir is a substrate for CYP3A4. CONCLUSIONS Neurological side effects and drug interactions must be considered for antiviral compounds against SARS-CoV-2. Further studies are required to better evaluate their efficacy and adverse events in patients with concomitant neurological diseases. Moreover, evidence from real-world studies will complement the current knowledge.
Collapse
Affiliation(s)
| | - Raphael Bernard-Valnet
- Neurology Service, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois), University of Lausanne, Lausanne, Switzerland
| | - Sara P Dias
- Department of Neurology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Randi Eikeland
- Department of Health and Nursing Sciences, University of Agder, Grimstad, Norway
- Norwegian National Advisory Unit on Tick-Borne Diseases, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Bettina Pfausler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| |
Collapse
|