1
|
Turi KN, Li Y, Xu Y, Gebretsadik T, Rosas-Salazar C, Wiggins DA, McKennan C, Newcomb D, Gern JE, Hartert TV. The association of infant urinary adrenal steroids with the risk of childhood asthma development. Ann Allergy Asthma Immunol 2024; 133:159-167.e3. [PMID: 38631429 PMCID: PMC11298305 DOI: 10.1016/j.anai.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Adrenal steroids play important roles in early-life development. However, our understanding of the effects of perinatal adrenal steroids on the development of childhood asthma is incomplete. OBJECTIVE To evaluate the associations between early-life adrenal steroid levels and childhood asthma. METHODS Participants included the Infant Susceptibility to Pulmonary Infections and Asthma following Respiratory Syncytial Virus Exposure birth cohort children with untargeted urinary metabolomics data measured during early infancy (n = 264) and nasal immune mediator data measured concurrently at age 2 to 6 months (n = 76). A total of 11 adrenal steroid compounds were identified using untargeted metabolomics and 6 asthma-relevant nasal immune mediators from multiplex assays were a priori selected. Current asthma at ages 5 and 6 years was ascertained using validated questionnaires. Associations were tested using logistic and linear regression with confounders adjustment. RESULTS Pregnenetriol disulfate (adjusted odds ratio [aOR] = 0.20, 95% CI = 0.06-0.68) and 3a,21-dihydroxy-5b-pregnane-11,20-dione-21-glucuronide (aOR = 0.34, 95% CI = 0.14-0.75) were inversely associated with childhood asthma at 5 and 6 years after multiple testing adjustment. There was a significant interaction effect of pregnanediol-3-glucuronide by biological sex assigned at birth (aOR = 0.11, 95% CI = 0.02-0.51, for those with female sex) on childhood asthma. Pregnenetriol disulfate was inversely associated with granulocyte-macrophage colony-stimulating factor (β = -0.45, q-value = 0.05). 3a,21-dihydroxy-5b-pregnane-11,20-dione 21-glucuronide was inversely associated with interleukin [IL]-4 (β = -0.29, q-value = 0.02), IL-5 (β = -0.35, q-value = 0.006), IL-13 (β = -0.26, q-value = 0.02), granulocyte-macrophage colony-stimulating factor (β = -0.35, q-value = 0.006), and fibroblast growth factor-β (β = -0.24, q-value = 0.01) after multiple testing adjustment. CONCLUSION The inverse association between adrenal steroids downstream of progesterone and 17-hydroxypregnenolone and the odds of childhood asthma and nasopharyngeal type 2 immune biomarkers suggest that increased early-life adrenal steroids may suppress type 2 inflammation and protect against the development of childhood asthma.
Collapse
Affiliation(s)
- Kedir N Turi
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana.
| | - Yajing Li
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Derek A Wiggins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chris McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dawn Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Gern
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
2
|
Cakir C, Kuspinar G, Aslan K, Bozyigit C, Kasapoglu I, Dirican M, Uncu G, Avci B. Dehydroepiandrosterone modulates the PTEN/PI3K/AKT signaling pathway to alleviate 4-vinylcyclohexene diepoxide-induced premature ovarian insufficiency in rats. Exp Anim 2024; 73:319-335. [PMID: 38494723 PMCID: PMC11254495 DOI: 10.1538/expanim.23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 03/19/2024] Open
Abstract
Dehydroepiandrosterone (DHEA) is frequently integrated as an adjuvant in over a quarter of controlled ovarian hyperstimulation (COH) protocols, despite the ongoing debate regarding its impact. This study aimed to evaluate the efficacy and mechanism of action of DHEA on ovarian follicular development and ovarian response in rats with varying ovarian reserves. The study involved 75 rats categorized into 15 distinct groups. The ovarian tissues of rats in both the normal ovarian reserve group and the premature ovarian insufficiency (POI) group, induced by 4-vinylcyclohexene diepoxide (VCD) injection, were subjected to histomorphological and biochemical analyses following the administration of DHEA, either alone or in combination with COH. Follicle counting was performed on histological sections obtained from various tissues. Serum concentrations of anti-Müllerian hormone (AMH) and the quantification of specific proteins in ovarian tissue, including phosphatase and tensin homolog of chromosome 10 (PTEN), phosphoinositide 3-kinase (PI3K), phosphorylated protein kinase B (pAKT), cyclooxygenase 2 (COX-2), caspase-3, as well as assessments of total antioxidant status and total oxidant status, were conducted employing the ELISA method. The impact of DHEA exhibited variability based on ovarian reserve. In the POI model, DHEA augmented follicular development and ovarian response to the COH protocol by upregulating the PTEN/PI3K/AKT signaling pathway, mitigating apoptosis, inflammation, and oxidative stress, contrary to its effects in the normal ovarian reserve group. In conclusion, it has been determined that DHEA may exert beneficial effects on ovarian stimulation response by enhancing the initiation of primordial follicles and supporting antral follicle populations.
Collapse
Affiliation(s)
- Cihan Cakir
- Department of Histology and Embryology, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| | - Goktan Kuspinar
- Department of Histology and Embryology, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| | - Kiper Aslan
- Department of Obstetrics and Gynecology, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| | - Cengiz Bozyigit
- Department of Medical Biochemistry, Bursa City Hospital, Doğanköy District, Nilüfer Bursa, 16110, Türkiye
| | - Isil Kasapoglu
- Department of Obstetrics and Gynecology, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| | - Melahat Dirican
- Department of Medical Biochemistry, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| | - Gurkan Uncu
- Department of Obstetrics and Gynecology, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| | - Berrin Avci
- Department of Histology and Embryology, Bursa Uludag University School of Medicine, Görükle Campus, Nilüfer, Bursa, 16059, Türkiye
| |
Collapse
|
3
|
Pant P, Sircar R, Prasad R, Prasad HO, Chitme HR. Protein Expression and Bioinformatics Study of Granulosa Cells of Polycystic Ovary Syndrome Expressed Under the Influence of DHEA. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231206732. [PMID: 38023736 PMCID: PMC10644732 DOI: 10.1177/11795514231206732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background The reproductive system is heavily dependent on ovarian follicles, which are made up of germ cells (oocytes) and granulosa cells (GCs), including cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs). Understanding their normal and steroid-induced functions is the key to understanding the pathophysiology of endocrinal diseases in women. Objective This study investigated the differentially expressed proteins by CGCs and MGCs of patients with polycystic ovarian syndrome (PCOS) and without subsequent exposure to dehydroepiandrosterone sulfate (DHEAS) and functional differentiation. Design The present study was observational and experimental study carried out in hospital involving 80 female patients undergoing IVF for infertility. Methods In this study, we isolated CGCs and MGCs from the follicular fluid of both PCOS and non-PCOS patients undergoing in vitro fertilization (IVF). The cells were cultured and treated with DHEAS for 48 hours, and these cells were extracted, digested, and analyzed by tandem mass spectrometry followed by processing of the results using open-source bioinformatics tools. Results The present investigation discovered 276 and 341 proteins in CGCs and MGCs, respectively. DHEAS reduced the number of proteins expressed by CGCs and MGCs to 34 and 57 from 91 and 94, respectively. Venn results of CGCs revealed 49, 53, 36, and 21 proteins in normal CGCs, PCOS-CGCs, post-DHEAS, and PCOS-CGCs, respectively. Venn analysis of MGCs showed 51 proteins specific to PCOS and 29 shared by normal and PCOS samples after DHEAS therapy. MGCs express the most binding and catalytic proteins, whereas CGCs express transporter-related proteins. A protein pathway study demonstrated considerable differences between normal and PCOS samples, while DHEAS-treated samples of both cell lines showed distinct pathways. String findings identified important network route components such as albumin, actin, apolipoprotein, complement component C3, and heat shock protein. Conclusion This is the first study to show how DHEAS-induced stress affects the expression of proteins by MGCs and CGCs isolated from normal and PCOS patients. Further studies are recommended to identify PCOS biomarkers from CGCs and MGCs expressed under the influence of DHEAS.
Collapse
Affiliation(s)
- Pankaj Pant
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, India
| | - Reema Sircar
- Indira IVF Hospital, Dehradun, Uttarakhand, India
| | - Ritu Prasad
- Morpheus Prasad International Hospital, Dehradun, Uttarakhand, India
| | - Hari Om Prasad
- Morpheus Prasad International Hospital, Dehradun, Uttarakhand, India
| | | |
Collapse
|
4
|
Yao Y, Wang H, Yang Y, Jiang Z, Ma H. Dehydroepiandrosterone protects against oleic acid-triggered mitochondrial dysfunction to relieve oxidative stress and inflammation via activation of the AMPK-Nrf2 axis by targeting GPR30 in hepatocytes. Mol Immunol 2023; 155:110-123. [PMID: 36773597 DOI: 10.1016/j.molimm.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Fatty liver hemorrhage syndrome (FLHS) seriously threatens the health and performance of laying hens, and the occurrence and development of FLHS are closely related to oxidative damage and inflammation; thus, diets supplemental with activated substances to relive the oxidative stress and inflammation maybe effectively control the occurrences of FLHS. Dehydroepiandrosterone (DHEA) has beneficial effects in fat-reduction, anti-oxidation and anti-inflammation, and it was widely applied to alleviate multiple metabolic-related diseases; however, there are few reports on whether DHEA can prevent against metabolic-related diseases by modulating oxidative stress and inflammation, especially FLHS in laying hens. Herein, present study aimed to investigate the regulatory actions and potential molecular mechanism of DHEA on inflammation and oxidative stress triggered by oleic acid (OA)-stimulation in primary chicken hepatocytes and chicken hepatocellular carcinoma cell line (LMH). The results showed that DHEA significantly alleviated oxidative stress challenged by OA-stimulation via activation of AMP-activated protein kinase (AMPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in hepatocytes, which led to relieving effect of DHEA on inflammatory by inhibiting mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways. Mechanistically, we found that the activation of AMPK-Nrf2 signaling pathway by DHEA treatment was mediated by G-protein coupled estrogen receptor (GPR30/GPER) in OA-stimulated hepatocytes. Further investigation found that DHEA activated the GPR30-mediated AMPK-Nrf2 signaling pathways to increase antioxidant capacity and inhibit mitochondrial reactive oxygen species (ROS) overproduction, which thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in OA-stimulated hepatocytes. Overall, these data demonstrated that DHEA attenuates the oxidative stress and inflammation triggered by OA-stimulation, and these beneficial effects of DHEA are achieved by activating the GPR30-mediated AMPK-Nrf2 signaling to prevent the impairment of mitochondrial function, and thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in hepatocytes. These results revealed the effects and mechanisms of DHEA on oxidative stress and inflammation, and also provide substantial information to support it as a potential nutritional supplement in preventing the occurrences of FLHS in laying hens and other metabolic-related diseases in animals and humans.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Zhang X, Adebayo AS, Wang D, Raza Y, Tomlinson M, Dooley H, Bowyer RC, Small KS, Steves CJ, Spector TD, Duncan EL, Visconti A, Falchi M. PPI-Induced Changes in Plasma Metabolite Levels Influence Total Hip Bone Mineral Density in a UK Cohort. J Bone Miner Res 2023; 38:326-334. [PMID: 36458982 PMCID: PMC10108201 DOI: 10.1002/jbmr.4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Proton pump inhibitors (PPIs) are among the most used drugs in the UK. PPI use has been associated with decreased bone mineral density (BMD) and increased fracture risk, although these results have been inconsistent. We hypothesized that PPI could modulate BMD by altering gut and/or host systemic metabolic environments. Using data from more than 5000 British male and female individuals, we confirmed that PPI use is associated with decreased lumbar spine and total hip BMD. This effect was not mediated through the gut microbiome. We suggest here that PPI use may influence total hip BMD, both directly and indirectly, via plasma metabolites involved in the sex hormone pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Adewale S. Adebayo
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
- Present address:
NIHR Leicester Biomedical Research Centre, Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Dongmeng Wang
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Yasrab Raza
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Max Tomlinson
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Hannah Dooley
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Ruth C.E. Bowyer
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Kerrin S. Small
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Claire J. Steves
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Tim D. Spector
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Emma L. Duncan
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Alessia Visconti
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| | - Mario Falchi
- Department of Twins Research & Genetics EpidemiologyKing's College LondonLondonUK
| |
Collapse
|
6
|
Yao Y, Yang Y, Wang H, Jiang Z, Ma H. Dehydroepiandrosterone alleviates oleic acid-induced lipid metabolism disorders through activation of AMPK-mTOR signal pathway in primary chicken hepatocytes. Poult Sci 2022; 102:102385. [PMID: 36565630 PMCID: PMC9800306 DOI: 10.1016/j.psj.2022.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The incident of lipid metabolism disorders has obviously increased under the undue pursuit of efficiency, which had seriously threatened to the health development of poultry industry. As an important cholesterol-derived intermediate, though dehydroepiandrosterone (DHEA) has the fat-reduction effect in animals and humans, but the underlying mechanism still poorly understood. Herein, the present study aimed to investigate the regulatory effects and its molecular mechanism of DHEA on disturbance of lipid metabolism induced by oleic acid (OA) in primary chicken hepatocytes. The hepatocytes were treated with 0, 0.1, 1, 10 μM DHEA for 4 h, and then supplemented with 0 or 0.5 mM OA stimulation for another 24 h. Our findings demonstrated that DHEA treatment effectively reduced TG content and alleviated lipid droplet deposition in OA-induced hepatocytes. DHEA inhibited the lipogenesis related factors (ACC, FAS, SREBP-1c, and ACLY) mRNA level and increased the lipolysis key factors (CPT-1 and PPARα) mRNA levels. In addition, DHEA obviously elevated the protein levels of CPT-1A, p-ACC, and ECHS1; whereas decreased the protein levels of FAS and SREBP-1 in hepatocytes stimulated by OA. Furthermore, DHEA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Mechanistically, the hepatocytes were pre-treated with AMPK inhibitor compound C or AMPK activator AICAR before addition of DHEA treatment, and the results certified that DHEA activated cAMP/AMPK pathway and which subsequently led the inhibition of mTOR signal, which finally reduced the fat excessive accumulation in OA-stimulated hepatocytes. Collectively, our study unveiled that DHEA protects against the lipid metabolism disorders triggered by OA stimulation through activation of AMPK-mTOR signaling pathway, which prompts the value of DHEA as a potential nutritional supplement in regulating the lipid metabolism and its related disease in poultry.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,Corresponding author:
| |
Collapse
|
7
|
Wilson KS, Li D, Valentine I, McNeilly A, Girling S, Li R, Zhou Y, Vanhaecke L, Colin Duncan W, Wauters J. The novel use of urinary androgens to optimise detection of the fertile window in giant pandas. REPRODUCTION AND FERTILITY 2022; 3:122-132. [PMID: 35949393 PMCID: PMC9354564 DOI: 10.1530/raf-22-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract Giant pandas are mono-estrus seasonal breeders, with the breeding season typically occurring in the spring. Successful fertilization is followed by an embryonic diapause, of variable length, with birth in the late summer/autumn. There is a need for additional understanding of giant panda reproductive physiology, and the development of enhanced biomarkers for impending proestrus and peak fertility. We aimed to determine the utility of non-invasive androgen measurements in the detection of both proestrus and estrus. Urine from 20 cycles (-40 days to +10 days from peak estrus) from 5 female giant pandas was analyzed for estrogen, progestogens and androgens (via testosterone and DHEA assays), and hormone concentrations were corrected against urinary specific gravity. Across proestrus, estrogens increased while progestogens and androgens decreased - at the point of entry into proestrus, androgens (as detected by the testosterone assay) decreased prior to progestogens and gave 4 days advanced warning of proestrus. At the time of peak estrus, androgens (as detected by the DHEA assay) were significantly increased at the time of the decrease in estrogen metabolites from the peak, acting as an alternative confirmatory indicator of the fertile window. This novel finding allows for enlargement of the preparative window for captive breeding and facilitates panda management within breeding programmes. Androgens allow an enhanced monitoring of giant panda estrus, not only advancing the warning of impending proestrus, but also prospectively identifying peak fertility. Lay summary Giant pandas have one chance at pregnancy per year. The 2-day fertile window timing varies by year and panda. This is monitored by measuring the level of estrogens in the urine, which increase, indicating an upcoming fertile period. After 1-2 weeks of increase, estrogens peak and fall, marking the optimal fertile time. We tested other hormones to see if we can predict the fertile window in advance, and the specific fertile time with more accuracy. In 20 breeding seasons from 5 females, we found androgens, usually thought of as male hormones, had an important role. Testosterone gives 4 days advanced warning of estrogens increasing. DHEA identified peak estrogen and the fertile time before needing to see a confirmed decrease in estrogen itself. Therefore, androgens help improve monitoring of the giant panda breeding season, giving early warning of fertility, key in facilitating captive breeding and giant panda conservation.
Collapse
Affiliation(s)
- Kirsten S Wilson
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Desheng Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for the Giant Panda (CCRCGP), DuJiangYan City, Sichuan Province, China
| | | | - Alan McNeilly
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rengui Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for the Giant Panda (CCRCGP), DuJiangYan City, Sichuan Province, China
| | - Yingmin Zhou
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for the Giant Panda (CCRCGP), DuJiangYan City, Sichuan Province, China
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W Colin Duncan
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jella Wauters
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Leibniz Institute for Zoo and Wildlife Research, Department Reproduction Biology, Berlin, Germany
| |
Collapse
|
8
|
The regulatory effect of fermented black barley on the gut microbiota and metabolic dysbiosis in mice exposed to cigarette smoke. Food Res Int 2022; 157:111465. [DOI: 10.1016/j.foodres.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
9
|
Chen M, Li G, Zhang L, Ning K, Yang B, Jiang JX, Wang DE, Xu H. Primary Osteocyte Supernatants Metabolomic Profiling of Two Transgenic Mice With Connexin43 Dominant Negative Mutants. Front Endocrinol (Lausanne) 2021; 12:649994. [PMID: 34093433 PMCID: PMC8169970 DOI: 10.3389/fendo.2021.649994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Osteocytes could release some small molecules (≤ 1 kDa) through gap junctions and hemichannels to extracellular environment, such as prostaglandin E2 (PGE2), nitric oxide (NO) and adenosine triphosphate (ATP), which play key roles in transferring signals between bone cells and other tissue cells. Connexin (Cx) 43 is the most abundant connexin in osteocytes. To further discover molecules released by osteocytes through Cx43 channels and better understand the regulatory function of Cx43 channels in osteocytes, we performed non-targeted global metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on conditioned medium collected from osteocytes isolated from two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). The results revealed that several new categories of molecules, such as "fatty acyls" and "carboxylic acids and derivatives", could be released through osteocytic Cx43 channels. In addition, alteration of Cx43 channel function affected the release of metabolites related to inflammatory reaction and oxidative stress. Pathway analysis further showed that citric acid cycle was the most differential metabolic pathway regulated by Cx43 channels. In sum, these results isolated new potential metabolites released by osteocytes through Cx43 channels, and offered a novel perspective to understand the regulatory mechanisms of osteocytes on themselves and other cells as well.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Baoqiang Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
10
|
Kadivnik M, Debeljak Ž, Mandić D, Wagner J, Kralik K, Šijanović S, Muller A, Šerić V. Requirement for oxytocin augmentation in spontaneous parturition is associated with the maternal serum steroid hormones assessed by liquid chromatography coupled to the tandem mass spectrometry. J Obstet Gynaecol Res 2021; 47:2347-2355. [PMID: 33855759 DOI: 10.1111/jog.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
AIM The aim of research was to evaluate the maternal serum concentration of selected endogenous steroid hormones during spontaneous parturition at term and to determinate their association with the need for oxytocin augmentation. METHODS Blood of 108 healthy pregnant women whose parturition started with the regular spontaneous uterine contractions was drawn at the beginning of the labor. Liquid chromatography coupled to the tandem mass spectrometry device was utilized for measurement of sex hormone binding globulin, aldosterone, androstenedione, cortisol, cortisone, corticosterone, dehydroepiandrosterone, dehydroepiandrosteron sulphate, 17-hydroxyprogesterone, progesterone, and testosterone. Mann-Whitney U test, chi-square test, univariate and multivariate logistic regression, and receiver operating characteristic (ROC) analysis were used for the data analysis. RESULTS Reference ranges of the selected hormones assessed by liquid chromatography coupled to the tandem mass spectrometry in maternal serum were established. Statistically significant differences in the serum concentration of corticosterone, dehydroepiandrosterone, and androstenedione between mothers requiring oxytocin augmentation and the rest of women having spontaneous parturition were found (p = 0.002, p = 0.008, and p = 0.04, respectively). Concentrations were lower in the group of mothers who required oxytocin infusion for progression of labor. ROC analysis showed that all the mothers with dehydroepiandrosterone serum concentration above 21.6 nmol/L have lower chance to use oxytocin infusion for the labor progression ( area under the curve (AUC) = 0.649, sensitivity = 71.7%, specificity = 59.6%, p = 0.006). CONCLUSION This research provided reference ranges for the selected maternal serum steroid hormones at the beginning of parturition. Association of corticosterone, dehydroepiandrosterone, and androstenedione with the need for the oxytocin infusion usage has been established. Dehydroepiandrosterone could be potential predictor of oxytocin infusion augmentation for progression of the parturition.
Collapse
Affiliation(s)
- Mirta Kadivnik
- Department of Obstetrics and Gynecology, University Hospital Osijek, Osijek, Croatia.,Department of Obstetrics and Gynecology, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia.,Department of Pharmacology, Medical faculty, J.J.Strossmayer University, Osijek, Croatia
| | - Dario Mandić
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia.,Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Informatics, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| | - Siniša Šijanović
- Department of Obstetrics and Gynecology, University Hospital Osijek, Osijek, Croatia.,Department of Obstetrics and Gynecology, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| | - Andrijana Muller
- Department of Obstetrics and Gynecology, University Hospital Osijek, Osijek, Croatia.,Department of Obstetrics and Gynecology, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| | - Vatroslav Šerić
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia.,Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Medical faculty, J.J. Strossmayer University, Osijek, Croatia
| |
Collapse
|
11
|
Wang J, Wang L. The therapeutic effect of dehydroepiandrosterone (DHEA) on vulvovaginal atrophy. Pharmacol Res 2021; 166:105509. [PMID: 33610719 DOI: 10.1016/j.phrs.2021.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Vulvovaginal atrophy (VVA) is a chronic disease that mostly occurs in postmenopausal women. After menopause, insufficient sex hormones affect the anatomy of the vagina and cause drastic physiological changes. The main histopathological studies of VVA show that postmenopausal estrogen deficiency can lead to the increase of intermediate/parabasal cells, resulting in the loss of lactobacillus, elasticity and lubricity, vaginal epithelial atrophy, pain, dryness. Although the role of estrogen hormones in the treatment of VVA has always been in the past, it is now widely accepted that it also depends on androgens. Estrogen drugs have many side effects. So, Dehydroepiandrosterone(DHEA)is promising for the treatment of VVA, especially when women with contraindications to estrogen have symptoms. This review is expected to understand the latest developments in VVA and the efficacy of DHEA.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
12
|
Hao T, Zhang P, Hao H, Du W, Pang Y, Zhao S, Zou H, Zhu H, Yu W, Li S, Zhao X. The combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO. Reprod Domest Anim 2021; 56:519-530. [PMID: 33405303 DOI: 10.1111/rda.13890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Many experiments show that vitrification significantly reduces the fertilization capacity of mammalian oocytes, restricting the application of vitrified oocytes. It has been proven that the JUNO protein plays a vital role in mammalian oocytes fertilization. However, little information is available about the effects of vitrification on the JUNO protein and the procedure to protect it in bovine oocytes. Here, the present study was designed to investigate the effect of vitrification on the JUNO protein level in bovine oocytes. In this study, MII oocytes were treated with cholesterol-loaded methyl-β-cyclodextrin (CLC; 0, 10, 15, 20 mM) for 45 min before vitrification and methyl-β-cyclodextrin (MβCD; 0, 2.25, 4.25, 6.25 mM) for 45 min after thawing (38-39°C). Then, the expression level and function of JUNO protein, cholesterol level in the membrane, the externalization of phosphatidylserine, sperm binding capacity and the developmental ability of vitrified bovine oocytes were examined. Our results showed that vitrification significantly decreased the JUNO protein level, cholesterol level, sperm binding capacity, development ability, and increased the promoter methylation level of the JUNO gene and apoptosis level of bovine oocytes. Furthermore, 15 mM CLC + 4.25 mM MβCD treatment significantly improved the cholesterol level and increased sperm binding and development ability of vitrified bovine oocytes. In conclusion, the combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Peipei Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weili Yu
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
13
|
SAKİN Ö, ORUÇ MA, ALAN Y, ANĞIN AD, BAŞAK K. Investigation of protective effects of dehydroepiandrosterone (DHEA) against toxic damage caused by doxorubicin in rat ovaries. KONURALP TIP DERGISI 2020. [DOI: 10.18521/ktd.680703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|