1
|
Meguro M, Miyauchi S, Kanao-Arisumi Y, Naito S, Suzuki K, Inoue S, Yamada K, Homma T, Chiba K, Nara F, Furuzono S. Identification of sulfonylpyrimidines as novel selective aldosterone synthase (CYP11B2) inhibitors. Bioorg Med Chem 2024; 108:117775. [PMID: 38851000 DOI: 10.1016/j.bmc.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
4-[(5-[2-Methyl-5-(methylsulfonyl)pentan-2-yl]sulfonylpyrimidin-4-yl)amino]benzonitrile 2 was identified as a novel potent aldosterone synthase inhibitor. Compound 2 was found to inhibit human CYP11B2 in the nanomolar range, and showed an aldosterone-lowering effect in a furosemide-treated cynomolgus monkey model. Although human CYP11B2 has the high homology sequence with human CYP11B1, compound 2 showed more than 80 times higher selectivity over human CYP11B1 in vitro.
Collapse
Affiliation(s)
- Masaki Meguro
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Satoru Miyauchi
- Technology Division, Technology Business Management Group, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Yukiko Kanao-Arisumi
- Pharmaunion Co., Ltd., 1-23-39 Hiikawa, Jounan-ku, Fukuoka-shi, Fukuoka 814-0153, Japan
| | - Satoru Naito
- Site Operations Department, Shinagawa Site Operation Group, Daiichi Sankyo Business Associe Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kanae Suzuki
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shinichi Inoue
- Daiichi Sankyo Inc., 211 Mt. Airy Road, Basking Ridge, NJ 07920, USA
| | - Keisuke Yamada
- Medical Affairs Division, Medical Affairs Planning Department, Daiichi Sankyo Co., Ltd., 3-5-1, Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8426, Japan
| | - Tsuyoshi Homma
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Chiba
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Futoshi Nara
- Shin Nippon Biomedical Laboratories, Ltd., 8-1-28, Akashicho, Chuo-ku, Tokyo 104-0044, Japan
| | - Shinji Furuzono
- Shinagawa R&D Center, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
2
|
Nasrallah D, Abdelhamid A, Tluli O, Al-Haneedi Y, Dakik H, Eid AH. Angiotensin receptor blocker-neprilysin inhibitor for heart failure with reduced ejection fraction. Pharmacol Res 2024; 204:107210. [PMID: 38740146 DOI: 10.1016/j.phrs.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a clinical syndrome characterized by volume overload, impaired exercise capacity, and recurrent hospital admissions. A major contributor to the pathophysiology and clinical presentation of heart failure is the activation of the renin-angiotensin-aldosterone system (RAAS). Normally, RAAS is responsible for the homeostatic regulation of blood pressure, extracellular fluid volume, and serum sodium concentration. In HFrEF, RAAS gets chronically activated in response to decreased cardiac output, further aggravating the congestion and cardiotoxic effects. Hence, inhibition of RAAS is a major approach in the pharmacologic treatment of those patients. The most recently introduced RAAS antagonizing medication class is angiotensin receptor blocker/ neprilysin inhibitor (ARNI). In this paper, we discuss ARNIs' superiority over traditional RAAS antagonizing agents in reducing heart failure hospitalization and mortality. We also tease out the evidence that shows ARNIs' renoprotective functions in heart failure patients including those with chronic or end stage kidney disease. We also discuss the evidence showing the added benefit resulting from combining ARNIs with a sodium-glucose cotransporter-2 (SGLT-2) inhibitor. Moreover, how ARNIs decrease the risk of arrhythmias and reverse cardiac remodeling, ultimately lowering the risk of cardiovascular death, is also discussed. We then present the positive outcome of ARNIs' use in patients with diabetes mellitus and those recovering from acute decompensated heart failure. ARNIs' side effects are also appreciated and discussed. Taken together, the provided insight and critical appraisal of the evidence justifies and supports the implementation of ARNIs in the guidelines for the treatment of HFrEF.
Collapse
Affiliation(s)
- Dima Nasrallah
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alaa Abdelhamid
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omar Tluli
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yaman Al-Haneedi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Habib Dakik
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Savarese G, Lindberg F, Filippatos G, Butler J, Anker SD. Mineralocorticoid receptor overactivation: targeting systemic impact with non-steroidal mineralocorticoid receptor antagonists. Diabetologia 2024; 67:246-262. [PMID: 38127122 PMCID: PMC10789668 DOI: 10.1007/s00125-023-06031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 12/23/2023]
Abstract
The overactivation of the mineralocorticoid receptor (MR) promotes pathophysiological processes related to multiple physiological systems, including the heart, vasculature, adipose tissue and kidneys. The inhibition of the MR with classical MR antagonists (MRA) has successfully improved outcomes most evidently in heart failure. However, real and perceived risk of side effects and limited tolerability associated with classical MRA have represented barriers to implementing MRA in settings where they have been already proven efficacious (heart failure with reduced ejection fraction) and studying their potential role in settings where they might be beneficial but where risk of safety events is perceived to be higher (renal disease). Novel non-steroidal MRA have distinct properties that might translate into favourable clinical effects and better safety profiles as compared with MRA currently used in clinical practice. Randomised trials have shown benefits of non-steroidal MRA in a range of clinical contexts, including diabetic kidney disease, hypertension and heart failure. This review provides an overview of the literature on the systemic impact of MR overactivation across organ systems. Moreover, we summarise the evidence from preclinical studies and clinical trials that have set the stage for a potential new paradigm of MR antagonism.
Collapse
Affiliation(s)
- Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Felix Lindberg
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gerasimos Filippatos
- Department of Cardiology, University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Internal Medicine, University of Mississippi, Jackson, MS, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany.
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
4
|
Mullen N, Curneen J, Donlon PT, Prakash P, Bancos I, Gurnell M, Dennedy MC. Treating Primary Aldosteronism-Induced Hypertension: Novel Approaches and Future Outlooks. Endocr Rev 2024; 45:125-170. [PMID: 37556722 PMCID: PMC10765166 DOI: 10.1210/endrev/bnad026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and is associated with increased morbidity and mortality when compared with blood pressure-matched cases of primary hypertension. Current limitations in patient care stem from delayed recognition of the condition, limited access to key diagnostic procedures, and lack of a definitive therapy option for nonsurgical candidates. However, several recent advances have the potential to address these barriers to optimal care. From a diagnostic perspective, machine-learning algorithms have shown promise in the prediction of PA subtypes, while the development of noninvasive alternatives to adrenal vein sampling (including molecular positron emission tomography imaging) has made accurate localization of functioning adrenal nodules possible. In parallel, more selective approaches to targeting the causative aldosterone-producing adrenal adenoma/nodule (APA/APN) have emerged with the advent of partial adrenalectomy or precision ablation. Additionally, the development of novel pharmacological agents may help to mitigate off-target effects of aldosterone and improve clinical efficacy and outcomes. Here, we consider how each of these innovations might change our approach to the patient with PA, to allow more tailored investigation and treatment plans, with corresponding improvement in clinical outcomes and resource utilization, for this highly prevalent disorder.
Collapse
Affiliation(s)
- Nathan Mullen
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - James Curneen
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - Padraig T Donlon
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark Gurnell
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Michael C Dennedy
- The Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway H91V4AY, Ireland
| |
Collapse
|
5
|
Dybiec J, Krzemińska J, Radzioch E, Szlagor M, Wronka M, Młynarska E, Rysz J, Franczyk B. Advances in the Pathogenesis and Treatment of Resistant Hypertension. Int J Mol Sci 2023; 24:12911. [PMID: 37629095 PMCID: PMC10454510 DOI: 10.3390/ijms241612911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Hypertension is a prevalent chronic disease associated with an increased risk of cardiovascular (CV) premature death, and its severe form manifests as resistant hypertension (RH). The accurate prevalence of resistant hypertension is difficult to determine due to the discrepancy in data from various populations, but according to recent publications, it ranges from 6% to 18% in hypertensive patients. However, a comprehensive understanding of the pathogenesis and treatment of RH is essential. This review emphasizes the importance of identifying the causes of treatment resistance in antihypertensive therapy and highlights the utilization of appropriate diagnostic methods. We discussed innovative therapies such as autonomic neuromodulation techniques like renal denervation (RDN) and carotid baroreceptor stimulation, along with invasive interventions such as arteriovenous anastomosis as potential approaches to support patients with inadequate medical treatment and enhance outcomes in RH.
Collapse
Affiliation(s)
- Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| | - Julia Krzemińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| | - Magdalena Szlagor
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| | - Magdalena Wronka
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Łódź, Poland; (J.D.); (J.K.); (E.R.); (M.S.); (M.W.); (B.F.)
| |
Collapse
|
6
|
Russo E, Bussalino E, Macciò L, Verzola D, Saio M, Esposito P, Leoncini G, Pontremoli R, Viazzi F. Non-Haemodynamic Mechanisms Underlying Hypertension-Associated Damage in Target Kidney Components. Int J Mol Sci 2023; 24:ijms24119422. [PMID: 37298378 DOI: 10.3390/ijms24119422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Arterial hypertension (AH) is a global challenge that greatly impacts cardiovascular morbidity and mortality worldwide. AH is a major risk factor for the development and progression of kidney disease. Several antihypertensive treatment options are already available to counteract the progression of kidney disease. Despite the implementation of the clinical use of renin-angiotensin aldosterone system (RAAS) inhibitors, gliflozins, endothelin receptor antagonists, and their combination, the kidney damage associated with AH is far from being resolved. Fortunately, recent studies on the molecular mechanisms of AH-induced kidney damage have identified novel potential therapeutic targets. Several pathophysiologic pathways have been shown to play a key role in AH-induced kidney damage, including inappropriate tissue activation of the RAAS and immunity system, leading to oxidative stress and inflammation. Moreover, the intracellular effects of increased uric acid and cell phenotype transition showed their link with changes in kidney structure in the early phase of AH. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for hypertensive nephropathy management in the future. In this review, we would like to focus on the interactions of pathways linking the molecular consequences of AH to kidney damage, suggesting how old and new therapies could aim to protect the kidney.
Collapse
Affiliation(s)
- Elisa Russo
- U.O.C. Nefrologia e Dialisi, Ospedale San Luca, 55100 Lucca, Italy
| | - Elisabetta Bussalino
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Lucia Macciò
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | | | - Michela Saio
- S.S.D. Nefrologia e Dialisi, Ospedale di Sestri Levante, 16124 Genova, Italy
| | - Pasquale Esposito
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Giovanna Leoncini
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Roberto Pontremoli
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Francesca Viazzi
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| |
Collapse
|
7
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
8
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Dragasevic N, Savic M, Mihajlovic K, Zivkovic V, Andjic M, Draginic N, Zdravkovic N, Bolevich S, Bolevich S, Jakovljevic V, Nikolic Turnic T. The impact of different diuretics on regression of myocardial reperfusion injury in spontaneously hypertensive rats. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04622-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Loomis CL, Brixius-Anderko S, Scott EE. Redox partner adrenodoxin alters cytochrome P450 11B1 ligand binding and inhibition. J Inorg Biochem 2022; 235:111934. [PMID: 35952394 PMCID: PMC9907956 DOI: 10.1016/j.jinorgbio.2022.111934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Human cytochrome P450 11B1 (CYP11B1) generation of the major glucocorticoid cortisol requires two electrons delivered sequentially by the iron‑sulfur protein adrenodoxin. While the expected adrenodoxin binding site is on the opposite side of the heme and 15-20 Å away, evidence is provided that adrenodoxin allosterically impacts CYP11B1 ligand binding and catalysis. The presence of adrenodoxin both decreases the dissociation constant (Kd) for substrate binding and increases the proportion of substrate that is bound at saturation. Adrenodoxin additionally decreases the Michaelis-Menten constant for the native substrate. Similar studies with several inhibitors also demonstrate the ability of adrenodoxin to modulate inhibition (IC50 values). Somewhat similar allosterism has recently been observed for the closely related CYP11B2/aldosterone synthase, but there are several marked differences in adrenodoxin effects on the two CYP11B enzymes. Comparison of the sequences and structures of these two CYP11B enzymes helps identify regions likely responsible for the functional differences. The allosteric effects of adrenodoxin on CYP11B enzymes underscore the importance of considering P450/redox partner interactions when evaluating new inhibitors.
Collapse
Affiliation(s)
- Cara L Loomis
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Emily E Scott
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Domínguez-Vías G, Segarra AB, Ramírez-Sánchez M, Prieto I. The Type of Fat in the Diet Influences Regulatory Aminopeptidases of the Renin-Angiotensin System and Stress in the Hypothalamic-Pituitary-Adrenal Axis in Adult Wistar Rats. Nutrients 2021; 13:nu13113939. [PMID: 34836194 PMCID: PMC8625891 DOI: 10.3390/nu13113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.
Collapse
Affiliation(s)
- Germán Domínguez-Vías
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Department of Physiology, Faculty of Health Sciences, Ceuta, University of Granada, 18071 Granada, Spain
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| | - Ana Belén Segarra
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Manuel Ramírez-Sánchez
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
| | - Isabel Prieto
- Unit of Physiology, Department of Health Sciences, University of Jaén, Las Lagunillas, 23071 Jaén, Spain; (A.B.S.); (M.R.-S.)
- Correspondence: (G.D.-V.); (I.P.); Tel.: +34-953-212008 (I.P.)
| |
Collapse
|
12
|
Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders - New perspectives for combination therapy. Pharmacol Res 2021; 172:105859. [PMID: 34461222 DOI: 10.1016/j.phrs.2021.105859] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
During the recent 30 years, there has been a dramatic increase in knowledge about the role of aldosterone and the mineralocorticoid receptor (MR) in the pathophysiology of cardiovascular (CV) and kidney diseases. The scientific perspective on the aldosterone/MR ensemble extended from a previously renal epithelial-centered focus on sodium-potassium exchange to a broader view as systemic modulators of extracellular matrix, inflammation and fibrosis. Spironolactone was launched as the first antagonist of aldosterone 27 years before the MR was cloned. It was classified as a potassium-sparing diuretic, based on its initial clinical characterization as a diuretic and its preferred activity to compensate for the potassium loss induced by loop diuretics when used in combination. The second steroidal MR antagonist was eplerenone which was discovered at a time when the role of aldosterone and MR in cardiac fibrosis was rediscovered. The constraint of developing potentially life-threatening hyperkalaemia when used in combination with other inhibitors of the renin-angiotensin-system (RAS) in patients with reduced kidney function initiated extensive research and development activities with the goal to identify novel nonsteroidal MR antagonists with an improved benefit-risk ratio. Here we summarize major current clinical trials with MRAs in different CV and renal diseases. Addition of the nonsteroidal MRA finerenone to optimal RAS blockade recently reduced CV and kidney outcomes in two large phase III trials in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D). We provide an outlook on further opportunities for combination therapy of nonsteroidal MRA finerenone with RAS inhibitors and sodium-glucose cotransporter-2 inhibitors (SGLT2i).
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany.
| | - Amer Joseph
- Cardiology and Nephrology, Clinical Development, R&D Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Ulrich Kintscher
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, 10115 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
13
|
Wu J, Ding X, Tan X. A patent review of aldosterone synthase inhibitors (2014-present). Expert Opin Ther Pat 2021; 32:13-28. [PMID: 34365871 DOI: 10.1080/13543776.2021.1965991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Aldosterone synthase (AS) is a key enzyme involved in the final three rate-limiting steps of the biosynthesis pathway of aldosterone, and its inhibition has been considered as an effective strategy to treat hypertension, heart failure, and related cardio-metabolic diseases. AREA COVERED This review provides an update on the discovery and development of aldosterone synthase inhibitors by means of patents published between January 2014 and March 2021. The molecules are classified by pharmaceutical company with progress that has been made in clinical trials being highlighted. EXPERT OPINION Mineralocorticoid receptor antagonists (MRAs) and aldosterone synthase inhibitors (ASI) represent two of the main approaches for the blockade of aldosterone. Clinical success, as well as foreseen side effects of steroidal MRAs, prompted the discovery and development of ASI. Since the observation of decreased cortisol levels in clinical trials for LCI699, subsequent efforts have been largely focused on improving its selectivity over hCYP11B1. Candidates with improved potency and selectivity are under investigation across a wide range of indications. Whether ASI will provide an additional therapeutic advantage over current safe and selective non-steroidal MRAs is highly anticipated.
Collapse
Affiliation(s)
- Jun Wu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| | - Xiao Ding
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai, China
| |
Collapse
|
14
|
Sander K, Gendron T, Cybulska KA, Sirindil F, Zhou J, Kalber TL, Lythgoe MF, Kurzawinski TR, Brown MJ, Williams B, Årstad E. Development of [ 18F]AldoView as the First Highly Selective Aldosterone Synthase PET Tracer for Imaging of Primary Hyperaldosteronism. J Med Chem 2021; 64:9321-9329. [PMID: 34137616 PMCID: PMC8273890 DOI: 10.1021/acs.jmedchem.1c00539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to synthesize a fluorine-18 labeled, highly selective aldosterone synthase (hCYP11B2) inhibitor, [18F]AldoView, and to assess its potential for the detection of aldosterone-producing adenomas (APAs) with positron emission tomography in patients with primary hyperaldosteronism (PHA). Using dibenzothiophene sulfonium salt chemistry, [18F]AldoView was obtained in high radiochemical yield in one step from [18F]fluoride. In mice, the tracer showed a favorable pharmacokinetic profile, including rapid distribution and clearance. Imaging in the adrenal tissue from patients with PHA revealed diffuse binding patterns in the adrenal cortex, avid binding in some adenomas, and "hot spots" consistent with aldosterone-producing cell clusters. The binding pattern was in good visual agreement with the antibody staining of hCYP11B2 and distinguished areas with normal and excessive hCYP11B2 expression. Taken together, [18F]AldoView is a promising tracer for the detection of APAs in patients with PHA.
Collapse
Affiliation(s)
- Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London WC1E 6BS, U.K
| | - Thibault Gendron
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London WC1E 6BS, U.K
| | - Klaudia A Cybulska
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London WC1E 6BS, U.K
| | - Fatih Sirindil
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London WC1E 6BS, U.K
| | - Junhua Zhou
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| | - Tom R Kurzawinski
- NIHR University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, London W1T 7DN, U.K
| | - Morris J Brown
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| | - Bryan Williams
- NIHR University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, London W1T 7DN, U.K.,Institute of Cardiovascular Sciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, 5 Gower Place, London WC1E 6BS, U.K
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease is a growing problem leading to end-stage kidney disease but also atherosclerotic cardiovascular disease and heart failure. Aldosterone is a key risk factor promoting inflammation and fibrosis causing cardio-renal failure. Current options and challenges with mitigating the risk of aldosterone are reviewed. RECENT FINDINGS More aggressive renin-angiotensin-aldosterone system (RAAS) blockade can be maintained in individuals with hyperkalemia if new potassium binders are added. Aldosterone synthase inhibitors may lower aldosterone without causing hyperkalemia. Novel nonsteroidal mineralocorticoid receptor antagonists (MRA) are able to lower proteinuria and markers of heart failure, with limited potassium problems and without renal impairment. Ongoing clinical trials are evaluating the safety and potential benefits of nonsteroidal MRAs on progression of renal disease and development of cardiovascular outcomes in type 2 diabetes and kidney disease. SUMMARY Aldosterone is an important driver of inflammation and fibrosis leading to renal and cardiovascular complications. MRA lower albuminuria but data showing prevention of end-stage kidney disease are lacking. Side effects including hyperkalemia have previously prevented long-term studies in diabetic kidney disease but new treatment strategies with potassium binders, aldosterone synthase inhibitors and nonsteroidal MRA have been developed for clinical testing.
Collapse
|
16
|
Dragasevic N, Jakovljevic V, Zivkovic V, Draginic N, Andjic M, Bolevich S, Jovic S. The role of aldosterone inhibitors in cardiac ischemia-reperfusion injury. Can J Physiol Pharmacol 2020; 99:18-29. [PMID: 32799671 DOI: 10.1139/cjpp-2020-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a well-known term for exacerbation of cellular destruction and dysfunction after the restoration of blood flow to a previously ischaemic heart. A vast number of studies that have demonstrated that the role of mineralocorticoids in cardiovascular diseases is based on the use of pharmacological mineralocorticoid receptor (MR) antagonists. This review paper aimed to summarize current knowledge on the effects of MR antagonists on myocardial I/R injury as well as postinfarction remodeling. Animal models, predominantly the Langendorff technique and left anterior descending coronary artery occlusion, have confirmed the potency of MR antagonists as preconditioning and postconditioning agents in limiting infarct size and postinfarction remodeling. Several preclinical studies in rodents have established and proved possible mechanisms of cardioprotection by MR antagonists, such as reduction of oxidative stress, reduction of inflammation, and apoptosis, therefore limiting the infarct zone. However, the results of some clinical trials are inconsistent, since they reported no benefit of MR antagonists in acute myocardial infarction. Due to this, further studies and the results of ongoing clinical trials regarding MR antagonist administration in patients with acute myocardial infarction are being awaited with great interest.
Collapse
Affiliation(s)
- Nevena Dragasevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia.,1st Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Nevena Draginic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Marijana Andjic
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Sergey Bolevich
- 1 Moscow State Medical University IM Sechenov, Department of Human Pathology, Trubetskaya street 8, 119991 Moscow, Russia
| | - Slavoljub Jovic
- University of Belgrade, Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Bul. Oslobodjenja 18, Belgrade, Serbia
| |
Collapse
|